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Abstract. A Range Minimum Query asks for the position of a minimal ele-
ment between two specified array-indices. We consider a natural extension of
this, where our further constraint is that if the minimum in a query interval
is not unique, then the query should return an approximation of the median
position among all positions that attain this minimum. We present a succinct
preprocessing scheme using Dn+o(n) bits in addition to the static input array
(small constant D), such that subsequent “range median of minima queries”
can be answered in constant time. This data structure can be built in linear
time, with little extra space needed at construction time. We introduce several
new combinatorial concepts such as Super-Cartesian Trees and Super-Ballot
Numbers. We give applications of our preprocessing scheme in text indexes
such as (compressed) suffix arrays and trees.
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1. Introduction

The Range Minimum Query (RMQ) problem is to preprocess an array A of n num-
bers (or other objects from a totally ordered universe) such that queries rmqA(ℓ, r)
asking for the position of the minimum element in A[ℓ, r] can be answered in con-
stant time; more formally, rmqA(ℓ, r) = argminℓ≤i≤r A[i]. This problem is of fun-
damental algorithmic importance due to its connection to many other problems,
such as computing lowest common ancestors in trees [4]. Several authors have given
algorithms to solve this problem with a linear-time preprocessing [2–4, 8, 17, 25],
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leading to the currently best solution using only 2n + o(n) bits in addition to the
input array [9].

In the case when the minimum in the query interval is not unique, RMQs
can return an arbitrary minimum (although it is easy to adapt all of the above
algorithms to return the leftmost or rightmost minimum). However, a natural (and
useful, as we shall see!) extension of this is to require that queries return the median
position of all positions in the query interval that attain the minimum value:

Definition 1.1. For an array A[0, n−1] of n objects from a totally ordered universe,
for a given interval [ℓ, r] with 0 ≤ ℓ ≤ r < n, let M[ℓ,r] = {i ∈ [ℓ, r] : A[i] =
minℓ≤j≤r A[j]} denote the set of positions where the sub-array A[ℓ, r] attains the
minimum. Then the query rmqmed

A (ℓ, r) asks for an index m ∈ M[ℓ,r] whose rank
in M[ℓ,r] is between Cµ and (1 − C)µ among all µ = |M[ℓ,r]| indexes in M[ℓ,r]

(for some constant 0 < C ≤ 1/2). We call such queries range median of minima
queries.

The main contribution of this article (Sect. 3) is to give a linear-time pre-
processing scheme such that range median of minima queries can be answered in
constant time, summarized as follows:

Theorem 1.2. For a static array A of n elements from a totally ordered universe,
there is a data structure with space-occupancy of log(3+2

√
2)n+o(n) ≈ 2.54311 n+

o(n) bits1 that allows to answer approximate range median of minima queries (with
C = 1/16 in Def. 1.1) in O(1) time. This data structure can be built in O(n) time,
using only o(n) additional bits at construction time.

For other tradeoffs between space and approximation ratio, see Thm. 1.3.

1.1. Overview of Applications

One natural application of range median of minima queries comes from text in-
dexing. Basically, such queries are needed for finding quickly (in O(log |Σ|) time)
the correct outgoing edge of a node in a suffix tree (Σ being the underlying al-
phabet), when the suffix tree is only represented implicitly via the suffix- and
LCP-array [1], or by a parentheses sequence, as in Sadakane’s Compressed Suffix
Tree (CST) [24]. We will see that parts of our preprocessing scheme are necessary
for the quick construction of one component of the CST. We emphasize that the
original proposal [24] does make use of range median of minima queries, but does
not explain how to construct the corresponding structures in linear time — a gap
that we close here. A different but related application of rmqmed is an O(m log |Σ|)-
time algorithm to locate a length-m-pattern in a text over the alphabet Σ, with
the help of full-text- or word-suffix arrays [1, 6].

1Throughout this article, log denotes the binary logarithm.
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Figure 1. The internal decomposition of rmqmed(ℓ, r) into 8
sub-queries q1, . . . , q8. Thin lines denote block-boundaries, thick
lines superblock-boundaries.

1.2. Outline and Overview of Techniques

In the sequel, we briefly sketch how to preprocess an array A[0, n−1] in linear time
for rmqmed. Our general idea is similar to other RMQ-algorithms [2–4,8,9,17,25]:
decompose a query into several sub-queries, each of which has been precomputed;
then the overall minimum inside of the query range can be obtained by taking
the minimum over all precomputed intervals. There are two major deviations from
previous approaches. First, instead of storing the leftmost minimum, each pre-
computed query stores the perfect median among all its minima. And second,
in addition to returning the position of the minimum, each sub-query must also
return the number of minima in the query-interval.

The array A to be preprocessed is (conceptually) divided into superblocks

B′
0, . . . , B

′
n/s′−1 of size s′ := log2+ǫ n, where B′

i spans from A[is′] to A[(i+1)s′−1].

Here, ǫ > 0 is an arbitrary constant. Likewise, each superblock is divided into
(conceptual) blocks of size s := log n/(2 log ρ) (constant ρ to be defined later).
The choice of s will become evident after Eq. (3.1). Call the resulting blocks
B0, . . . , Bn/s−1. The reason for introducing the block-division is that a query

rmqmed(ℓ, r) can be divided into at most five sub-queries: one superblock-query
that spans several superblocks, two block-queries that span the blocks to the left
and right of the superblock-query, and two in-block-queries to the left and right
of the block-queries.

We will preprocess the in-block-queries by the “Four-Russians-Trick”; i.e.,
precomputation of all answers for a sufficiently small number of possible instances
(Sect. 3.1). The (super-)block-queries are handled in Sect. 3.2 by a standard two-
level storage scheme [20]. It suffices to precompute the (super-)block-queries only
for lengths being a power of two, as every query can be decomposed into two (pos-
sibly overlapping) sub-queries of length 2r−ℓ+1, the largest power of two that fits
into the query range. Thus, a general range minimum query is internally answered
by decomposing it in fact into 8 (usually overlapping) sub-queries (see also Fig. 1):
2 in-block-queries q1 and q8 at the very ends of the query-interval, 4 block queries
q2, q3, q6, q7, and 2 superblock-queries q4 and q5.
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A key technique for answering in-block-queries is a generalization of Cartesian
Trees [29] to Super-Cartesian Trees (Sect. 3.1.1), including algorithms for their con-
struction (Sect. 3.1.2) and enumeration (Sect. 3.1.3). Super-Cartesian Trees will be
used for a unique representation of different blocks having the same results for all
possible range median of minima queries within such a block. To avoid an explicit
space-consuming construction of Super-Cartesian Trees, we present a sophisticated
enumeration of these Super-Cartesian Trees using newly introduced Super-Ballot
numbers (Sect. 3.1.4). We believe that in particular these new concepts will turn
out to have more interesting applications in the future, as Super-Cartesian Trees
can be used to describe arbitrary properties about the minima in an interval.

Finally, we have to find the pseudo-median among the perfect medians of
the eight sub-queries. Assume now that for each sub-query qi (1 ≤ i ≤ 8) we
know that at position pi there is the perfect median among the µi minima in
the respective query interval. Let k be the minimum value in the complete query-
interval (k := mini∈[1,8] A[pi]), and I ⊆ [1, 8] be the set indicating which sub-query-
intervals contain the minimum, I := {i ∈ [1, 8] : A[pi] = k}. Further, let j be an
interval that contains most of these minima, i.e., j := argmaxi∈I µi. The algorithm
then returns the value pj as the final answer to rmqmed; this guarantees that the
returned position has rank between 1

16µ and 15
16µ among all µ ≤

∑

i∈I µi ≤ 8µj

positions that attain the minimum value, as pj has rank
µj/2

µ µ ≥ µj/2
8µj

µ = 1
16µ

(and rank ≤ 15
16µ by a similar calculation).

We thus conclude that if a query interval contains µ minima, we have an
algorithm which returns a pseudo-median with rank between 1

16µ and 15
16µ, pro-

vided that the precomputed queries return the true median of minima. Section 3
explains how this goal is met.

1.3. Approximation Scheme

In Sect. 4 we show that it is possible to approximate the median of the minima
more precisely than in Thm. 1.2, if one is willing to use more space. In particular,
for any constant α > 0 it is possible to approximate the median of µ minima with
an element having a rank in [(1

2−α)µ, (1
2 +α)µ] if we store for each block the posi-

tions of the r-quantiles instead of the perfect median position for an appropriately
chosen r (depending on α). As long as r is a constant, it can be easily verified that
our algorithm presented in Sect. 3 can be modified to determine for each block the
positions of the r-quantiles (as well as the number of minima between each pair of
consecutive r-quantiles) instead of the perfect median position.

Theorem 1.3. For a static array A of n elements from a totally ordered universe,
and any constant 0 < α < 1/2, there is a data structure with space-occupancy of

log(3 + 2
√

2)n + o(n
α ) ≈ 2.54311 n + o(n

α ) bits that allows to answer approximate

range median of minima queries (with C = 1
2 −α in Def. 1.1) in O( 1

α ) time. This
data structure can be built in O(n

α ) time.
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Figure 2. Two blocks B1 and B2 with equal Cartesian Trees
(top), but a different layout of minima. The Super-Cartesian Trees
(bottom) reflect the positions of minima by red (i.e., thick) edges.

2. Preliminaries

We use the standard word-RAM model of computation, where fundamental arith-
metic operations on words consisting of Θ(log n) consecutive bits can be computed
in constant time. For an array A of n elements, we write A[ℓ, r] to denote A’s sub-
array from ℓ to r. One important definition [29] that plays a central role in almost
every algorithm for answering RMQs is as follows:

Definition 2.1. The Cartesian Tree of an array A[ℓ, r] is a binary tree C(A) whose
root is a minimum element of A (ties are broken to the left), labeled with the
position i of this minimum. The left child of the root is the Cartesian Tree of A[ℓ, i−
1] if i > ℓ, otherwise it has no left child. The right child is defined analogously for
A[i + 1, r].

Cartesian Trees are sometimes called treaps, as they exhibit the behavior
of both a search tree (here on the array-indices) and a min-heap (here on the
array-values).

3. Preprocessing for Range Median of Minima Queries

In this section, we present the details of the preprocessing algorithm sketched in
the introduction, thereby proving Thm. 1.2.

3.1. Preprocessing for Short Queries

Let us first consider how to precompute the perfect median of the minima inside
the blocks of size s (queries q1 and q8 in Fig. 1). We cannot blindly adopt the
solutions based on the Cartesian Tree [3, 4, 8, 9, 25], because for normal RMQs
blocks with the same Cartesian Tree are regarded as equal, totally ignoring their
distribution of minima. As an example, look at the two blocks B1 and B2 in Fig. 2,
where C(B1) = C(B2). But for B1 we want rmqmed(1, 5) to return position 4 (the
median position of the 3 minima), whereas for B2 the same RMQ should return
position 2, because this is the unique position of the minimum. We overcome this
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Figure 3. Illustration to the definition of Super-Cartesian Trees.
The red (i.e., thick) edges can be considered as right edges with
a different “label”; this equals the definition of Schröder Trees.

problem by introducing a new kind of Cartesian Tree which is tailored to meet our
special needs for this task.

3.1.1. Super-Cartesian Trees. We first define Super-Cartesian Trees.

Definition 3.1. Let A[ℓ, r] be an array. The Super-Cartesian Tree Csup(A) of A is
a node-labeled binary tree (with labels from [ℓ, r]), where the right outgoing edge
of a node can be either red or blue. It is recursively constructed as follows:

• If ℓ > r, Csup(A) is the empty tree.
• Otherwise, let ℓ ≤ i1 ≤ · · · ≤ ik ≤ r (k ≥ 0) be the set of positions where

A[ℓ, r] attains its minima.
– Construct C1 := Csup(A[ℓ, i1 − 1]), C2 := Csup(A[i1 + 1, i2 − 1]), . . . ,
Ck+1 := Csup(A[ik + 1, r]) recursively.

– Create k nodes v1, . . . , vk, where vj is labeled with ij.
– Node v1 is the root of Csup(A).
– For i > 1, vi is connected as the right child of vi−1, using a red edge.
– For 1 ≤ i ≤ k, the left child of vi is the root of Ci.
– The right child of vk is the root of Ck+1, connected with a blue edge.

See Fig. 3 for an illustration to the definition of the Super-Cartesian Tree.
Here and in the remainder of this article, we draw red right edges with a thicker
stroke to distinguish them from the blue right edges. Fig. 2 shows Csup for our
two example blocks, and the column labeled “Csup(A)” in Tbl. 1 gives further
examples. The reason for calling this tree the Super-Cartesian Tree will become
clear when we analyze the number of such trees (Sect. 3.1.3).

The desired connection between rmqmed and Super-Cartesian Trees is given
by the following lemma, which follows immediately from Def. 3.1.

Lemma 3.2 (Relating RMQs and Super-Cartesian Trees). Let A and B be two
arrays, both of size n. Then the following two statements are equivalent:

1. For all 0 ≤ i ≤ j < n: the minima in A[i, j] occur at the same positions as
the minima in B[i, j]

2. Csup(A) = Csup(B).
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Table 1. Example-arrays of length 3, their Super-Cartesian
Trees, and their corresponding paths in the graph in Fig. 4. The
last column shows how the algorithm in Fig. 5 calculates the index
of Csup(A) in an enumeration of all Super-Cartesian Trees.

array A Csup(A) path number in enumeration

123 0

122 Ĉ03 = 1

132 Ĉ03 + Ĉ02 = 2

121 Ĉ03 + Ĉ02 + Ĉ02 = 3

231 Ĉ03 + Ĉ02 + Ĉ02 + Ĉ01 = 4

112 Ĉ13 = 5

111 Ĉ13 + Ĉ02 = 6

221 Ĉ13 + Ĉ02 + Ĉ01 = 7

212 Ĉ13 + Ĉ12 = 8

211 Ĉ13 + Ĉ12 + Ĉ02 = 9

321 Ĉ13 + Ĉ12 + Ĉ02 + Ĉ01 = 10

This lemma implies that for answering in-block-queries, we can use a global
lookup-table P that stores the answers only for all possible Super-Cartesian Trees
on s nodes, in contrast to storing the answer for all n/s occurring blocks. In order
to index into P , each block Bi, 0 ≤ i ≤ n/s − 1, has to be given a “number,”
such that blocks with the same number have the same Super-Cartesian Tree. The
computation of these block numbers will be explained in Sect. 3.1.4. Before that,
in Sections 3.1.2 and 3.1.3 we take a closer look at Super-Cartesian Trees.

3.1.2. Construction of Super-Cartesian Trees. We give a linear algorithm for con-
structing Csup. This is a straightforward extension of the algorithm for constructing
the usual Cartesian Tree [11], treating the “equal”-case in a special manner, as
explained next. Let Csup

i−1(A) be the Super-Cartesian Tree for A[0, i−1]. We want to
construct Csup

i (A) by inserting a new node w with label i at the correct position in
Csup

i−1(A). Let v1, . . . , vk be the nodes on the rightmost path in Csup
i−1(A) with labels

ℓ1, . . . , ℓk, respectively, where v1 is the root, and vk is the rightmost leaf (the node
labeled i − 1). Let x be defined such that A[ℓx] ≤ A[i] and A[ℓx′ ] > A[i] for all
x < x′ ≤ k. We first create a new node w labeled with i. We then remove vx’s
right child vx+1 and append it as the left child of w. Now, if A[ℓx] = A[i], connect
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Figure 4. The infinite graph whose vertices are (p, q) for all 0 ≤
p ≤ q. There is an edge from (p, q) to (p − 1, q) if p > 0, and to
(p, q − 1) and (p− 1, q − 1) if q > p.

w with a red edge to vx. Otherwise (i.e., A[ℓx] < A[i]), w becomes the “normal”
right child of vx (i.e., it is connected to vx with a blue edge). An easy amortized
argument [11] shows that the overall running time is linear.

3.1.3. The Number of Super-Cartesian Trees. We show that there is a one-to-one

correspondence between Super-Cartesian Trees and paths from
�

�

�

�
s s to

�

�

�

�
0 0 in

the graph defined in Fig. 4. This bijection is obtained from the above construc-
tion algorithm for Csup (Sect. 3.1.2), where we first bijectively map the tree to a
sequence of numbers ℓ1, . . . , ℓn, which can in turn be mapped bijectively to a path
in the graph, explained as follows.

Consider step i of the above construction algorithm. Let ℓi count the number
of blue edges on Csup

i−1’s rightmost path that are traversed (and therefore removed
from the rightmost path) when searching for w’s correct insertion point vx. Note
that the ℓi’s do not count the traversed (i.e. removed) red edges on Csup

i−1’s rightmost
path. In the graph in Fig. 4, we translate this into a sequence of ℓi upwards moves,
and then either a leftwards move if A[ℓx] < A[i], or a diagonal move if A[ℓx] = A[i].
This gives a one-to-one correspondence between Super-Cartesian Trees and paths

from
�

�

�

�
s s to

�

�

�

�
0 x for some x (which is then canonically continued to

�

�

�

�
0 0 ),

because in step i we constrain the number of upwards moves in the graph in Fig. 4
by the number of strict leftwards moves that have already been made. See again
Tbl. 1 for examples.

It is well known [27] that the number of paths from
�

�

�

�
s s to

�

�

�

�
0 0 is given

by the s’th Super Catalan Number Ĉs (also known under the name Little Schröder
Numbers due to their connection with Schröder Trees). These numbers are quite
well understood, for our purpose it suffices to know that [19, Thm. 3.6]

Ĉs =
ρs

√
πs(2s− 1)

(1 + O(s−1)) , (3.1)

with ρ := 3 + 2
√

2 ≈ 5.8284. In particular, Ĉs ≤ ρs for large enough s.
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As already mentioned, this means that we do not have to precompute the
in-block-queries for all n/s occurring blocks, but only for O(ρs) “sample blocks”
of size s with pairwise different Super-Cartesian Trees. (Now our choice for the
block-size s becomes clear.) We simply do a naive precomputation of all possible s2

queries inside of each sample block. Because the blocks are of size s, the resulting
table P needs O(Ĉs × s2 · log s) = O(

√
n log2 n log log n) = o(n) bits, and the time

to compute it is O(Ĉs × s3) = o(n). (The additional factor s accounts for finding
the median of the minima in each step.) As explained in the introduction, we also
have to store the number of minima for each possible query. This information can
be stored along with P within the same space bounds.

3.1.4. Computing the Block Types. All that is left now is to assign a type to each
block that can be used for indexing into table P , i.e., we wish to find a surjection

t : As → {0, . . . , Ĉs − 1}, and t(Bi) = t(Bj) iff Csup(Bi) = Csup(Bj) , (3.2)

where As is the set of arrays of size s.
A simple strategy (not meeting exactly the optimal space) would be as fol-

lows. There are six classes of nodes in the Super-Cartesian Tree: (1) leaves, (2)
nodes with only a left edge, (3) nodes with only a red right edge, (4) nodes with
only a blue right edge, (5) nodes with a left edge and a red right edge, and (6)
nodes with a left edge and a blue right edge. These node classes can be encoded as
a number of ⌈log 6⌉ = 3 bits. Writing these 3-bit numbers of the nodes in preorder
gives a type-representation of a size-s block using 3s bits. Storing the types for all
blocks would thus require n

s × 3s = 3n bits.2 The rest of this section is devoted to
improve on this memory requirement, and to give a more practical algorithm for
computing these types, without the need to actually construct the trees.

Our strategy is to simulate the construction algorithm for Super-Cartesian
Trees (Sect. 3.1.2), thereby simulating a walk along the corresponding path in the
graph in Fig. 4. These paths can be enumerated as follows. First observe that the

number of paths from an arbitrary node
�

�

�

�
p q to

�

�

�

�
0 0 in the graph in Fig. 4 is

given by the recurrence

Ĉ00 = 1, Ĉpq =

{

Ĉp(q−1) + Ĉ(p−1)q + Ĉ(p−1)(q−1), if 0 ≤ p < q 6= 0

Ĉp(q−1) if p = q 6= 0 ,
(3.3)

and Ĉpq = 0 otherwise. This follows from the fact that the number of paths from

node
�

�

�

�
p q to

�

�

�

�
0 0 is given by summing over the number of paths from each of

the at most three cells that can be reached from
�

�

�

�
p q in a single step. Because the

numbers Ĉpq generalize the Ballot Numbers in the same way as the Super-Catalan

2We are grateful to the anonymous reviewer who pointed out this type-representation. Additional
space could be saved by using the 6 prefix-free codewords 00, 01, 100, 101, 110, and 111, and
assigning the 2-bit codewords to the two most frequent node classes. Then the overall size would
be 16

6
n + o(n) ≈ 2.666 n + o(n) bits, the o(n) term needed for marking the beginnings of blocks

in the resulting bit stream [23].
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Input: a block Bj of size s
Output: the type t(Bj) of Bj , as defined by Eq. (3.2)

Let R be an array of size s + 1 // simulates rightmost path of Csup

i−1(Bj)1

R[1]← −∞ // stopper element on stack R2

q ← s, N ← 0, h← 0 // h = # horizontal edges on C
sup

i−1(Bj)’s rightmost path3

for i← 1, . . . , s do4

while R[q + i + h− s] > Bj [i] do5

N ← N + Ĉ(s−i)q + Ĉ(s−i)(q−1)// accounts for upwards move in Fig. 46

while R[q + i + h− s− 1] = R[q + i + h− s] do h−−7

q−−8

if R[q + i + h− s] = Bj [i] then9

N ← N + Ĉ(s−i)q // accounts for diagonal move in Fig. 410

h++, q−−11

R[q + i + h− s + 1]← Bj [i] // push Bj [i] on R12

return N13

Figure 5. An algorithm to compute the type of a block Bj.

Numbers generalize the Catalan Numbers, we call them Super-Ballot Numbers3.
The first few resulting Super-Ballot Numbers, laid out such that they correspond
to the nodes in Fig. 4, are

1
1 1
1 3 3
1 5 11 11
1 7 23 45 45
1 9 39 107 197 197 .

(3.4)

Due to this construction the Super Catalan Numbers appear on the rightmost
diagonal of (3.4); in symbols, Ĉs = Ĉss. Although we do not have a closed formula
for our Super-Ballot Numbers, we can construct the s × s-array at startup, by
means of (3.3).

We are now ready to describe the algorithm in Fig. 5 which computes a func-
tion satisfying (3.2). It simulates the construction algorithm for Super-Cartesian
Trees (Sect. 3.1.2), without actually constructing them! The general idea behind

this is given by the bijection from Super-Cartesian Trees to paths from
�

�

�

�
s s to

�

�

�

�
0 0 in the graph in Fig. 4, as explained in Sect. 3.1.3. By moving along this path,

we count the number of paths that have been “skipped” when making an upwards

3A different generalization of the Ballot Numbers [12] also goes under the name “Super Ballot
Numbers” and should not be confused with our concept.
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(line 6) or diagonal move (line 10). At the beginning of step i of the outer for-loop,

the position in the graph is
�

�

�

�
(s− i + 1) q , and h keeps the number of red edges

on the rightmost path in Csup
i−1(Bj). Stack R keeps the nodes on the rightmost path

of Csup
i−1(Bj), with q + i + h − s pointing to R’s top (i.e., to Csup

i−1(Bj)’s rightmost
leaf). The loop in line 7 simulates the traversal of red edges on Csup

i−1(Bj)’s right-
most path by removing all elements that are equal to the top element on the stack.
The if-statement in line 9 accounts for adding a new red edge to Csup

i−1(Bj), which
is translated into a diagonal move in Fig. 4.

In total, if we denote by ℓi the number of iterations of the while-loop from
line 5 to 8 in step i of the outer for-loop, ℓi equals the number of blue edges in
Csup

i−1(Bj) that are removed from the rightmost path. It follows from Sect. 3.1.3
that the algorithm in Fig. 5 correctly computes a function satisfying (3.2) in O(s)
time. Again, see Tbl. 1 for examples.

Thus, we store the type of each block (i.e., the number of its Super-Cartesian
Tree in the above enumeration) in an array T [0, n/s− 1]. The size of T is

|T | = n

s
⌈log Ĉs⌉ ≤

n

s
(log ρs + 1) = n log ρ +

n

s
≈ 2.54311 n + o(n) bits.

3.2. Preprocessing for Long Queries

To complete the proof of Thm. 1.2, we now show how to precompute the perfect
median of the minima in all queries that exactly span 2j blocks or superblocks for
all reasonable j (queries q2–q7 in Fig. 1). We note that also this problem is harder
than in the case of “normal” RMQs [9], as it is now not obvious how to compute
the median position of all minima in an interval I from the median positions in
I’s first and second half, respectively. Because the techniques are similar, we only
show how to preprocess the superblocks; the reader can convince himself that the
space-bounds for blocks are also within o(n), provided that we store the positions
of minima only relative to the beginning their superblock [9].

For each superblock B′
j we define a (temporary) array X ′

j[1, n′
j ] (where n′

j ≤
s′ denotes the number of minima in block B′

j) such that X ′
j [i] holds the position of

the i’th minimum in B′
j . The arrays X ′

j are not represented explicitly; instead, we

set up a bit-vector D′
j [1, s′] such that D′

j [i] is 1 iff B′
j [i] is a minimum in Bj . We

prepare each D′
j for constant time select1-operations, where select1(D

′
j , i) returns

the position of the i’th 1 in D′
j. Then

X ′
j[i] = select1(D

′
j , i) .

We already note at this point that the D′
j’s and their corresponding structures

for select1 are only auxiliary structures and can hence be deleted after the pre-
processing for the long queries. The D′

j’s take a total of n/s′ · s′ = n bits.4 The

4As we saw in Sect. 3.1, the final data structure for the short queries uses more than n bits.
Therefore if we first construct the data structures for the long queries, the temporary n bits for
the D′

j
’s constitute no extra space at construction time, as this space can later be re-used for

storing array T .
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additional structures for constant time select1-operations take additional o(n) bits
overall (if the D′

j ’s are concatenated into a single bit-vector of length n) and can

be computed in O(n) time using standard structures for rank/select [5, 14, 20].

We now define a table M ′[0, n
s′

][0, log(n/s′)], where M ′[i][j] stores the perfect

median position of all minima in the sub-array A[is′, (i+2j)s′−1], i.e., in the sub-
array covering all superblocks from B′

i to B′
i+2j−1. These are exactly all possible

sub-queries q4 and q5 in Fig. 1. Thus, to answer a query q4 or q5, we simply
look up the corresponding table entry in M ′. Because we also need to know the
number of minima for each of the sub-queries q4 and q5, we also set up a table
Y ′ of similar dimensions as M ′, such that Y ′[i][j] stores the number of minima in
A[is′, (i + 2j)s′ − 1].

We wish to fill tables M ′ and Y ′ in a top-down manner, i.e., filling M ′[·][j] and
Y ′[·][j] before M ′[·][j +1] and Y ′[·][j+1]. To get started, initialize the 0’th column
of Y ′ in O(n) time by setting Y ′[i][0] to the number of minima in superblock B′

i

for all 0 ≤ i ≤ n
s′

. Then initialize the 0’th column of M ′ with the position of the
true median in the superblocks: M ′[i][0] = X ′

j [⌈Y ′[i][0]/2⌉].
We now show how to fill entry i of tables M ′ and Y ′ on level j > 0, i.e., how

to compute the value M ′[i][j] as the perfect median of all minima in A[is′, (i +
2j)s′ − 1], and Y ′[i][j] as the number of minima in this sub-array. Because of the
order in which M ′ and Y ′ are filled, we proceed by splitting the interval into two
smaller intervals of size ξ := 2j−1s′.

Suppose there are yℓ := Y ′[i][j − 1] minima in the left half A[is′, is′ + ξ − 1],
and yr := Y ′[i + 2j−1][j − 1] minima in the right half A[is′ + ξ, (i + 2j)s′− 1]. The
easy case is when the overall minimum occurs only in one half, say the left one:
then we can safely set M [i][j] to M [i][j − 1], and Y ′[i][j] to yℓ.

The more difficult case is when the minimum occurs in both halves. The
value Y ′[i][j] is simply set to yℓ + yr. We know that the true median has rank
r := ⌈(yℓ + yr)/2⌉ among all minima in the interval. If yℓ ≥ yr, we know that the
true median must be in the left half, and that it must have rank r in there. If, on
the other hand, yℓ < yr, the median must be in the right half, and must have rank
r′ := r − yℓ in there. In either case, we know in which half we have to look for a
new minimum with a certain rank.

We recurse in this manner “upwards,” until we reach level 0, where we can
select the appropriate minimum from our X ′

j-arrays (via D′
j). Due to the “height”

of table M ′, the number of recursive steps is bounded by O(log(n/s′)). In total,

filling M ′ takes O( n
s′

log(n/s′) log(n/s′)) = O(n) time (recall s′ = log2+ǫ n).

The size of M ′ (and also that of Y ′) is O( n
s′
× log(n/s′) · log n) = o(n) bits.

4. Approximation Scheme

In this section, we will show that median of minima can be approximated as stated
in Thm. 1.3 provided that we have precomputed the r-quantiles (r = O(1)) instead
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A1 Ar

B1 Br

Aj

Bk

C

C1 Cj Cj+1 Cj+k Cj+r

Figure 6. Estimating the number of minima of two overlapping
subarrays based on their r-quantiles.

of medians (also known as 2-quantiles).5 Let A be a totally ordered set, then the
r-quantiles are a list (η1, . . . , ηr) of r elements from A such that the rank of element

ηi is ⌈ |A|·i
r ⌉. Note that ηr is almost the largest element of A. Furthermore, we have

|{a ∈ A : ηi−1 < a ≤ ηi}| ∈ {⌊ |A|
r ⌋, ⌈

|A|
r ⌉} for each i ∈ [1 : r] (here, η0 is a fictive

element smaller than each element in A).

4.1. Approximating the Number of Minima for Overlapping Ranges

First, we try to approximate the number of minima of the subarrays defined by the
overlapping queries q2 and q3, q4 and q5, or q6 and q7, respectively, provided that
the r-quantiles of the minima and the number of minima between two consecutive
r-quantiles are given. Therefore it is sufficient to show how to approximate the
number of minima in two overlapping arrays A and B. We assume that the arrays
are partitioned into (A1, . . . , Ar) as well as (B1, . . . , Br) by the positions of the r-
quantiles, respectively (cf. Fig. 6). The number of minima in Ai and Bi is denoted
by νi and µi, respectively. Let ν =

∑r
i=1 νi and µ =

∑r
i=1 µi the number of

minima in A and B, respectively. By the definition of r-quantiles, we know that
νi ∈ {

⌊

ν
r

⌋

,
⌈

ν
r

⌉

} and µi ∈ {
⌊

µ
r

⌋

,
⌈

µ
r

⌉

}. Furthermore, let C be the array with the
index set given by the union of the index sets of subarrays A and B (cf. Fig. 6).

First, we observe that the number of minima in the joined subarray C is
exactly known, if the minima in the two subarrays differ. Thus, we assume in the
following that the minimum in subarray A is equal to the minimum of subarray B.

Let j be the largest index such that Aj is not a subarray of B and let k be
the smallest index such that Bk is not a subarray of A (cf. Figure 6). Further, we

assume without loss of generality that ν ≤ µ. Then x :=
∑j−1

i=1 νi + µ is a lower

bound and
∑j

i=1 νi + µ = x + νj is an upper bound on the number of minima
in the array C. In what follows, we show that x is a (1 + 2/r)-approximation of
the number of minima in C. Because x + νj is an upper bound on the number
of minima, it is sufficient to show that x + νj ≤ (1 + 2

r )x, which is equivalent to

νj ≤ 2
r x. Since

νj ≤
⌈ν

r

⌉

≤
⌈µ

r

⌉

≤ 2

r
µ ≤ 2

r

(

j−1
∑

i=1

νi + µ

)

=
2

r
x ,

5It is easy to verify that the algorithm described in Sect. 3 can be modified to precompute these
r-quantiles, and that only the space of the o(n)-structures is multiplied by r.
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we are done. Note that
⌈

µ
r

⌉

≤ 2
r µ could only be wrong if µ < r. But in that case,

we know the positions of all minima in the subarray B (and, of course, also in A,
since ν ≤ µ). The number of minima in array C can then be easily computed in
time O(r), which is constant.

Furthermore, the (conceptual) array C is partitioned into j + r subarrays
C1, . . . , Cj+r (cf. Fig. 6). The subarrays C1, . . . , Cj−1 and Cj+1, . . . , Cj+r have the
same index set as A1, . . . , Aj−1 and B1, . . . , Br, respectively, and subarray Cj is
just a prefix of Aj . The last element in each Ci that is a minimum in C is called
a pivot. Note that the last element in each Ci (except for Cj) is an r-quantile in
either A or B. Thus, subarray Cj may not have a pivot. The number of minima
in Ci is νi for i ∈ [1 : j− 1] and µi−j for i ∈ [j +1 : j + r]. For the subarray Cj , we
know that the number of minima is at least 0 and at most

⌈

ν
r

⌉

≤
⌈

µ
r

⌉

. Let λ(Ci)
denote this lower bound on the number of minima in subarray Ci.

4.2. Approximating the Median of Minima

It remains to find an approximation of the median of minima in the union of the
five disjoint subarrays A1, A2, A3, A4, and A5 defined by the queries q1, q2 and
q3, q4 and q5, q6 and q7, and q8, respectively. For the total minimum of these 5
subarrays, let mi denote the exact number of minima in Ai. From Sect. 4.1, we
get a lower bound ni on the number of minima in Ai, with ni ≤ mi ≤ (1 + 2

r )ni.
6

Let n :=
∑5

i=1 ni be the lower bound on the total number of minima, and let

m :=
∑5

i=1 mi be the exact number of minima in the whole array.

In what follows, we describe how the approximate median of minima is cho-
sen and compute its exact rank in C. We first select the subarray Aℓ fulfilling
∑ℓ−1

i=1 ni < ⌈n/2⌉ ≤∑ℓ
i=1 ni. Then we select the pivot of Cp in subarray Aℓ where

∑p−1
i=1 λ(Ci) < ⌈n/2⌉ −

∑ℓ−1
i=1 ni ≤

∑p
i=1 λ(Ci). Here C1, . . . , Cj , . . . , Cj+r is the

partition of Aℓ as described in Sect. 4.1, and λ(Ci) denotes the known lower bound
on the number of minima in Ci, which is also an upper bound except for Cj . By
construction, the actual rank of the selected element is at most

(

1 +
2

r

)

·
⌈n

2

⌉

+
⌈nj

r

⌉

+
⌈m

r

⌉

.

If n < m, we have
⌈

n
2

⌉

≤ m
2 . Using nj ≤ m, we get

(

1 +
2

r

)

·
⌈n

2

⌉

+
⌈nj

r

⌉

+
⌈m

r

⌉

≤
(

1 +
2

r

)

· m
2

+
2m + 2

r
≤
(

1

2
+

4

r

)

·m .

On the other hand, if n = m, then our lower bound on the number of minima
is tight and we get exact numbers. Thus, the rank of the selected minimum is at
most

⌈

n
2

⌉

+
⌈nj

r

⌉

. If n = m and m ≥ r, then the selected minimum has a rank of

6For subarrays A1 and A5, we actually know the exact numbers of minima, because these are
stored along with table P (see end of Sect. 3.1.3).
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at most
⌈m

2

⌉

+
⌈mj

r

⌉

≤ m

2
+

1

2
+

m + r − 1

r
≤
(

1

2
+

5

2r

)

·m ≤
(

1

2
+

3

r

)

·m .

If n = m and m < r, then all minima are known, and the exact median of minima
can easily be selected.

Since we know that at least
⌈

n
2

⌉

≥ n
2 elements are smaller or equal to the

selected minimum and that m
2 ≤

(

1 + 2
r

)

n
2 , the rank of the chosen minimum is

at least
(

1 + 2
r

)−1 · m
2 . A brief calculation shows then that the rank of the chosen

element is at least

1

1 + 2
r

· m
2
≥
(

1− 2/r

1 + 2/r

)

· m
2

=

(

1− 2

r + 2

)

· m
2

=

(

1

2
− 1

r + 2

)

·m .

Choosing α = 4
r , we get an approximation of the median of minima, where its

rank is contained in [(1
2 − α)m, (1

2 + α)m]. This proves Thm. 1.3.

5. Applications in Compressed Suffix Trees and Arrays

5.1. Improvements in Compressed Suffix Trees

It is well-known that RMQs in general are a versatile tool for many string match-
ing tasks. The most important application of this kind is to preprocess the array
containing the lengths of the longest common prefixes [1] of lexicographically ad-
jacent suffixes (LCP-array for short) for constant-time range minimum queries.
Then the longest common prefix between arbitrary suffixes can be found in con-
stant time. This, in turn, can be used for many tasks in approximate and exact
string matching, and also for navigational operations in (compressed) suffix trees,
such as computing so-called suffix links, when the suffix tree is only represented
implicitly by the suffix- and LCP-array [1].

The most fundamental navigational operation, however, is to locate the out-
going edge of a node v that is labeled with a given character c ∈ Σ (Σ is the
alphabet), called getChild(v, c). It can be shown [9, 24] that one can retrieve all
outgoing edges by performing subsequent queries of the form rmqLCP(ℓ, r), where
the query indices ℓ and r are the interval in LCP that represent node v [1]. If the
RMQs return the leftmost minimum, then getChild (v, c) takes O(|Σ|) time, as in
the worst case all |Σ| minima have to be visited.

To speed up this search, Sadakane [24] proposes to use rmqmed instead of
plain RMQs in his Compressed Suffix Tree (CST), such that the interval [ℓ, r] can
be binary-searched in O(log |Σ|) time. However, he does not give the details how the
structures for rmqmed can be constructed efficiently, and a naive approach would
give O(n2) construction time. As the construction times of the other structures

in the CST are at most O(n logδ n) for any constant 0 < δ ≤ 1 [28], in order
to maintain this time bound it is important to have an efficient preprocessing
algorithm for range median of minima queries — a gap that we close in this paper.
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Lemma 5.1. There is a linear-time preprocessing scheme such that the number of
search steps performed by getChild (v, c) in Compressed Suffix Trees is log 16

15

|Σ| ≈
10.74 log |Σ| in the worst case.

We mention that the constant 1/12 in Lemma 5 of Sadakane’s paper [24]
should also be 1/16, as there the queries are also decomposed into 8 different sub-
queries.7 We also remark that the 2.54 n bits from our array T (Sect. 3.1.4) are
not necessary in the CST, but only our tables M and M ′ for the long queries (Sec.
3.2): The balanced parentheses sequence (using 4n bits) describing the suffix tree
topology can be re-used to index into the table of precomputed in-block-queries
(our P ), as a length-s sequence of parentheses uniquely describes the distribution
of the minima of the corresponding part in the depth sequence [24, Sect. 4.2–3].

We note two further applications of our new scheme. First, as rmqmed com-
pletely substitutes the so-called child table in Abouelhoda et al.’s Enhanced Suffix
Array [1] and in Kim et al.’s Compressed Suffix Tree [16], we also improve on their
space consumption, as our structures are much smaller than the child table. Fur-
ther, our preprocessing from Sect. 3.2 is also necessary for Fischer et al.’s entropy
bounded CST [10].

5.2. Pattern Matching in (Compressed) Suffix Arrays

For a given pattern P of length m, the most common task in pattern matching
is to check whether P is a substring of T . We now show that our scheme for
rmqmed leads to a O(tSAm log |Σ|) search-method in suffix arrays, where tSA is
the time to access an element from the suffix array [24, Tbl. 1]. This method is
simply obtained by calling getChild subsequently for all characters in P , each time
invoking an evaluation of the suffix array, hence the additional factor tSA.

Let us first consider uncompressed suffix arrays, where tSA = O(1). The best
results on pattern matching in uncompressed suffix arrays are due to Kim and
Park [16], who give a succinct version of Kim et al.’s data structure [15] that
allows O(m log |Σ|)-time pattern searches. This table [16] requires 5n + o(n) bits
of space; with our scheme for rmqmed, this is reduced to ≈ 2.54 n + o(n) bits, a
space reduction by a factor of about 2. Given the practical importance of pattern
matching, this is not negligible. Our new technique can also be used to get an
O(m log |Σ|)-pattern search-algorithm in suffix arrays on words [6].

Naturally, our scheme for rmqmed can also be combined with compressed ver-
sions of the suffix array. For example, combining Grossi and Vitter’s Compressed
Suffix Array [13, Thm. 2] with our search strategy, where tSA = O(logα

|Σ| n) with

constant 0 < α ≤ 1, matching takes O(logα
|Σ|(n)m log |Σ|) time, for any alphabet

size |Σ|, while needing only α−1H0n + O(n) bits in total (H0 being the empirical
order-0 entropy of the input text [18]). Although this cannot be directly compared
to more recent advances in compressed text indexing, such as Ferragina et al.’s

7Confirmed by K. Sadakane (personal communication, June 2007).
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Alphabet-Friendly FM-Index [7], it is interesting to note that the size of our struc-
ture for rmqmed is independent of the alphabet size, which stands in contrast to
all other structures in compressed suffix arrays [21].

5.3. More Applications

We finally mention two recent developments that make use of the techniques intro-
duced in this article. Navarro and Sadakane [26, Sect. 7] give a new data structure
for arbitrary dynamic trees, using 2n + o(n) bits of space, and supporting almost
all operations, including insertion and deletion of nodes, in sub-logarithmic time.
The Super-Cartesian Tree is used as a main tool for this data structure. Also, Gog
and Ohlebusch [22] have developed a new compressed suffix tree, which is entirely
based on the Super-Cartesian Tree.
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