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Abstract

We present a route planning technique solely based on the concept of node contraction.
We contract or remove one node at a time out of the graph and add shortcut edges to the
remaining graph to preserve shortest paths distances. The resulting contraction hierarchy
(CH), the original graph plus shortcuts, also defines an order of “importance” among all
nodes through the node selection. We apply a modified bidirectional Dĳkstra algorithm
that takes advantage of this node order to obtain shortest paths. The search space is
reduced by relaxing only edges leading to more important nodes in the forward search
and edges coming from more important nodes in the backward search. Both search scopes
eventually meet at the most important node on a shortest path. We use a simple but
extensible heuristic to obtain the node order: a priority queue whose priority function for
each node is a linear combination of several terms, e.g. one term weights nodes depending
on the sparsity of the remaining graph after the contraction. Another term regards the
already contracted nodes to allow a more uniform contraction. Depending on the applica-
tion we can select the combination of the priority terms to obtain the required hierarchy.
We have five times lower query times than the best previous hierarchical Dĳkstra-based
speedup techniques and a negative space overhead, i.e., the data structure for distance
computation needs less space than the input graph. CHs can serve as foundation for many
other route planning techniques, leading to improved performance and reduced memory
consumption for many-to-many routing, transit-node routing, goal-directed routing or
mobile and dynamic scenarios.
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1 Introduction

1.1 Motivation

Solving shortest-path problems and related problems is a field of research for a long time.
Dĳkstra’s algorithm [7] basically solves the shortest-path problem but it is not efficient for
large graphs. Lately large real-world graphs like road networks of whole continents become
available and need more sophisticated algorithms. Their applications range from planning a
motorcycle tour with a mobile device to facility location problems of large industrial companies.
The question is always, how much space overhead and preprocessing time we are willing to
spend and how fast our shortest path queries are going to be solved. We aim to provide a new
technique that can offer a new foundation for all sorts of Dĳkstra based algorithms. A selection
of those algorithms are many-to-many shortest paths [21], transit-node routing [2] or upcoming
time-dependent routing algorithms. The goal was to keep things simple but extendable, with
reasonable hardware requirements and still calculating optimal routes.

1.2 Related work

This section is a shortened version of the related work section in [32, 34]. There has recently
been extensive research on point-to-point shortest path speedup techniques to calculate the
shortest path distance d(s, t) between two nodes s and t. Beneath classical results like Dĳk-
stra’s algorithm [7], they can be categorized into hierarchical and goal-directed techniques, and
combinations of both. We will focus on the most important and recent speedup techniques, for
a more detailed overview, we refer to [32, 34].

1.2.1 Classical Results

Dĳkstra’s Algorithm [7] maintains an array of tentative distances for each node. The
algorithm settles (or visits) the nodes of the road network in the order of their distance to the
source node s and maintains the invariant that the tentative distance is equal to the correct
distance for settled nodes. When a node u is visited, its outgoing edges (u, v) are relaxed: the
tentative distance of v is set to the length of the path from s via u to v provided that this leads
to an improvement. Dĳkstra’s algorithm can be stopped when the target node is visited. The
size of the search space is O(n) and n/2 nodes on the average.

Usually, Dĳkstra’s algorithm is implemented using a priority queue. Since O(n) operations
are required, this leads to O(n log n) execution time in the comparison based model.

A simple improvement is to execute Dĳkstra’s algorithm simultaneously forwards from the
source node s and backwards from the target node t. Such a bidirectional search can derive
the shortest path from the gathered information once some node has been settled from both
directions [6]. In a road network, where search spaces will take a roughly circular shape, we can
expect a speedup of around two – two disks with half the radius of one disk have half the area.
Many more advanced speedup techniques, including contraction hierarchies, use bidirectional
search as an mandatory ingredient.

1.2.2 Hierarchical Approaches

Reach-Based Routing. Let R(v):= max {Rst(v) | s, t ∈ V } denote the reach of node v,
where Rst(v):= min(d(s, v), d(v, t)). Gutman [17] observed that a shortest-path search can
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be pruned at nodes with a reach too small to get to source or target from there. The basic
approach was considerably strengthened by Goldberg et al. [11, 14, 15], in particular by a
clever integration of shortcuts.

Highway Hierarchies (HHs) [30, 31, 34] group nodes and edges in a hierarchy of levels by
alternating between two subroutines: Node reduction removes low degree nodes by bypassing
them with newly introduced shortcut edges. In particular, all nodes of degree one and two
are removed by this process. Edge reduction removes non-highway edges, i.e., edges that only
appear on shortest paths close to source or target. More specifically, every node v has a
neighborhood radius r(v) we are free to choose. An edge (u, v) is a highway edge if it belongs
to some shortest path P from a node s to a node t such that (u, v) is neither fully contained in
the neighborhood of s nor in the neighborhood of t, i.e., d(s, v) > r(s) and d(u, t) > r(t). The
query algorithm is very similar to bidirectional Dĳkstra search with the difference that certain
edges need not be expanded when the search is sufficiently far from source or target. HHs are
similar to contraction hierarchies. However, we avoid the costly edge reduction step and use
a more sophisticated node reduction routine that was previously a mere helper for the main
work-horse edge reduction. Interestingly, this is sufficient without an eventual explosion of the
average degree in the remaining graph.

Highway-Node Routing (HNR) [35, 34] is a generalization of the multi-level routing
scheme with overlay graphs that preserve shortest paths distances on subsets of important
nodes, so called highway nodes. First multi-level routing schemes used the fact that road net-
works are almost planar [8, 20] but it turned out that using HHs to define the highway node
sets is superior. This is achieved using a new query algorithm that stalls suboptimal branches
of search on lower levels of the hierarchy. Given a hierarchy of highway-node sets, we recur-
sively compute the shortcuts bottom up. Shortcuts from level ` are found by local, i.e limited,
searches in level `− 1 starting from nodes in level `. This is very fast and easy to update when
edge weights change. Contraction Hierarchies are an extreme case of the hierarchies in HNR –
every node defines its own level of the hierarchy.

Transit-Node Routing (TNR) precomputes not only a distance table for important (tran-
sit) nodes but also all relevant connections between the remaining nodes and the transit nodes
[3, 34]. Since it turns out that only about ten such access connections are needed per node, one
can “almost” reduce routing in large road networks to about 100 table lookups. Interestingly,
the difficult queries are now the local ones where the shortest path does not touch any transit
node. This problem is solved by introducing several layers of transit nodes. Between lower layer
transit nodes, only those routes need to be stored that do not touch the higher layers. Transit
node routing (e.g., using appropriate levels of a HH for transit node sets) reduces routing times
to a few microseconds at the price of preprocessing times an order of magnitude larger than HHs
alone. Also considerably more space is required and it is less amenable to dynamization. Since
it relies on another hierarchical speedup technique for its preprocessing, contraction hierarchies
may be able to improve TNR.

1.2.3 Advanced Goal-Directed Search and Combinations

Landmark-Based A∗ Search. In [12, 13, 16] the ALT algorithm is presented that is based
on A∗ search [18], Landmarks, and the Triangle inequality. After selecting a small number of
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landmarks, for all nodes v, the distances d(v,L) and d(L, v) to and from each landmark L are
precomputed. For nodes v and t, the triangle inequality yields for each landmark L two lower
bounds d(L, t)− d(L, v) ≤ d(v, t) and d(v,L)− d(t,L) ≤ d(v, t). The maximum of these lower
bounds is used during an A∗ search to add a sense of direction to the search process.

REAL. Goldberg et al. [11, 14, 15] have successfully combined their advanced version of
REach-based routing with the landmark-based A∗ search (the ALt algorithm), obtaining the
REAL algorithm. In the most recent version [14, 15], they introduce a variant where landmark
distances are stored only with the more important nodes, i.e., nodes with high reach value. By
this means, the memory consumption can be reduced significantly.

Edge Flags (also called arc flags) [24, 22, 27, 28, 23, 25, 19] precompute for each edge
“signposts” that support the decision whether the target can possibly be reached on a shortest
path via this edge. The graph is partitioned into k regions. For each edge e and each region
r, one flag is computed that indicates whether e lies an a shortest path to some node in region
r. Dĳkstra’s algorithm can take advantage of the edge flags: edges have to be relaxed only if
the flag of the region tat the target node belongs to is set. Obviously, inside the target region,
the “signposts” provided by the edge flags get less useful. This problem can be avoided by
performing a bidirectional query so that forward and backward search can meet somewhere in
the middle.

SHARC [4] extends and combines ideas from highway hierarchies (namely, the contraction
phase, which produces SHortcuts) with the edge flag (also called ARC flag) approach. It
also incorporates a priority queue to contract nodes. The result is a fast unidirectional query
algorithm, which is advantageous in scenarios where bidirectional search is prohibitive. In par-
ticular, using an approximative variant allows dealing with time-dependent networks efficiently.

CHASE [5] is a combination of contraction hierarchies and edge (arc) flags (Contraction
Hierarchy + Arc flagS + highway-nodE routing). After the hierarchy construction using HNR,
the subgraph H of the h highest level nodes is partitioned into k regions and arc flags are
computed for them. The bidirectional query algorithm from HNR is used until the search
reaches H, then it activates the edge flags, yielding query times below 20µs for the Western
European road network.

Transit-Node Routing and Edge Flags [5] is currently the fastest speedup technique.
It requires even more preprocessing time and space than native TNR, but can decrease the
average query time to 1.9 µs for the Western European road network.

1.3 Our contribution

We present a very simple approach to hierarchical routing. Assume the nodes of a weighted
directed graph G = (V,E) are ordered by “importance” given a total node order <. Let u < v,
then the node v is more important than u. We now construct a hierarchy by contracting the
nodes in this order. A node u is contracted by removing it from the network in such a way
that shortest paths in the remaining overlay graph are preserved. This property is achieved by
replacing paths of the form 〈v, u, w〉 by a shortcut edge 〈v, w〉. Note that the shortcut 〈v, w〉 is
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only required if 〈v, u, w〉 is the only shortest path from v to w. We shall view the contraction
process as a way to add all discovered shortcuts to the edge set E. We obtain a contraction
hierarchy (CH).

Although “optimal” node ordering seems a quite difficult problem, already very simple local
heuristics turn out to work quite well. The basic idea is to keep the nodes in a priority queue
sorted by some estimate of how attractive it is to contract a node. The main ingredient of this
heuristic estimate is the edge difference: The number of shortcuts introduced when contracting
v minus the number of edges incident to v. The intuition behind this is that the contracted
graph should have as few edges as possible. Even using only edge difference, quite good CHs are
computed. However, further refinements are useful. In particular, it is important to contract
nodes “uniformly”.

Our new hierarchies are to some extend a specialization of HNR but they are nevertheless a
new approach in the sense that the node ordering and hierarchy construction algorithms used
in [35, 34] are only efficient for a small number of geometrically shrinking levels. In contrast,
we use a separate level for each node. We also give a faster and more space efficient query
algorithm exploiting the total order among all nodes.

For routing, we split the CH (G = (V,E), <) into an upward graph

G↑:= (V,E↑) with E↑:= {(u, v) ∈ E : u < v}

and a downward graph

G↓:= (V,E↓) with E↓ := {(u, v) ∈ E : u > v} .

For a shortest path query from s to t, we perform a modified bidirectional Dĳkstra shortest
path search, consisting of a forward search in G↑ and a backward search in G↓. If, and only if,
there exists a shortest s-t-path in the original graph, then both search scopes eventually meet
at a node v that has the highest order of all nodes in a shortest s-t-path.

1.4 Outline

We first repeat some basics from graph theory in Section 2. In Section 3 our new CHs are ex-
plained in full detail including node order selection (Section 3.2), node contraction (Section 3.3)
and the query algorithm (Section 3.5). Applications of CHs are presented in Section 4. Finally,
we present our experimental study in Section 5 followed by a discussion in Section 6.
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2 Preliminaries
This section was taken from [34], we use exactly the same formulation and notation.

2.1 Definitions

We will use some common definitions from graph theory. Let G = (V,E) be an directed graph
with weight function w : E → R+ that assigns a positive weight to each edge in G. For an edge
(v, w) ∈ E we usually write w(v, w) instead of w((v, w)). Usually n = |V | denotes the number
of nodes and m = |E| denotes the number of edges. A path P in G is a sequence of nodes

〈v1, . . . , vk〉

with (vi, vi+1) ∈ E for all i = 1, . . . , k − 1. For 1 ≤ i < j ≤ k the subpath of P between vi and
vj is denoted by P |vi→vj = 〈vi, . . . , vj〉.

The weight function can be extended to this path as the sum of all edge weights, see Figure 1:

w(P ) :=
k−1∑
i=1

w(vi, vi+1)

v1
v2

v3
v4

4 5 7

P

Figure 1: A path P = 〈v1, v2, v3, v4〉. The numbers on the edges denote the edge weight, so
w(P ) = 16.

For each pair (v, w) ∈ V ×V there exists a unique shortest path distance, if there is at least
one path between them.

dG(v, w):= min {w(P ) | P = 〈v, . . . , w〉 path in G} with min ∅ =∞

The graph G as parameter is omitted if the graph is clear from the context. For a given
graph G = (V,E) all shortest path distances define a function

dG : V × V → R+
0 ∪ {∞} .

Let V ′ ⊆ V , then G[V ′]:= (V ′, E ′) with E ′ := {(x, y) ∈ E | x, y ∈ V ′} is the subgraph of G
induced by the node set V ′.
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3 Contraction Hierarchies
In this section we will define CHs and explain how to construct them. The main parts of the
construction are the node order selection (Section 3.2) and the node contraction (Section 3.3).
Then we put them in the context of highway-node routing [34] (Section 3.4) and present our
query algorithm (Section 3.5).

3.1 Definition

The basic idea of contraction hierarchies is to find a total order < among all nodes and execute
the following procedure:
Algorithm 1: SimplifiedConstructionProcedure(G = (V,E),<)
foreach u ∈ V ordered by < ascending do1

foreach (v, u) ∈ E with v > u do2

foreach (u,w) ∈ E with w > u do3

if 〈v, u, w〉 “may be” the only shortest path from v to w then4

E:= E ∪ {(v, w)} (use weight w(v, w):= w(v, u) + w(u,w))5

Such an edge added in Line 5 is called a shortcut edge or just shortcut, see Figure 2. They
only represent existing paths in the current graph and are used to preserve shortest paths if the
node u and all its incident edges is removed from the graph. If an edge (v, w) already exists in
G but has larger weight than a new shortcut (v, w), then the Line 5 only reduce the weight of
the already existing edge.

3 4
v

u

w

n
o
d
e

o
rd

e
r

(a) before

shortcut

3 4
7v

u

w

(b) after

Figure 2: Adding a shortcut edge. Node order: u < v < w.

3 4v

u

w

witness

2
3

no shortcut
x

P

n
o
d
e

o
rd

e
r 1

y

Figure 3: No shortcut because a witness P = 〈v, x, y, w〉 exists with w(〈v, u, w〉) ≥ w(P ).

A path P = 〈v, . . . , w〉 6= 〈v, u, w〉 between v and w with w(P ) ≤ w(〈v, u, w〉) is called a
witness path or just witness for the triple v, u, w, see Figure 3. The name is derived from the
fact that such a path witnesses that 〈v, u, w〉 is not a shortest path or not the only shortest
path and allows to omit a shortcut.
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The whole step of finding witnesses and adding shortcuts for node u, Lines 2–5, is called
the contraction of u. Because after that step, for all shortest s-t-paths P in G, with s, t > u,
that have u in their interior, exists a shortest s-t-path P ′ in G without u in its interior. Applied
recursively, it is easy to see that there even exists an shortest s-t-path P ′ with only nodes > u
in its interior. In the context of the contraction of node u, an edge (v, u) ∈ E is called an
incoming edge of u, (u,w) an outgoing edge of u. The nodes > u are called remaining nodes,
the incident edges are called the remaining edges and the graph induced by the remaining nodes
is called the remaining graph.

The tuple (G = (V,E), <) consisting of the resulting graph G of Algorithm 1 and the node
order < is called a contraction hierarchy (CH). The node order partitions the nodes into n
distinct levels.

3.2 Node Order Selection

After presenting the basic concept and the construction of CHs, we now show more details of
the node order selection. The chosen node order has a huge impact on the usability of a CH.
We will first present a simple and extensible heuristic using a priority queue and then present
several possible priority terms partitioned into five categories.

We can chose any node order to get a correct procedure. However, this choice has a huge
influence on preprocessing and query performance. Our first observation is, that for the con-
traction of a node u, we only need to know the nodes v with v > u. So an iterative develop-
ment of the node order < is possible starting with the lowest node. We can manage a sequence
〈v1, . . . , vk〉 of already contracted nodes ordered by < and iteratively add vk+1 ∈ V \{v1, . . . , vk}
just prior to the contraction of vk+1. The selection of the next node vk+1 is done using a priority
queue. The priority of a node u is the linear combination of several priority terms and estimates
the attractiveness to contract this node. A priority term is a particular property of the node u
and can be related to the already contracted nodes and the remaining nodes. Thus the priority
terms can change after the contraction of a node and need to be updated.

3.2.1 Lazy Updates

The priority queue has the node with the smallest priority on top, so increasing priorities can
be updated in time by updating the priority of the node on top of the priority queue before it
is removed. If this node is still on top after the update it will be removed, otherwise the new
topmost node will be processed in the same way. This procedure is called lazy updates and
yields improvements in practice and in some cases even in theory.

To further improve lazy updates, we also trigger an update of the priority of all remaining
nodes, if there were recently too many lazy updates. A check interval t is given and if more
than a certain fraction a · t of successful lazy updates occurs during a check interval, the update
is triggered. We currently only use a:= 1. A lazy update is successful if it changes the priority
of the topmost node.

3.2.2 Edge Difference

Arguably the most important priority term is the edge difference. Intuitively, the number of
edges in the remaining graph should decrease with the number of nodes. We considered two
properties of u: the edge difference and the number of new edges after the contraction of u.
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Let G′ = (V ′, E ′) be the remaining graph after the contraction of the direct predecessor of u
and G′′ = (V ′′, E ′′) the remaining graph after the contraction of u. Note that we only simulate
the contraction of u to calculate the edge difference and other properties.

Edge difference. The edge difference is calculated between the two graphs G′ and G′′. This is
the most important parameter to get a good contraction, otherwise the remaining graph
will most likely converge to the complete graph.

New edges. An edge is a new edge if and only if it needs to be added to G′′. Note that not all
shortcut edges are new edges, because sometimes just the edge weight function changes.
This parameter did not prove to be useful and we omitted it in the presented experiments
for the sake of simplicity.

For the implementation of the edge difference, we used the difference in the space require-
ments to store E ′ and E ′′, because it is quite similar to the theoretical edge difference |E ′′|−|E ′|
but takes the space consumption into account. For example, two edges (v, w) and (w, v) with
the same weight w(v, w) = w(w, v) can be stored as only one edge with two additional forward
and backward flags. This also applies to the number of new edges.

After the contraction of a node u, the edge difference of other nodes can change. In most
cases only neighbors of u are affected since the edges incident to u do no longer belong to the
remaining graph, see Figure 4. Our experience shows that updating all neighbors of u after its
contraction is a good compromise between accuracy and performance.

v u

(a) before

v

(b) after

Figure 4: After the contraction of node u, the edge difference and the number of new edges of
a neighbor v changes from 3− 3 = 0 to 1− 2 = −1. Note that an undirected edge is counted

twice.

But an affected node v can be arbitrarily far away, see Figure 5 for an example. During
the contraction of the node u a shortcut (xr, yr) is not necessary because of the witness path
〈xr, x′2, . . . , x′r, v, y′r, . . . , y′2, yr〉. Prior to the contraction of u, during a simulated contraction
to calculate the edge difference of node v a shortcut (x1, y1) is not necessary because of the
witness path 〈x1, x2, . . . , xr, u, yr, . . . , y2, y1〉. After the contraction of u the only x1-y1-path

〈x1, x2, . . . , xr, x
′
2, . . . , x

′
r, v, y

′
r, . . . , y

′
2, yr, . . . , y2, y1〉

is not a valid witness path for the contraction of v because it has v in its interior. Thus a
shortcut is necessary leading to an increased edge difference.

If after the contraction of a node u, the priority of a node v changes but is not updated in
the priority queue, nodes may be extracted from the priority in a different order than with an
update. Under certain conditions, lazy updates can reestablish the correct order.
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Figure 5: After the contraction of node v the edge difference and the number of the node u
changes. Directed, weighted graph.

Lemma 1. Nodes of a graph G = (V,E) are contracted in the correct order if (a) after the
contraction of a node all of its neighbors are updated, (b) the local searches for witnesses are
unlimited, (c) the edge difference is the only priority term and has a positive coefficient, (d)
lazy updates are used and (e) the minimum element is extracted from the priority queue.

Proof. The edge difference of a node v depends only on the incoming edges (x, v) ∈ E ′ and
outgoing edges (v, y) ∈ E ′ and the existing witnesses P = 〈x, . . . , y〉. After the contraction of a
node u, the incoming and outgoing edges change only for all neighbors of u. These changes are
covered by (a). So only existing witness paths can affect the edge difference of a node v that is
not a neighbor of u. Because of (b), we will not find a witness after the contraction of u if we
found no one before. Thus witness paths can only vanish, leading to an increasing priority (c).
Lazy updates (d) will adjust those priorities in time (e).

The most limiting condition of the previous lemma is the unlimited local search. But in
practice we need those limits to reduce the preprocessing time. However, if the search space
limits are sufficiently large, we can expect only few errors in the node order.

3.2.3 Cost of Contraction

Using the edge difference as sole priority is a simple approach showing query times even faster
than previous highway-node routing implementations [34]. But the preprocessing times can
be quite large. Introducing a cost of contraction to the priority was the next logical decision.
For the contraction of node u, we perform a Dĳkstra search from each node v incident to an
incoming edge (v, u) of u to find witness paths to each node w incident to an outgoing edge
(u,w), see Section 3.3 for more details. Because we can stop the search once all such nodes
w are settled and we can also limit the search (Section 3.3.1), those searches are called local
searches. Those local searches to find witness paths have the biggest share of the preprocessing
time. That is the reason why we chose the sum of the search space sizes of the local Dĳkstra
searches for the cost of contraction for a node u, more precisely the number of settled nodes.

We will introduce some optimizations later in Section 3.3 that do not use the Dĳkstra
algorithm for the local searches, in those cases we chose another appropriate quantity as the
cost of contraction.

Keeping the cost of contraction up-to-date in the priority queue is quite costly. The con-
traction of a node in a search tree of the local search can affect the cost of contraction. So after
the contraction of a node w, it would be necessary to recalculate the priority of each node that
has w in their local search spaces. Most local search spaces are small but there are exceptions.
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If there is an edge with a large edge weight, e.g. a long-distance ferry connection, the search
space can grow arbitrarily and with it the number of nodes that trigger a change in the cost of
contraction. A simplified example can be found in Figure 6.

In our implementation we will omit exakt updates for the sake of performance, update only
the neighbors of the contracted node and eventually use lazy updates to cope with drastic
increases of search space sizes.

u

v

w1
w2

w3

wk2
2 2

k k

Figure 6: After the elimination of a node wi, 1 ≤ i ≤ k, the search space for the local search
starting at node v changes and with it the cost of contraction of node u. Thick edges belong

to the search tree, edge weights are explicitly given.

3.2.4 Uniformity

A central idea of highway-node routing is to speed up queries by searching in overlay graphs
with fewer nodes and edges. If an node u is settled, only edges (u, v) with v > u are relaxed,
see Section 3.5. Doing so can drastically reduce the search space. But there are circumstances
than can slow down a query. Think, for example, of a dead-end valley like in Figure 7. If
the nodes are contracted in the order u1, u2, . . . , uk, a query starting at u1 will relax the edge
(u1, u2), then the node u2 is settled and will relax the edge (u2, u3) and so on. The query settles
all k nodes u1, . . . , uk until the exit x of the valley is reached. If you want to reach the exit
x from u1, the best thing would be a direct shortcut (u1, x). But we do not want to store
direct shortcuts for all pairs of nodes. Instead we will present a parameter that can reduce the
number of settled nodes to O(log k).

Contracted neighbors. Count for each node the number of previous neighbors that have
been contracted.

Given the dead-end valley in Figure 7 with arbitrary k ∈ N and a node ordering performed
with the coefficients given in Table 1, between u/3 and u/2 nodes will be contracted having
their contracted neighbor counter at 0. In the case of u/3 nodes, every third node is contracted,
e.g. starting with u1 (Table 1(b)) then u4 (Table 1(c)), u7 (Table 1(d)) and so on, and after
that all the remaining nodes have their contracted neighbor counter at 1. Recursively applied,
this yields a maximum contracted neighbor counter of

⌈
log3/2 k

⌉
for the nodes u1, . . . , uk in the

dead end valley. This also limits the number of nodes that are settled, until a modified forward
Dĳkstra search, described in the query algorithm above, leaves the valley. The reason is the
nature of the contracted neighbor counter. Whenever a node in this example is contracted, it
has the minimum value of the contracted neighbor counters of all remaining nodes and it will
increase the counter of its remaining neighbors by 1. The edges to those remaining neighbors
are the ones that are going to be relaxed during a query.
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u1u2u3u4uk
x

Figure 7: Example of a dead-end valley, all edges have unit distance. Among the nodes
u1, . . . , uk, always the rightmost node will be contracted, if the priority consists only of edge
difference (rightmost node needs no shortcut and has one incident edge ⇒ difference -1, all
other need one shortcut and have two incident edges, the edge difference is always -1) and

cost of contraction (rightmost node has one settled node, all other have two).

The implementation of the contracted neighbors counter is straightforward, we need one
counter per node, independent of the number of edges. The update of this counter in the
priority queue is quite fast as well, only the neighbors need to be updated.

Related to the contracted neighbors counter is another priority term, it also counts the
number of already contracted nodes, but now on edges. To get a better intuition for this
priority term, we can also say that we count the number of edges in the original graph a
shortcut represents.

Sum of original edges of the new shortcuts. Count the number of original edges of the
newly added shortcuts during the contraction of a node, see Figure 8. For convenience,
we will refer to this term as the original edges term.

1

1 1

1

1

2

2

[3][1]

[2]
[3]

[4]

Figure 8: A directed, weighted graph. The numbers in brackets denote the number of original
edges, an edge represents. Note that edges with [1] are original edges. The white node in the
middle will be contracted. Two shortcuts, represented by dashed arrows, are necessary. The

sum of original edges of the new shortcuts is 3 + 4 = 7.

This property should avoid shortcuts that represent too many original edges. The motiva-
tion is to use it for transit-node routing where the current implementation [34] only supports
few node levels. We create those few, e.g. 5, levels by defining ranges on the levels of a CH
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(a) initialization
uk · · · u2 u1

edge difference 1× -1 -1 -1 -1
search space 1× 2 2 2 1
contr.neighbors 3× 0 0 0 0
priority 1 1 1 0

(b) after contraction of node u1

uk · · · u4 u3 u2
1× -1 -1 -1 -1 -1
1× 2 2 2 2 1
3× 0 0 0 0 1

1 1 1 1 3

(c) after contraction of node u4

uk · · · u6 u5 u3 u2
1× -1 -1 -1 -1 -1 -1
1× 2 2 2 2 2 1
3× 0 0 0 1 1 1

1 1 1 4 4 3

(d) after contraction of node u7

uk · · · u8 u6 u5 u3 u2
1× -1 -1 -1 -1 -1 -1 -1
1× 2 2 2 2 2 2 1
3× 0 0 0 1 1 1 1

1 1 1 4 4 4 3

Table 1: Node order selection including contracted neighbors. Edge difference and search
space account for the priority with coefficient 1, contracted neighbors with coefficient 3.

Tables (a)–(d) show the evaluation of the priority terms and the final priority for each node
during first three possible steps of contraction. Note that other node orders are possible since

not every node has a distinct priority.

and assign each range to one new level. It is important, that from each node in a level, the
next level can be reached via a path with only a few hops. So having shortcuts representing
only a few original edges will hopefully lead to a hierarchy with this property. And fast path
unpacking routines that store complete representations of shortcuts may also benefit from this
new priority term. Their memory consumption is lowered and that is especially important on
mobile devices.

For our implementation, an additional original edge counter is necessary for each shortcut
leading to space requirements linear in the number of shortcuts1. So for graphs with many edges
and shortcuts it may be necessary to omit this priority term and just use Voronoi regions or
contracted neighbors because their space requirements are only linear in the number of nodes.
Another possible implementation could count the number of original edges by unpacking the
shortcut, however, this inflicts a lot of overhead leading to a time consuming node ordering
process. Since this priority term depends on the number of necessary shortcuts, it has at least
the same constraints regarding updates as the edge difference. So the contraction of nodes,
that are arbitrarily far away, can affect this property.

Counting contracted neighbors is simple to implement but it seems a little bit ad-hoc to
ensure uniform contraction. The next approach uses something more specific to this task.

Definition 1. Let u be currently the highest contracted node, so all v ∈ G with v ≤ u are
contracted and all v ∈ G with v > u are not contracted. The Voronoi region of v ∈ G, v > u is
defined as follows:

R(v) := {x ∈ G | x ≤ u and d(v, x) <∞ and ∀y ∈ G, y > u⇒ d(v, x) ≤ d(y, x)} ∪ {v}

The Voronoi regions based on shortest paths should include a certain amount of uniformity
into our contraction hierarchies. The goal is to contract nodes with a bigger Voronoi region
later.

1For a simpler implementation, even original edges have this additional counter.
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Voronoi region. Count the number of already contracted nodes in each Voronoi region R(u) of
a remaining node u. Because the number of nodes in the Voronoi regions of the remaining
nodes grows quite fast, we also extract the square root before we add this property to
the linear combination of the priority. If we think of the Voronoi region as a disc and of
the number of nodes as its area, extracting the square root calculates something like the
diameter of the disc.

Note that usually Voronoi regions are defined on metric spaces, but our graph G with
shortest path distance d is not necessarily one because we allow directed graphs and thus d
may not be symmetric. The triangle inequality however is satisfied. With the definition of R(u)
above, it is possible that two regions may overlap. In practice, a node that is on the border
of two or more regions is assigned to only one region to allow an efficient management of all
regions.

After the contraction of a node u, it is necessary to distribute the nodes in R(u) among
all neighboring Voronoi regions. Basically this is done with a modified Dĳkstra algorithm, the
same algorithm as described in [26] for partitioning. The priority queue is initialized with each
neighbor of u and distance 0. Each settled node that previously belonged to u recursively
belongs to the region that its parent belongs to, see Figure 9 for an example.
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Figure 9: The white node u in the middle is contracted. The waved lines denote possible
borders of the Voronoi regions, solid arrows affiliation to a Voronoi region and dashed arrows
possible new affiliations. Because our graph is not necessarily a metric space, there are no
unique border lines. All the nodes in R(u) including u are assigned either to R(x), R(y) or

R(z) using a modified Dĳkstra algorithm.

For an efficient implementation, it is necessary to know all neighbors in terms of shared
borders of Voronoi regions of the contracted node u. There must not necessarily exist edges to
all of these neighbors in the remaining graph. But if we know all nodes in R(u) then we can use
the edges incident to those nodes to find the neighboring Voronoi regions. Our implementation
saves the nodes in R(u) as a single linked list and their distance to u as an array. This allows
the application of the following algorithm that only needs to regard all nodes in R(u) and its
incident edges. It has the same result as the basic algorithm above but it is more suitable for
the specific task of updating the Voronoi regions. After the contraction of u, we scan through
the linked list and check for each node v all incident edges (w, v). If such a w is found with
w ∈ R(x), with x ∈ G, x not contracted, add or update the node v in the priority queue with
distance d(x, v) = d(x,w)+w(w, v). After that initialization of the priority queue, always settle
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the node with the lowest distance and add it to the Voronoi region of its parent. Only edges
leading to R(u) ∪ {u} need to be relaxed, this does not affect the correctness of the algorithm
since the Voronoi regions are based on shortest paths. It is possible, that there are contracted
nodes that do not belong to any Voronoi region as Figure 10 illustrates.

Figure 10: A directed, unweighted graph. There exists no path from one of the grey nodes to
the white node in the middle. So after the contraction of the white node, it will not be in any

Voronoi region of the remaining nodes.

Compared to the counting of contracted neighbors, Voronoi regions have more processing
overhead because of the additional step of distributing the nodes in the Voronoi region of the
currently contracted to the neighboring Voronoi regions.

3.2.5 Cost of Queries

The uniformity properties of the previous section are useful to speed up the queries in the
resulting contraction hierarchy. Adding a property that tries to limit the size of the query
search space results in even faster query times. More precisely we want to limit the depth
of the shortest paths tree for any source node s ∈ V and target node t ∈ V . Remember,
that a query using a modified Dĳkstra algorithm relaxes only edges to nodes with higher order
than the current node. Let depth(s, v) be the depth of the node v in the shortest paths tree
grown by our query algorithm with source node s, if v is not in the tree, the value is −1. Let
depth(s):= max {depth(s, v) | v ∈ V }. For simplification, we ignore the direction of the edges
and regard every edge as undirected edge.

Search space depth. We want to reduce the depth of the shortest paths trees our modified
Dĳkstra algorithm grows during a query. The later a node is contracted, the higher is
its order, and it is more likely that it increases the depth of an shortest paths tree. So
if there is a node u that is still not contracted, has a contracted neighbor v and there is
a node s ∈ V with a large value for depth(s, v), node u should be contracted later since
there is a chance that depth(s, u) = depth(s, v) + 1. If node u is contracted later, it is
more unlikely that there will be another node u′ that now has u as contracted neighbor
with depth(s, u′) = depth(s, u) + 1. We use an upper bound on the search space depth
as priority term.

Now we will explain how we implemented the above priority term. Our upper bound is a
rough estimation but simple to implement and effective. We only need an integer array A with
an entry for each node in G initialized with 〈0, . . . , 0〉. After the contraction of node u ∈ G we
update each adjacent node v ∈ G that is not already contracted with

A[v]:= max{
current upper bound︷ ︸︸ ︷

A[v] , A[u] + 1︸ ︷︷ ︸
upper bound including u

}.
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Figure 11: Detail of a graph before and after the contraction of the white node. The number
in brackets denotes the current upper bound A[·].

Figure 11 shows an example.
Since the depth of a directed tree is equal to the maximum number of nodes (minus 1) on a

path starting at the root node, it is easy to use a simple induction over the number of nodes in
a such a path to prove the correctness of the upper bound. For a path 〈x1, . . . , xr−1, xr〉 apply
the induction hypothesis to the subpath 〈x1, . . . , xr−1〉.

3.2.6 Global measures

We can prefer contracting globally unimportant nodes based on some path based centrality
measure such as betweenness [9, 1] or reach [17]. But we cannot straightforward use the
centrality value of a node as a priority term since the range of values is too large. For example
betweenness centrality values range from 0 to about n2, for reach, the values range from 0 to
half of the diameter of the graph. Instead of applying functions like the square root or the
logarithm, we propose a technique independent of the range of the values. Our idea is to adjust
the contribution to the priority of a node relative to the centrality values of its adjacent nodes
in the remaining graph.

For a remaining node u ∈ G, let C(u) ∈ R be the centrality value and N(u) ⊆ V the set
of remaining adjacent nodes. Then for node u, we add the fraction of neighbors with smaller
centrality value to the priority, see Figure 12, with an appropriate coefficient:

|{v ∈ N(u) | C(v) < C(u)}|
|N(u)| or 0 if and only if N(u) = ∅.

(2)

(3)(3)

(4)[
1
3

]
[0]

[1]

[0]

Figure 12: Undirected graph, the number in parentheses denotes the centrality value and the
number in brackets the fraction of neighbors with smaller centrality value.

The set N(u) of remaining adjacent nodes can change after the contraction of a adjacent
node, directly implying the update instruction of the above property.
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Dealing with large graphs, it is difficult to get exact centrality values. Therefore we used
approximations. In detail, we used canonical betweenness [10] because we had very good
approximation algorithms and precomputed approximation data available.

3.3 Node Contraction

This section fills in the details that are omitted in Algorithm 1, especially the part how witness
paths are located. We will first describe a general approach using Dĳkstra’s algorithm and then
present several optimizations to achieve faster preprocessing times.

Let G′ = (V ′, E ′) be the remaining graph after the contraction of the direct predecessor
of u. For the contraction of a node u, we face a many-to-many shortest path problem from
source nodes v ∈ S := {v | (v, u) ∈ E ′} incident to incoming edges of u to all target nodes
w ∈ T := {w | (u,w) ∈ E ′} incident to outgoing edges of u. For such a pair v 6= w, we want
to decide whether 〈v, u, w〉, if it is a shortest v-w-path, is the only shortest v-w-path in G′.
A simple way to implement this is to perform for each source node v a forward shortest-path
search starting at v in the current remaining graph G′ excluding u until all target nodes T \{v}
are settled, see Figure 13. Such a limited search is called a local search.

v

u
w1

w2

Figure 13: Forward search starting at node v until the target nodes w1 and w2 are settled. The
node u is ignored during the search. The search space is framed by thick gray border lines.

Let dv(w) be the shortest path distance found by this search. We add a shortcut edge
if and only if dv(w) > w(v, u) + w(u,w), i.e. if the shortest v-w-path excluding u will be
longer. We can additionally stop the search from a node x when it has reached distance
w(v, u) + max {w(u,w) | (u,w) ∈ E ′ \ {(u, v)}}.

3.3.1 Limit Local Searches

Local searches to locate witness paths can be quite time consuming, especially if long-distance
edges like ferry connections are involved. To create a node order and a CH based on this
node order, we currently perform those local searches at least twice for each edge. The first
search happens during a simulated node contraction to calculate the edge difference and other
priority terms, and the last search is performed to actually contract the node. Between those
two searches there may be additional local searches to update several priority terms. We do not
store the first search because it possibly needs to be updated after shortcuts are added during
the contraction of nodes
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We propose two approaches to limit the local searches. Note that the limitation of local
searches does not invalidate our algorithm since only a subset of witness paths is found resulting
in a superset of shortcut edges. However, due to additional shortcuts, the remaining graph will
be more dense and subsequent contractions are more time consuming. Therefore the local
search limit needs to be carefully selected and should possibly change after the contraction of
a certain number of nodes.

Limit the number of settled nodes. A local search, implemented as a modified Dĳkstra
algorithm, can be stopped after a certain number of nodes is settled.

Limit the number of hops / edges from the start node. Only find shortest-paths with
a limited number of edges. We will call this hop limit.

Limiting the number of settled nodes is straightforward, but, in our experience, leads to
more dense remaining graphs and does not speed up the contraction a lot. However, if we only
use it to estimate the edge difference and the number of new edges and perform the actual
contraction without limit, it speedups the node ordering without severe disadvantages.

Hop limits are the stall-in-advance technique introduced by highway-node routing [34].
Stall-in-advance limits the number of hops of the local search from the first covered node. In
CHs, if we want to contract a node u in the remaining graph, all nodes except for u will have
higher order than u. So all those nodes are covering nodes and stall-in-advance equals a simple
hop limit. To achieve further improvements, we propose staged hop limits. We start the node
ordering and contraction with a small hop limit, e.g. 1, this is enough to contract nodes that do
not require shortcut edges and all witness paths consist of one edge. Then we switch to higher
hop limits because otherwise the remaining graph will get to dense. We measure the density of
the remaining graph with the average node degree of the remaining nodes. Therefore it seems
natural to use the average node degree to trigger the hop limit switches. After a hop limit
switch, it is necessary to recalculate the priority of all remaining nodes. If the edge difference
has sufficient weight in the priority term, we observe that this leads to a temporary decrease of
the average node degree. So it makes sense to increase hop limits, but with the same average
node degree to trigger the switch.

Fast Local 1-Hop Search. For a 1-hop search, we do not require a modified Dĳkstra algo-
rithm. We just scan through all incident edges of the start node v to find the target node w,
see Figure 14. This is repeated for each pair of edges (v, u), (u,w) ∈ E ′ with v 6= w. Since an
edge array is used, all edges likely remain in cache making this operation very fast. The 1-hop
search make sense if lots of edges of the graph are shortest paths, like in a road network. In this
case, a 1-hop search should allow to contract a significant amount of nodes without too many
additional shortcuts being added. We use as cost of contraction (priority term) the number of
pairs (v, u), (u,w) ∈ E ′ with v 6= w.

Fast Local 2-Hop Search. In case of a 2-hop limit, we implemented a simple variant of the
many-to-many shortest path algorithm described in [21] instead of performing a local forward
search from each v ∈ S. A bucket b(x) is associated with each node x ∈ V ′. Bucket b(x) stores
a set of pairs (w, d) representing paths from x to w ∈ T with length d encountered during a
1-hop backward search from all target nodes, see Figure 15. During the following 1-hop forward
search from a node v ∈ S, we maintain an array D of tentative distances to each target node.
These distances are initialized to ∞ (or some sufficiently large value). The forward search,
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Figure 14: The local 1-hop search starting at node v scans through all remaining incident
edges.

starting at v, scans b(x) for each edge (v, x) ∈ E ′ \ {(v, u)}. For each pair (w, d) stored in b(x),
it sets D[w] to min {D[w], w(v, x) + d}. After that, if D[w] is larger than w(v, u) + w(u,w),
a shortcut edge (v, w) is added. To find 1-hop witnesses of the form (v, w), we can just scan
the bucket b(v) after all backward searches. We use as cost of contraction (priority term) the
number of bucket entries plus the number of scanned edges during the 1-hop forward search.

w, 3bucket b(x)

u

v w

x

3 3

32

Figure 15: The 1-hop backward search from w stores distance w(x,w) into bucket b(x),
represented by dotted arrows. The following 1-hop forward search from v scans bucket b(x) to

get distance to w over x, represented by dashed arrows.

1-Hop Backward Search. To speed up a local search from node v ∈ S with hop limit a ≥ 3,
we can first perform a (a − 1)-hop forward search using a modified Dĳkstra’s algorithm. The
distance to a node w ∈ T , whose shortest path from v has no more than a edges, is either
already known because w is settled (≤ a−1 edges) or can be found by a 1-hop backward search
using

dv(w) = min {dv(x) + w(x,w) | (x,w) ∈ E ′ and x settled} .

The distance limit to the forward search changes, we now stop the search if the last settled
node exceeds the distance

w(v, u) + max {w(u,w)−min {w(x,w) | (x,w) ∈ E ′} | (u,w) ∈ E ′ \ {(u, v)}} .

An example with a = 5 is illustrated in Figure 16.
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Dijkstra scan
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w

Figure 16: A local search from v to w. The Dĳkstra search space is limited by 4 hops. The
5th hop is added performing a 1-hop backward search from w by scanning through all

incident backward edges.

3.3.2 On-the-fly Edge Reduction

CHs are based on the concept of node contraction. There is no subsequent edge reduction
phase with considerable time needs like for HHs [30, 31, 34]. Nevertheless edge reduction is
meaningful if it removes only edges that are not on any shortest path. Such an edge reduction
can be partially incorporated in the node contraction phase without serious costs. If the
search for witnesses is performed by a local Dĳkstra search from each node v ∈ S, it contains
additional information for a simple edge reduction. If there is an edge (v, x) ∈ E ′ with dv(x) <
w(v, x), then this edge is dispensable for the shortest paths calculation and can be removed,
see Figure 17. The main cost of the additional edge reduction is to scan through all remaining
incident edges (v, x) of node v and to read dv(x). Because v was the start node of a just
finished local Dĳkstra search, all this information is likely to be in cache and will cause almost
no overhead. Moreover, since the remaining graph will be more sparse, it can speedup the
contraction of remaining nodes. And since only edges that are not on any shortest path are
removed, shortest path queries will be faster.

v x

y

2 3

6

Figure 17: A local search from v in a directed weighted graph. Since dv(x) = 5 < 6 = w(v, x),
the edge (v, x) can be removed because it is not necessary for shortest paths calculation.

3.4 Relation to Highway-Node Routing

To put our work in the context of highway-node routing (HNR) [34], we need to adopt some
concepts, more precisely the concept of canonical shortest paths, covering paths and overlay
graphs. HNR is a general approach for hierarchical routing. It does relay on another technique
to define a hierarchy on the node set. CHs are an extreme case where every node has its own
level. We use the query algorithm of HNR, so we can adopt the correctness proof for the query
algorithm if we can prove that CHs are an application of HNR.

For readers who are not familiar with the concepts of HNR, we now repeat some of the
definitions from [34].
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Canonical Shortest Paths. For a given Graph G = (V,E), U(G) is a set of canonical
shortest paths if it contains for each connected pair (s, t) ∈ V × V exactly one unique shortest
path from s to t such that P = 〈s, . . . , s′, . . . , t′, . . . , t〉 ∈ U(G) implies that P |s′→t′ ∈ U(G).

It is easy to see that Dĳkstra’s algorithm always finds canonical shortest paths if we have
a total order on the nodes and, in case of ambiguities, prefer the parent node with the higher
order. For a CH (G,<) we use the set U(G,<) of canonical shortest paths found by Dĳkstra’s
algorithm and the node order <.

Covering-Paths Set. We consider a graph G = (V,E), a node subset V ′ ⊆ V , a node s ∈ V ,
and a set C ⊆ {〈s, . . . , u〉 | u ∈ V ′} of paths in G.

The set C is a covering-paths set of s w.r.t. V ′ if for any node t ∈ V ′ that can be reached
from s, there is a node u ∈ V ′ on some shortest s-t-path P such that P |s→u ∈ C, i.e.,

P = 〈s, . . . ,
∈V ′︷︸︸︷
u︸ ︷︷ ︸

∈C

, . . . ,

∈V ′︷︸︸︷
t 〉

A covering-paths set C is a canonical covering-paths set if for any node t ∈ V ′ that can
be reached from s, there is a node u ∈ V ′ on the canonical shortest s-t-path P such that
P |s→u ∈ C.

Overlay Graph. For a given graph G and a node set V ′, the graph G′ = (V ′, E ′) is an
overlay graph of G if for all (u, v) ∈ V ′ × V ′, we have dG′(u, v) = dG(u, v). Figure 18 gives an
example. An overlay graph is a subgraph that preserves the shortest path distances of G.
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Figure 18: A minimal overlay graph (shaded nodes, all incident edges, dashed shortcuts with
given edge weights) of the depicted graph (solid edges, unit edge weights).

Multi-Level Overlay Graph. The overlay graph definition can be applied iteratively to
define a multi-level hierarchy. For given highway-node sets V=: V1 ⊇ V2 ⊇ · · · ⊇ VL, we define
the multi-level overlay graph G = (G1, G2, . . . , GL) in the following way: G1:= G and for each
` ≥ 1, G`+1 is an overlay graph of G`.

Now we will apply those concepts to contraction hierarchies to prove the following theorem.

Theorem 1. Let (G = (V,E), <) be a contraction hierarchy, V = 〈v1, v2, . . . , vn〉 with v1 <
v2 < · · · < vn, Vi := {vi, vi+1, . . . , vn} for i ∈ {1, 2, . . . , n}. Then for the highway-node sets
V = V1 ⊇ V2 ⊇ · · · ⊇ Vn, G:= (G[V1], G[V2], . . . , G[Vn]) is a multi-level overlay graph.
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Before we can prove the theorem, we need some additional lemmas.

Lemma 2. Let u ∈ V , Gu:= (Vu, Eu):= G[{v ∈ V | v ≥ u}]. Then all edges incident to u that
are in Eu are already in the remaining graph after the contraction of the node
y:= max {x ∈ V | x < u} that is contracted directly before u.

Proof. During the contraction of node u, no shortcut incident to u is added, only shortcuts
incident to adjacent nodes of u are added. And after the contraction of node u, only edges
(v, w) with incident nodes v, w > u are considered, so no new edge incident to u is added after
the contraction of the node y.

Lemma 3. Let u ∈ V , Gu:= (Vu, Eu):= G[{v ∈ V | v ≥ u}]. The search for witnesses in Algo-
rithm 1 during the contraction of node u equals the computation of the canonical covering-paths
sets for all nodes v ∈ V ′u:= Vu \{u} w.r.t. to V ′u and the set U(G,<) of canonical shortest paths.

Proof. We modify Dĳkstra’s algorithm so that it prefers shortest paths that do not have u in
their interior but still computes a canonical shortest paths set. This “preference” is expressed
in Line 4 with the term “may be”. We need canonical covering-paths sets C(v) for all nodes
v ∈ V ′u w.r.t. to V ′u. Two cases are distinguished:

• Case 1: There is an incoming edge (v, u) ∈ Eu. Let
C(v):= {〈v, w〉 | (v, w) ∈ Eu and w 6= u}∪

{〈v, u, w〉 | (u,w) ∈ Eu and 〈v, u, w〉 “may be” the only shortest path from v to w},
then C(v) can be calculated using the witnesses found during the contraction of node u,
since (v, u) and every edge (u,w) ∈ Eu has been considered during the contraction of
node u as proven in Lemma 2. C(v) is by definition a covering-paths set of v w.r.t. to
V ′u. Now we need to prove that it is a canonical covering-paths set. If not, for the sake
of contradiction, there must be a w ∈ V ′u with (u,w) ∈ Eu and 〈v, u, w〉 ∈ U(G,<) but
another shortest v-w-path P is found with only nodes > u in its interior, preventing the
addition of a shortcut (v, w). Let P = 〈v, . . . , x, w〉, then x > u and by our construction
of U(G,<) with a modified Dĳkstra algorithm, P would be favored over 〈v, u, w〉 as the
canonical shortest v-w-path, so 〈v, u, w〉 is not in U(G,<), contradiction.

• Case 2: There is no incoming edge (v, u) ∈ Eu. Then C(v) := {〈v, w〉 | (v, w) ∈ Eu} is a
trivial canonical covering-paths set of v w.r.t. to V ′u since every adjacent node of v is in
V ′u.

Proof of Theorem 1. Let u ∈ V \ {vn}, for the contraction of node u, we perform a witness
search, see Algorithm 1. According to Lemma 3, this equals the computation of canonical
covering-paths sets for all nodes v ∈ V ′u:= Vu \ {u} w.r.t. to V ′u. As proven in [34], we can use
those canonical shortest-paths sets to compute an overlay graph G′u for the graph Gu and the
node set V ′u. This is done by appending edges (v, w) for each v ∈ V ′u and 〈v, . . . , w〉 ∈ C(v) with
weight w(u, v):= w(〈v, . . . , w〉). According to the definition of C(v) in Lemma 3, only edges
(v, w) with 〈v, u, w〉 ∈ C(v) need to be added, all other edges already exist. Those edges (v, w)
are exactly the shortcut edges added in Line 5 of Algorithm 1. For u′:= min V ′u, those shortcuts
are already in Gu′ along with all edges in Eu that are not incident to u. Note that the shortcuts
added during the contraction of node u do not need to be shortest paths and can be replaced
by even shorter shortcuts, but this does not invalidate that the graph Gu′ is an overlay graph
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of Gu because the graph G′u is one. Since u ∈ V \ {vn}, there exists a k ∈ {1, 2, . . . , n− 1},
u = vk and u′ = vk+1. By the definition of Gu and Gu′ , Gu = G[Vk] and Gu′ = G[Vk+1]. So
G[V1] = G and since u ∈ V \ vn arbitrarily chosen, for each ` ∈ 1, 2, . . . , n− 1, G[V`+1] is an
overlay graph of G[V`] finally proving that G is an multi-level overlay graph.

In a nutshell, Algorithm 1 iteratively constructs overlay graphs for a given node order
resulting in an multi-level overlay graph with n distinct levels. So the query algorithms for
HNR can be applied, the topic of the next section.

3.5 Query

Our query algorithm is a symmetric Dĳkstra-like bidirectional procedure. We use the asyn-
chronous, aggressive variant from highway-node routing, see [34]. We will shortly repeat the
most important definitions and algorithms and emphasize their characteristics applied to con-
traction hierarchies followed by a correctness proof. After that, we describe how to unpack a
shortest path, i.e. how to get a shortest path in the original graph without any shortcut edges.
Finally, the query speedup technique stall-on-demand is explained.

The query algorithm does not relax edges leading to nodes lower than the current node.
This property is reflected in two search graphs. The upward graph

G↑:= (V,E↑) with E↑:= {(u, v) ∈ E | u < v})

and, analogously, the downward graph

G↓:= (V,E↓) with E↓:= {(u, v) ∈ E | u > v}).

We perform forward search in G↑ and a backward search in G↓, see Figure 19 for two examples.
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Figure 19: Two examples of queries. The graph is directed, the numbers on the edges denote
the edge weights. Normal arrows denote edges in the original graph, dashed arrows denote

shortcuts and thick arrows the path found by the query algorithm. The forward and
backward search space is framed.

Forward and backward search are interleaved, we keep track of a tentative shortest-path
length and abort the forward/backward search process when all keys in the respective priority
queue are greater than the tentative shortest-path length (abort-on-success criterion). Note
that we are not allowed to abort the entire query as soon as both search scopes meet for the
first time. The reason for this is illustrated in Figure 20. A interleaved, bidirectional Dĳkstra
search is started from source node s and target node t. At first, the forward search settles s
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and the backward search settles t. In the second step, both search scopes settle x and they
meet. But the path 〈s, x, t〉 is not a shortest s-t-path. Only in the third step, the backward
search settles y and relaxes the edge (s, y), and the shortest s-t-path 〈s, y, t〉 is found for the
first time.
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Figure 20: Undirected graph, the numbers on the edges denote the edge weights. Example
explaining the necessity of the abort-on-success criterion of the query.

Theorem 2. The query algorithm is correct.

Proof. In Section 3.4, Theorem 1 we show that a contraction hierarchy is a multi-level overlay
graph, so the correctness proof in [34] for the asynchronous, aggressive query algorithm is
applicable. For better understanding, we present a self-contained proof specific for contraction
hierarchies.

Let (G = (V,E), <) be a contraction hierarchy. Let s, t ∈ V be a source and a target node.
By the definition of a shortcut, it only represents an already existing path in the graph, the
shortest path distance between s and t in the CH is the same as in the original graph, especially
the existence of a shortest s-t-path is the same. Every shortest s-t-path in the original graph
still exists in the contraction hierarchy but there may be additional shortest s-t-paths. But
since we use a modified Dĳkstra algorithm that does not relax all incident edges of a settled
node, our query algorithm does only find particular ones. In detail, exactly the shortest paths
of the form

〈s = u0, u1, . . . , up, . . . , uq = t〉 with p, q ∈ N, (1)

ui < ui+1 for i ∈ N, i < p and uj > uj+1 for j ∈ N, p ≤ j < q.

are found by our query algorithm, see Figure 21(a). We will prove that if there exists a shortest
s-t-path then there exists a shortest s-t-path of the form (1), too.
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Figure 21: Examples of shortest s-t-paths with respect to their necessary form for the query
algorithm.
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Let P = 〈s = u0, u1, . . . , up, . . . , uq = t〉 with p, q ∈ N, up = maxP , be a shortest s-t-path
that is not of the form (1), like e.g. in Figure 21(b), then there exists a k ∈ N, k < q with
uk−1 > uk < uk+1. Our query algorithm will not find P but another shortest s-t-path that
can be recursively constructed out of P . Let MP := {uk | uk−1 > uk < uk+1} the set of local
minima excluding nodes s, t. We show that there exists a shortest s-t-path P ′ with MP ′ = ∅ or
minMP ′ > minMP . Let uk:= minMP and consider the two edges (uk−1, uk), (uk, uk+1) ∈ E.
Both edges already exist at the beginning of the contraction of node uk according to Lemma 2.
So there is either a witness path Q = 〈uk−1, . . . , uk+1〉 consisting of nodes higher than uk with
w(Q) ≤ w(uk−1, uk) +w(uk, uk+1) (even = since P is a shortest path) or a shortcut (uk−1, uk+1)
of the same weight is added. So the subpath P |uk−1→uk+1

can either be replaced by Q or by
the shortcut (uk−1, uk+1). The resulting path P ′ is still a shortest s-t-path consisting of nodes
higher than uk. Since n <∞, there must be a shortest s-t-path P ′′ with MP ′′ = ∅ equal to P ′′
is of the form described in (1). This path P ′′ can be found by our query algorithm proving its
correctness. However, note that there need not be a unique shortest s-t-path of the form (1),
it is sufficient that there is at least one.

Both search graphs G↑ and G↓ can be represented in a single, space-efficient data structure:
an adjacency array. Each node has its own edge group of incident edges. Since we perform
forward search in G↑ and backward search in G↓, we only need to store an edge in the edge group
of the less important incident node. More about our implementation of graph data structures
can be found in Appendix A.

3.5.1 Outputting Complete Path Descriptions

The query algorithm described above can return a shortest path in the contraction hierarchy.
In order to output a complete description of the computed shortest path, we have to unpack
the shortcut edges to obtain the represented subpaths in the original graph. We propose a
recursive unpacking routine based on the fact that each shortcut edge represents a subpath,
not necessarily in the original graph, consisting of exactly two edges, see Algorithm 1. As
long as there is a shortcut edge in the path, we replace it by the two edges that originated
the creation of this shortcut. Finally, we will have a path without any shortcut edges, that is
equivalent to a path in the original graph, see Figure 22.
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Figure 22: Unpacking of the shortest u-z-path of Figure 19. Directed graph, the numbers on
the edges denote the edge weights. Normal arrows denote the shortest u-z-path in the original
graph, dashed lines denote shortcuts and thick arrows the path found by the query algorithm.

Consider a shortcut (v, w) that represents a path 〈v, u, w〉. One possible implementation
stores the middle node u in the data structure that represents the shortcut. If we do not
store this additional information and scan through the incident edges of v and w to find (v, u)
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and (u,w) because we want to save space, we face a dilemma. Remember the data structure
representing the search graphs G↑ and G↓. Since v, w > u, the edges (v, u) and (u,w) are both
stored in the edge group of u and not in the edge groups of v and w, as illustrated in Figure 23.
So we either need to store the middle node u with every shortcut (v, w) or we need to store
each edge, that is part of a shortcut, in the edge group of both incident nodes. The first variant
is usually more space-efficient.
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Figure 23: Efficient search graph data structure. Directed graph, normal arrows denote edges,
the fat dashed arrow denotes a shortcut edge, the dotted arrows denote the affiliation to an

edge array. Edges are only stored at the incident node with smaller order.

It is possible to implement the unpacking algorithm with time requirements linear in the
number of edges of the unpacked path since each step increases the number of edges in the
current path by exactly one edge. The location of the two originating edges of a shortcut can
be implemented in constant time by storing them in the shortcut edge data structure.

3.5.2 Optimizations

Because our query algorithm does not relax all edges incident to a settled node, it is possible
to settle nodes that are reached over a suboptimal path. Since we only want to find shortest
paths, we can prune the search at such nodes. This technique is called stall-on-demand, see
[34]. We will explain it only for forward search, but it can be applied to the backward search
in the same way. We will start with an exhaustive example, see Figure 24. The edge (x, u)
is not relaxed because u < x. So the node u will be settled with tentative distance 8 and
path 〈s, u〉 that is suboptimal since path 〈s, x, u〉 has weight 4. It does not make any sense to
relax the edges incident to node u because they will also result in suboptimal paths, we say
we stall the node u with stalling distance 4. To stall the node v, that is settled before u and
has at this time no neighbor that witnesses a suboptimal path, we need a stalling process to
identify nodes that have been reached on a suboptimal path. Because we use search graphs,
we cannot stall the node u while we settle node x because the edge (x, u) is only stored in
the edge array of u. Therefore, our stalling process starts at node u, and stalls all nodes with
suboptimal paths using a breadth first search. The BFS stops at nodes that are already stalled
or that are not going to be stalled. We will only stall nodes with higher order than u since we
use search graphs. In our example, the nodes v, w and z will be stalled. Node y will not be
stalled because its tentative distance is currently 9 with path 〈s, x, y〉 and the stalling process
compares it to the path 〈s, x, u, v, w, y〉 with weight 12. To ensure a correct query algorithm,
we unstall nodes if they are reached via a shorter path than the previous one found by the
modified Dĳkstra algorithm. The distance responsible for stalling the node is not taken into
account. In our example, after node u is settled with distance 8, its stalling process stalls node
z because w(〈s, z〉) = 15 > 13 = w(〈s, x, u, v, w, z〉). But by the time node y is settled with
distance 9, the edge (y, z) is relaxed and node z is unstalled with tentative distance 11 and
path 〈s, x, y, z〉.
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Figure 24: Motivation for stall-on-demand technique. Detail of an undirected graph, numbers
denote edge weights.

Obviously, pruning the search at stalled nodes that have been demonstrably settled via a
suboptimal path cannot invalidate the correctness proven in Theorem 2 since a continuation of
the search from these nodes can never contribute to a shortest path.

The observing reader may note that our stall-on-demand technique can be further improved
to stall even more nodes. But our tests show negative performance improvements and only a
small increase of the number of stalled nodes. So we will share our experience with the purpose
to make the mistake only once. To stall even nodes with lower order than u, we could use the
parent pointers, managed by the modified Dĳkstra query algorithm. We call this deep stall-on-
demand. The stall-on-demand technique can speed up the query by factor 2 or more. But our
experiments show that deep stall-on-demand consumes a little bit of this speedup. Nevertheless,
for other algorithms like many-to-many [21], the number of settled and not stalled nodes is
important and deep stall-on-demand pays off. Small further improvements of the number of
stalled nodes are possible. We describe these improvements now but we do not use them in
any of our experiments. So it is possible to unstall a node only if its new tentative distance
is less than the stalling distance. But that leads to an increased query time because of the
additional overhead. Also continuing the stalling process at already stalled nodes, if the new
stalling distance is smaller that the old one, will likely increase the number of stalled nodes. To
switch from BFS to a local Dĳkstra search is another choice. This may result in lower stalling
distances and more stalled nodes. A not so obvious improvement is to stall a node u even if
the stalling distance over a node x, d(x)+w(x, u) = d(u). However, to preserve a correct query
algorithm, we only are allowed to stall nodes in the subsequent stalling process that are of lower
order than x. We prove the correctness only for the forward search.

Lemma 4. Let (G = (V,E), <) be a contraction hierarchy. During the forward search, nodes
u ∈ V with tentative distance d(u) get stalled, if there is a node x ∈ V, x > v with d(x) +
w(x, u) ≤ d(u). The subsequent stalling process stalls only nodes w < x. Then the query
algorithm is still correct.

Proof. Let r be the highest node in a shortest s-t-path. The query algorithm will fail if it does
not reach such a node r because a node on a path to r is stalled. If r ≥ x, then no node on
a path from x to r would be stalled. And because of the properties of a CH, if u or another
stalled node is on a shortest path to r, it can be replaced by nodes higher than x since there is
a shortest path to those nodes via x. If r < x and r is not reached because a node y on a path
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to r got stalled because of x, there is a shortest s-y-path containing node x and subsequently
a shortest s-r-path containing x, so there exists a shortest s-t-path containing x > r. This
shortest path can still be found by the query algorithm, even if node r is not reached.

Note that the above proof even holds if we perform a Dĳkstra search instead of a BFS in
the stalling process. The problem of the criteria of Lemma 4 is, that our data structure for the
search graph does not directly stores the level or order of the nodes. So the decision, whether a
node is lower than node x, cannot always be decided. Additional space is required to store the
level of each node leading to decreased performance. Another possibility would be to use the
level as node ID, but this leads to decreased performance because of increased cache misses.

3.6 Storing Witness Paths

To construct a CH out of a graph G = (V,E), we need a node order < and need to add necessary
shortcuts to G. In the dynamic or time-dependent scenario, we perform the preprocessing
to a given time (static graph), know all shortcuts and the node ordering but edge weights
can change and we want to revalidate shortcuts and add additional necessary shortcuts. One
method is to perform the contraction from scratch using the previous node order. Here, we
present a method that can speedup the contraction: we store all shortcuts and for all pairs of
edges (v, u), (u,w) ∈ E with no added shortcut (v, w), see Algorithm 1, we store the witness
path. Consider a pair of edges (v, u), (u,w) ∈ E with v, w > u and node u is currently being
contracted, see Figure 25. In the best case, we have stored the information to determine the
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Figure 25: Using a stored witness path to determine necessary shortcuts during the
contraction of node u. In this example, a witness P for the path 〈v, u, w〉 is found. Depending

on the changed edge weights, the witness can stay valid or will be invalid.

necessity of a shortcut. If there previously was a shortcut (v, w), we can add it with updated
weight, or we already know a possible witness path and can check if it is still not longer that
w(v, u) +w(u,w). If the shortcuts and witness paths are efficiently stored, this is considerably
faster than a local search. Especially in the time-dependent scenario this may be useful since
time-dependent Dĳkstra algorithms are time consuming and witness paths of the static graph
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may still be valid in the time-depended graph. However, not all witness paths will still be valid
and additional shortcuts (v, w) are added without available shortcut and witness information
for the contraction of the nodes v or w. For these nodes, a local search for witnesses is still
necessary.

Some remarks:

• We hoped to limit the additional local searches by using only 1-hop and 2-hop searches,
see Section 3.3.1. However, this proves not useable because the remaining graph will be
to dense since the local searches are too limited. To limit the number of shortcuts, we
need to remove the 2-hop limit but then the local searches are Dĳkstra-based. So in
the time-dependent scenario we still need an adapted Dĳkstra algorithm and we do not
further analyze the usage of stored witnesses and just shortly illuminate our experiences
with it.

• On-the-fly edge reduction should not be used with witnesses. Because of changed edge
weights, an edge that will be later used in an witness path, can be removed, rendering
the witness unusable. The witness with the removed edge could still be valid since it does
not need to be a shortest path but only be at most as long as the path containing the
currently contracted node.

• Since preprocessing is already really fast with limited local searches and lazy updates, we
observe that for an efficient implementation, the handling and storage of witness paths is
crucial. Otherwise the additional overhead erodes the saved preprocessing time.
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4 Applications
Since CHs are a hierarchical technique based on a bidirectional Dĳkstra algorithm, there are
many existing applications for them. In this section we will elaborate some of them in more
detail and present results for them in Section 5.

4.1 Many-to-Many Routing

Instead of a point-to-point query, the goal of many-to-many routing is to find all distances
between a given set S of source nodes and set T of target nodes. Two obvious solutions would
be to perform |S| Dĳkstra queries without a target, thus solving the single source shortest path
problem from each node in S, or perform |S| · |T | point-to-point queries. But for large |S| , |T |
this is impractical. A better approach [21] is to perform only |S| forward searches and |T |
backward searches omitting the abort-on-success criterion and storing the results in a proper
data structure. In more detail, we first complete backward searches from each node t ∈ T ,
storing t and the distance to t in a bucket at each reached node. Note, that it is only necessary
to do this for non-stalled nodes since we are only interested in shortest paths. After that, we
execute a forward search from each node s ∈ S, scan the buckets at each reached node. Let
d↑s(v) and d↓t (v) denote the distance to v found by forward and backward search, respectively,
if v is not reached, then the value is ∞. Since we omitted the abort-on-success criterion,
d(s, t) = min

{
d↑s(v) + d↓t (v) | v ∈ V

}
because our query algorithm is correct (Theorem 2).

The authors of this many-to-many technique observed that the bucket scans during the
forward searches are the most time-consuming operation. So CHs are a good improvement
because of their small search space leading to fewer bucket entries. Another solution, presented
by the authors, is an asymmetric modification to the original algorithm: They prune the
backward search at the entrance to the highest level. And because the graph induced by the
nodes in the highest level is an overlay graph, the algorithm is still correct. Because of the
pruning, fewer nodes are reached in the backward search, causing fewer bucket entries and
finally decreasing the cost for bucket scans. The analogon to the asymmetric approach for CHs
is to contract not all nodes but leave some nodes in the topmost level, the core. The core
size determines the degree of asymmetry and depends on the asymmetry of |S| and |T | for an
efficient implementation. Intuitively, |T | should be at least as large as |S| and the core size
should increase with increasing |T | / |S|.

4.2 Transit-Node Routing

Transit-node routing [3, 34] is currently the fastest static routing technique available. It is
based on a simple observation intuitively used by humans: When you start from a source node
s and drive to somewhere “far away”, you will leave your current location via one of only
a few “important” traffic junctions, called (forward) access nodes and arrive at your target
via only a few backward access nodes. All access nodes together are called the transit node
set. The main disadvantage is that it needs considerably more preprocessing time than other
speedup techniques. The preprocessing for transit-node routing is essentially a generalization
of many-to-many routing between the access node sets. But it would go beyond the scope of
this diploma thesis if we would implement a complete preprocessing with CHs. Instead, we are
using the node order of a CH to define a few sets of transit nodes and apply the algorithm
provided by [34]. Using priority terms like the edge difference and the original edges term may
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result in a hierarchy with fast preprocessing time and small sets of access nodes for each node
in the graph.

4.3 Changing all Edge Weights

In CHs, we can distinguish between two main phases of preprocessing, node ordering and
hierarchy construction. Similar to highway-node routing, we do not have to redo node ordering
when the edge weights change – for example when we switch from driving times for a fast car to
a slow truck. Hierarchy construction ensures correctness for all node orderings. Since the node
ordering needs considerably more time than the hierarchy construction, it would be economical
to perform the node ordering only once and the hierarchy construction for each speed profile
separately. The intuition behind this is that most important nodes remain important even
if the actual edge weights change – both sports cars and trucks are fastest on the motorway.
In [34], HNR based on HHs demonstrated itself insensitive against changing all edge weights.
Even switching from travel time metric to distance metric is feasible. Hopefully, CHs show the
same behavior, because in combination with their small search spaces and preprocessing time
they would give a good foundation for time-dependent routing.

4.4 Implementation on Mobile Devices

Due to its small memory overhead and search space, CHs are a good starting point for route
planning on mobile devices. Currently there already exists an implementation [33] of a CH
query algorithm that incorporates a compressed external-memory graph for further reduced
space requirements. The saved space can be used for other useful applications on the mobile
device to improve the added value.

4.5 Reuse of Shortcuts in other Applications

CHs provide not only a hierarchy of nodes like for many-to-many routing and TNR, but they
also provide shortcut edges. These edges maintain the shortest paths distances and may enrich
the original graph, even if we do not adopt the node ordering. Although the resulting graph
has more edges than the original graph, it may be easier to process since e.g. the depth of a
shortest paths search is reduced. Examples of possible applications are reach-based routing [11]
or SHARC [4].
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5 Experiments
This section reuses some the structure, methodology and formulations of [34]. Also the envi-
ronment and the used test instances are the same.

5.1 Implementation

An exhaustive description of the implementation would go beyond the scope of this thesis so
that we restrict ourselves to some important aspects. The program was written in C++. We
started with the code provided by [34], especially the part for HNR, that already provides
useful data structures for graphs and priority queues and a fast implementation of Dĳkstra’s
algorithm with many modifications. We adapted these to the new needs of CHs, especially
the support of a large number of levels. No libraries, except for the C++ Standard Template
Library were used to implement the algorithms described in Sections 3.2, 3.3 and 3.5. Overall,
our program consists of about 7 700 lines of code.

To obtain a robust implementation, we include extensive consistency checks in assertions
and perform experiments that are checked against reference implementations, i.e., queries are
checked against Dĳkstra’s algorithm.

For more details on the implementation, in particular on the employed data structures, we
refer to Appendix A. A short documentation of the code is provided by Appendix B.

5.2 Experimental Setting

5.2.1 Environment

Experiments have been done on one core of a single AMD Opteron Processor 270 clocked
at 2.0 GHz with 8 GB main memory and 2 × 1 MB L2 cache, running SuSE Linux 10.3
(kernel 2.6.22). The program was compiled by the GNU C++ compiler 4.2.1 using optimization
level 3.

5.2.2 Instances

Main Instance. Most of our experiments have been done on a road network of Western
Europe2 (which we often just call “Europe”) which has been made available for scientific use by
the company PTV AG. For each edge, its length and its road category are provided. There are
four major road categories (motorway, national road, regional road, urban street), which are
divided into three subcategories each. In addition, there is one category for forest and gravel
roads.

Additional Instances. In addition, we also performed some experiments on two other road
networks. A publicly available version of the US road network (without Alaska and Hawaii) that
was obtained from the TIGER/Line Files [36] (USA (Tiger)). However, in contrast to Europe,
the TIGER graph is undirected, planarised and distinguishes only between four road categories,
in fact 91% of all roads belong to the slowest category so that you cannot discriminate them.
And very recently, a new version of the European road network (New Europe) that is lager than

2Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland, and the UK
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the old one and covers more countries3 became available. It has been provided for scientific use
by the company ORTEC.

Different Metrics. For most practical applications, a travel time metric is most useful, i.e.,
the edge weights correspond to an estimate of the travel time that is needed to traverse an
edge. In order to compute the edge weights, we assign an average speed to each road category
(see Table 2). In some cases, we also deal with a distance metric (where we directly use the
provided lengths). For Europe, we used the distance metric on a subgraph, the largest strongly
connected component (scc). Table 3 gives the sizes of the used road networks.

motorway national regional urban
fast slow fast slow fast slow fast slow

Europe 130 120 110 100 90 80 70 60 50 40 30 20 10
USA (Tiger) 100 80 60 40

Table 2: Average Speeds [km/h]. The last column contains the average speed for “forest roads,
pedestrian zones, private roads, gravel roads or other roads not suitable for general traffic”.

road network #nodes #directed edges
Europe 18 029 721 42 199 587
→ Europe (scc) 18 010 173 42 188 664
→ Belgium 463 514 1 104 943
USA (Tiger) 23 947 347 57 708 624
→ South Carolina 463 652 1 091 530
New Europe 33 726 989 75 108 089

Table 3: Test Instances. In case of Europe, we give the size of both variants: the original one
and the largest strongly connected component (scc). The symbol → denotes a subgraph

relation.

5.2.3 Preliminary Remarks

Unless otherwise stated, the experimental results refer to the scenario where the road network of
Europe with travel time metric is used, and only the shortest-path length is computed without
outputting the actual route.

When we specify the memory consumption, we usually give the overhead, which accounts
for the additional memory that is needed by our approach compared to a space-efficient unidi-
rectional implementation of Dĳkstra’s algorithm. This overhead is always expressed in “bytes
per node”. Note that this differs from [34] where it is compared to an bidirectional implemen-
tation. For Europe, the bidirectional implementation requires about 1.0 B/node more than the
unidirectional implementation.

3In addition to the old version, the Czech Republic, Finland, Hungary, Ireland, Poland, and Slovakia.
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5.3 Methodology

5.3.1 Random Queries

As a simple, widely used and accepted performance measure, we run queries using source-target
pairs that are picked uniformly at random. The advantage of this measure is that it can be
expressed by a single figure (the average query time) and that it is independent of a particular
application. In addition to the average query time, we also often give the average search space
size and the average number of relaxed edges. Unless otherwise stated, in our experiments, we
pick 100 000 random source-target pairs.

5.3.2 Local Queries

For use in applications it is unrealistic to assume a uniform distribution of queries in large
graphs such as Europe or the USA. Therefore, we also measure local queries within the big
graphs. We choose random sample points s and for each power of two r = 2k, we use Dĳkstra’s
algorithm to find the node t with Dĳkstra rank rks(t) = r. The Dĳkstra rank rks is the order
in which the nodes got settled during the search starting at node s. We then use our algorithm
to make an s-t-query. By plotting the resulting statistics for each value r = 2k, we can see
how the performance scales with a natural measure of difficulty of the query. We represent the
distributions as a box-and-whiskers plot [29]: each box spreads from the lower to the upper
quartile and contains the median, the whiskers extend to the minimum and maximum value
omitting outliers, which are plotted individually. Such plots are based on 1 000 random sample
points s. For an example, see Figure 29.

5.3.3 Worst Case Upper Bounds

For any bidirectional approach where forward and backward search can be executed indepen-
dently of each other, we can use the following technique to obtain a per-instance worst-case
guarantee, i.e., an upper bound on the search space size for any possible point-to-point query
for a given fixed graph G: By executing forward search from each node of G until the priority
queue is empty, and no abort criterion is applied, and identical for the backward search, we
obtain a distribution of the search space sizes of the forward and backward search, respectively.
We can combine both distributions to generate an upper bound for the distribution of the
search space sizes of bidirectional queries: when F↑(x) (F↓(x)) denotes the number of source
(target) nodes whose search space consists of x nodes in a forward (backward) search, we define

Fl(z):=
∑
x+y=z

F↑(x) · F↓(y), (2)

i.e. Fl(z) is the number of s-t-pairs such that the upper bound of the search space size of a
query from s to t is z. In particular, we obtain the upper bound max

{
z | Fl(z) > 0

}
for the

worst case without performing all n2 possible queries. An examples can be found in Figure 30.
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5.4 Contraction Hierarchies

5.4.1 Parameters

Despite the simplicity of the description of CHs, there are many parameters, i.e., the coefficients
of the priority terms in the priority function for the node ordering (see Section 3.2) and the
limits to the local searches for the contraction (see Section 3.3.1). We face an optimization
problem given an objective function.

Objective Function. The most important objective is usually the average query time. Sec-
ondary, preprocessing time and space consumption are relevant. Since contraction hierarchies
already have very low space consumption, we focused on two different variants:

• aggressive variant: only the average query time

• economical variant: the product of the average query time and the construction time

Both objective functions need to be minimized.

Coefficients of the Priority Function. There are currently eight priority terms in five
categories. A special case is the coefficient 0 meaning that the corresponding priority term
is ignored. So we need to choose the subset of priority terms we want to use and then need
to optimize all of its coefficients. We use a simple but successful approach: coordinate search
starts with a given set of coefficients and changes one or two of them, the other coefficients
remain unchanged. We performed the coordinate search manually and will now describe our
systematical proceeding in more detail. We start with a range, e.g. 1 – 1000 and step size 200
and perform the node ordering, contraction and queries for all of the values in the range. If
the objective function has its minimum on the borders, we increase the range. If the minimum
is within the range, we narrow the range to this minimum and decrease the step size, this is
repeated until the improvements in the objective function are below some threshold. Then
we advance to the next coefficient and repeat the same procedure. In our experience, each
coefficient needs to be processed once or twice. Since node ordering and contraction in large
graphs is time consuming and we only have limited resources, we performed the first coordinate
search on a smaller subgraph, e.g. on the road network of Belgium instead of whole Europe.
After that, we have a quite good set of coefficients for Europe and check whether we can improve
it with small changes. In our experience the edge difference needs larger coefficients if the graph
gets larger, all other priority terms are quite stable.

Local Search Limits. The aggressive variant has no search space limit during the node
contraction. We only apply a limit on the settled nodes during the weight calculation, that
corresponds to a simulated node contraction. For our main test instance, we always used a
limit of 1 000 nodes, a smaller limit will result in a dense remaining graph and a larger limit
only increases the preprocessing time without significant advantages for the average query time.
But for other input graphs it may be necessary to change this limit.

For the economical variant, we chose a staged hop limit that changes if the average degree
changes, see Section 3.3.1. We need to optimize the hop limits and the average degree limits
triggering the changes. We started with the development of the average degree during node
contraction with fixed hop limits, see Figure 26. We see that for hop limits below four, the
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average degree eventually explodes. So we started with hop limits 1 – 5 and average degree
limits from the graph if the curve of the next hop limit goes to far away. Then we tried to
optimize the objective function by changing the average degree limits or by removing entire
hop limits, i.e. switch directly from hop limit 3 to hop limit 5.
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Figure 26: Average degree development for different hop limits.
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Sensitivity of Tuning Parameters. We apply the parameters and search space limits found
for Europe with travel time metric to the other graphs without changes. For two graphs
we evaluated the sensitivity of the performance w.r.t. the most important parameters, see
Figures 27, 28. The first subgraph is the road network of Belgium that is part of Europe and
the second subgraph is the road network of South Carolina that is part of USA (Tiger). Both
road networks are roughly of the same size and show comparable behavior, although they are
from different continents and the road network of South Carolina is undirected and planarised
where the one of Belgium is not. The main difference can be found looking at the vertical axis,
the construction and query times for South Carolina are smaller. We will now have a closer look
to each parameter shown in the analysis. The edge difference is the most important parameter.
The hierarchy construction time increases if it has too small weight since the remaining graph
will be to dense. But the difference is not that large because another priority term, the original
edges term, partially takes the edge difference into account. If we would ignore the other priority
term, the impact of the edge difference increases significantly. The search space coefficient shows
noisy behavior but has only little impact for Belgium. The impact is larger for South Carolina,
there is one outlier with query time at 49µs, that is a decrease by 23%. Counting contracted
neighbors is important to decrease the query time but it should not be weighted too large or
otherwise the construction time will increase disproportionately high. Altogether contracted
neighbors is a well behaving priority term. The original edges term is clearly weighted too little
in both road networks, it could decrease construction and query time up to 12%. Switching
from hop limit 1 to hop limit 2 at average degree 3.3 is a good choice, a larger limit does not
speedup the construction significantly, since the parameter in general has only little effect. The
average degree limit between hop limits 2, 3 and 5 needs to balance between construction and
average query time, our current choice is in favor of the query time but values between 10
and 20 would work well, too. The query time increases with increasing coefficient since both
limits between hop limit 2 → 3 and 3 → 5 are changed together having a larger part of the
contraction being performed with hop limit 2. The parameters not shown have even less effect
for wide range of values. Summarized, Belgium is less sensitive to parameter changes than
South Carolina, this is not surprising since the parameters have been tuned for Europe. The
query time for South Carolina can be improved by at least 23%, so a new parameter search is
advisable if the current graph significantly differs from the graph used to obtain the parameter
set, and peak performance is required. Otherwise our proposed parameter set performs quite
well, see also Section 5.4.8 for additional tests on larger instances.
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Figure 27: Sensitivity analysis with road network of Belgium. Parameters used: edge
difference multiplier 190, search space multiplier 1, contracted neighbors multiplier 120,

original edges term multiplier 70, hop@degree limits: 1@3.3, 2@10, 3@10, 5
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Figure 28: Sensitivity analysis with road network of South Carolina (USA). Parameters used:
edge difference multiplier 190, search space multiplier 1, contracted neighbors multiplier 120,

original edges term multiplier 70, hop@degree limits: 1@3.3, 2@10, 3@10, 5
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5.4.2 Main Results

We start with evolving sets of priority terms and search space limits, together called a method4,
to get a deeper insight into them, see Table 4. We compare our results to the fastest variant
of highway-node routing (HNR) from [35] using the same system environment. Note that this
version of HNR outperforms all previous speedup techniques with comparable preprocessing
time so that focusing on HNR is meaningful. As for CHs, we used search graphs for HNR, too.

Using the edge difference (letter E) as sole priority term yields a CH that already outper-
forms HNR in terms of query time. However, the preprocessing time is more than seven times
larger. In the next method we also regard the cost of contraction as a priority term (letter
S) resulting in more than two times better node ordering time and 14 times better hierarchy
construction time. The imbalance between the improvement of those two parts is due to the
additional local searches during the node ordering, especially the initialization of the priority
queue takes more than 30 minutes. So we limit the local searches (letter L), improving the
node ordering time by an additional factor four.

Adding the contracted neighbors counter (letter D) accelerates the query, the average is
below 200 µs, more than four times faster than HNR. The algorithm in Line EDSL is a simple
combination of contracted neighbors and improved preprocessing time, fast query times and
negative space consumption for shortest path distance calculation. Using the original edges
term (letter O) as uniformity term, we get better preprocessing times and space overhead but
increased query time compared to the contracted neighbors term. We now split our search for
the perfect method, the economical objective is to minimize the product of query time and
hierarchy construction time, the aggressive objective is to minimize the product of query time
and preprocessing times. To further increase the preprocessing time, we exchange the limit
on the settled nodes (letter L) through an hop limit (digit 5) leading to a two times better
node ordering time. Applying staged hop limits (digits 1235) shrinks the preprocessing time
below 10 minutes and below HNR. The original edges term (letter O) can further improve
preprocessing, query and space overhead. After having removing the contracted neighbors
counter (Line EOS1235), we get our best algorithm regarding the economical objective and we
will call it our economical variant. It is better than HNR with respect to all listed measures.
We will now investigate the second, even more important objective: minimizing the query
time. We first exchange the current uniformity term for Voronoi regions (letter V), and add
a priority term to estimate the cost of queries (letter Q) to decrease the query time. This
leads to an algorithm being five times faster than HNR, however we need to invest more time
into preprocessing. The original edges term (letter O) as second uniformity term decreases the
query time by an additionally 4% being our new best algorithm (Line EVOSQL) regarding
the second objective. We will call it the aggressive variant and it will use it together with the
economical variant for further experiments.

Using betweenness5 approximations (letter W) can improve the query time by additional
3%.6 But since betweenness approximation is time consuming, additional experiments would
be necessary to investigate the usage of fast approximation results with CHs. And because
the improvement is quite small, we merely present this under “possibilities” and do not further
investigate global measures as priority terms.

4A method is in practice a set of command-line arguments for our program, see Appendix C.
5The execution times for betweenness approximation [10] are not included in Tab. 4.
6Preliminary experiments with reach-approximations were not successful.
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Table 4: Performance of various node ordering heuristics. Terms of the priority
function: E=edge difference, D=deleted/contracted neighbors, S=search space size,
W=relative betweenness, V=

√
Voronoi region size, L=limit search space on weight

calculation, Q=upper bound on edges in search paths, O=original edges term. Digits
denote hop limits for testing shortcuts. The bottom line shows the performance for

highway-node routing using the code from [35].

node hierarchy query nodes non- edges space
method ordering construc- [µs] settled stalled relaxed overhead

[s] tion [s] nodes [B/node]
E 13 010 1 739 670 1 791 1 127 4 999 -0.6
ES 5 355 123 245 614 366 1 803 -2.5
ESL 1 158 123 292 758 465 2 169 -2.5
ED 7 746 1 062 183 403 236 1 454 -1.3
EDL 2 071 576 187 418 243 1 483 -1.3
EDSL 1 414 165 175 399 228 1 335 -1.6
EO 5 979 758 250 617 395 2 119 -3.1
EOL 1 274 319 245 604 383 2 119 -3.1
EOSL 1 110 145 222 531 313 1 802 -3.0

ec
on

om
ic

al

ED5 634 98 224 470 250 1 674 -0.6
EDS5 652 99 213 462 256 1 651 -1.1

EDS1235 545 57 223 459 234 1 638 1.6
EDSQ1235 591 64 211 440 236 1 621 2.0
EDOSQ1235 555 59 198 435 241 1 540 1.5
EDOS1235 498 53 200 438 239 1 514 1.1
EOS1235 451 48 214 487 275 1 684 0.6

ag
gr

es
si

ve

EDSQL 1 648 199 173 385 220 1 378 -1.1
EVSQL 1 627 170 159 368 209 1 181 -1.7
EVOSQL 1 666 165 152 356 207 1 163 -2.1
EVOSQ5 821 96 174 395 217 1 297 -1.5
EDSQWL 1629 199 163 372 218 1 293 -1.5
EVSQWL 1734 180 154 359 208 1 159 -2.0
EVOSQWL 1757 173 147 350 205 1 127 -2.3

HNR 594 203 802a 981 630b 7 737 3.4
a Query time for the complete graph, for the search graph it would be most likely 5% better, but we
do not have the value because of a compiler version change.

b for the complete graph
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5.4.3 Local Queries

Figure 29 shows the query times according to the methodology introduced in Section 5.3.2.
Local queries are more in step with actual practice and both variants of CHs are superior to
HNR for all Dĳkstra ranks. The lower median query time, the minima-maxima-distance and
the quartile-distance are about three to four times smaller. HNR has a superlinear increase of
the median on this plot with a logarithmic x axis. CHs show a near linear increase for Dĳkstra
ranks r ≤ 223 and for r = 224 it even decreases. This is interesting as we do not use an all-pairs
distance table for higher levels where we can observe a similar decrease [34].
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Figure 29: Local queries.

5.4.4 Worst Case Upper Bounds

To give a worst case guarantee for queries in the Europe road network, we give an upper bound
on the settled nodes for any point-to-point search, see Section 5.3.3. For a point (x, y) on a
line in Figure 30, the definition is that all but y% queries have at most x settled nodes in both
forward and backward search space together. Again, we get clear improvements over HNR
up to 60%. For the aggressive, variant we have an upper bound on the settled nodes that is
only a factor 2.4 larger than the average number of settled nodes and 99.9% of all queries are
below 575 settled nodes. Using linear extrapolation on the average query time and the average
number of settled nodes, we obtain an upper bound on the query time of 362 µs. The number
of relaxed edges has the upper bound of 3 169 edges leading to an extrapolated maximum query
time of 414 µs.
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Figure 30: Upper bound on search space in settled nodes for the worst percentages of queries.

5.4.5 Outputting Complete Path Descriptions

So far, we have reported only the times and memory needed to compute the shortest-path length
between two nodes. To determine a complete path description we now apply the algorithm
described in Section 3.5.1. Since we need to store the middle node for each shortcut, the
memory requirements for each edge increase, also leading to increased preprocessing and query
times (Table 5). In more detail, for shortest path distance we have an edge data structure
with 8 B/edge, for a complete path description our current implementation needs 12 B/edge.
The comparatively large space overhead is owing to the fact that we even use 12 B/node for
non-shortcut edges. If we would implement a more sophisticated version with only 8 B/edge for
non-shortcut edges, we would achieve a space overhead of only 1.2 B/node for the aggressive
variant. The hierarchy construction increases up to 13% and the query time by 12%. The path
expansion of both variants is about the same as it mainly depends on the number of edges in
the expanded path.

Among the path unpacking times we have seen, the path expansion times are only outper-
formed by the fastest variant for highway hierarchies in [31] that explicitly stores completely
unpacked representations of the most important shortcuts. Note that this optimization works
for any shortcut-based speedup technique including CHs.
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CH aggressive CH economical
hierarchy construction [s] 176 54
query [µs] 170 238
expand path [µs] 323 321
space overhead [B/node] 6.2 10.3
edges in contracted path 20.9 23.4
edges in expanded path (avg.) 1 369.7 1 369.4

Table 5: Unpacking paths.

5.4.6 Changing all Edge Weights

In [34], HNR based on HHs demonstrated itself insensitive against changing all edge weights
and even switching from travel time metric to distance metric. Here, we use the economical
variant of CHs. The only modification is that for the contraction with the different speed
profile, we changed the hop@degree-limits to 1@3.3, 2@10, 5@10.1, 7 otherwise the average
node degree would eventually explode. Our CHs are somehow less adaptable to such changes,
see Table 6. Our default speed profile is similar to the fast car profile and thus the hierarchy
construction time increases only by 15%. The more the speed profile changes from the default
profile, the more the hierarchy construction time increases. This fact strongly expresses itself
in the construction time with the distance metric, it is increased by factor 35 and even 66%
higher than the node ordering time. In every case, the query times are still faster than for
HNR. Our explanation for the weak performance of CHs is that HNR with HHs partition the
nodes only into a few, e.g. 12, levels and those partitions are less vulnerable to changes than
the fine-grained CHs with a single node in each level. To get a node ordering that is suitable
for both, travel time and distance metric, we could use a metric representing the mean value
between the other two metrics. This yields an increase of the hierarchy construction time by
factor 1.7 and a factor 2.1 by the query time for the travel time metric and factors 6 and 3.8
for the distance metric, respectively.

Table 6: Different speed profiles. The times in brackets refer to the case when node ordering
was done with the same speed profile and the main times are for the case that node ordering

was done for our default speed profile.

default fast car slow car slow truck distance
hier. construction [s] 48 60 (52) 63 (53) 71 (55) 4 762 (137)
query [µs] 214 209 (215) 244 (250) 328 (306) 20 561 (2 382)
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5.4.7 Stall-on-Demand

To show the performance of the stall-on-demand technique (Section 3.5.2), we present tests
without stall-on-demand. In Table 7, the query performance of the aggressive and the eco-
nomical variant are shown. The stall-on-demand technique yields improvements of the query
time up to almost a factor 3 and thus is an important technique for fast queries in a CH. In
comparison to HNR, CHs do not rely that much on stall-on-demand because the improvement
factor is rather small and we even have better query times than HNR if stall-on-demand is not
used. The author of [34] supplied preliminary experimental results for HNR, stating that stall-
on-demand decreases the number of settled nodes by a factor 11, indicating that HNR should
not be used without stall-on-demand. This is also interesting for a possible time-dependent
algorithm based on CHs since time-dependent stall-on-demand is likely to become less efficient.

CH aggressive CH economical
query [µs] 313 (2.1) 612 (2.9)
settled nodes 904 (2.5) 1 632 (3.4)
nonstalled nodes 904 (4.4) 1 632 (5.9)
relaxed edges 4 909 (4.2) 9 885 (5.9)

Table 7: Query performance without stall-on-demand technique. The numbers in brackets
denote the improvement factor of the stall-on-demand technique.

5.4.8 Other Inputs

We tested our aggressive and economical variant also on different road networks and metrics to
examine the robustness of CHs. Table 8 shows the results. We did not repeat the parameter
search (Section 5.4.1) for those graphs but used the values used for the Europe road network
in Table 4. So we could expect additional improvements if we would repeat the parameter
search. There are no real surprises, the economical variant has fast preprocessing times with
reasonable query times whereas the aggressive shows fast query times. The USA (Tiger) graph
shows slightly larger preprocessing times than the Europe graph but faster query times, those
effects are already known from HNR. The New Europe graph is a larger network thus requiring
more preprocessing time. The hierarchy construction time for the aggressive variant is more
than a factor 2 larger than expected. Thats because the limit on the settled nodes for the local
searches during the priority calculation is too restrictive and does not penalty searches enough
which have e.g. more than 2 million settled nodes in an search that has no limit on the number
of settled nodes. The additional time for contracting such nodes is not significant for node
ordering, but significant for hierarchy construction. The construction time can be reduced if
we increase the limit on the settled nodes, e.g. a factor 3 increase yields a construction time of
259 s, and even reduces the node ordering to 2 047 s. For the travel time metrics, we still have
negative space overhead for shortest path distance calculation. We get a different picture for
the distance metric where each edge represents the driving distance, but nothing unexpected.
Because there are no real fast routes that could be preferred over other slower routes, it is
less clear to identify important nodes and more shortcuts are necessary. Compared to HNR,
our query time and space consumption is still very low. For Europe, [34] gives 2:04 minutes
construction time and average query times of 9 230µs, thus CHs preform queries more than
four times faster with only 12 s more preprocessing time.
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Table 8: Different graphs.
travel time distance

USA Tiger New Europe Europe USA Tiger
aggr. eco. aggr. eco. aggr. eco. aggr. eco.

node ordering [s] 1 684 626 2 420 657 5 459 2 853 3 586 1 775

di
st

an
ce

hierarchy construction [s] 181 61 646 72 264 137 255 113
query [µs] 96 180 213 303 1 940 2 276 645 1 857
nodes settled 283 526 439 629 1 582 2 216 1 081 3 461
non-stalled nodes 157 309 247 351 658 962 485 2 100
edges relaxed 885 1 845 1 732 2 600 15 472 19 227 7 905 27 755
space overhead [B/node] -2.6 -1.3 -2.0 -0.3 0.6 1.5 -1.5 -0.9

pa
th

hierarchy construction [s] 191 68 673 82 287 152 269 122
query [µs] 107 198 243 345 2 206 2 615 721 2 121
expand path [µs] 1 105 1 107 972 953 798 792 1 268 1 336
space overhead [B/node] 5.8 7.8 5.6 8.5 10.2 11.7 7.4 8.3
edges 21 26 21 24 21 29 22 40
edges expanded 4 548 4 548 4 139 4 136 3 291 3 291 5 128 5 128

5.5 Many-to-Many Shortest Paths

For many-to-many routing, we do not use the aggressive variant but the method EVSQL from
Table 4 because it shows slightly better performance, e.g. a 10 000×10 000 table is computed
in 10.2 s instead of 11.0 s. We first compare CHs to HNR for symmetric instances in Table 9.
CHs are more than two times faster than HNR, only for small instances the factor is not that
large. Using the asymmetric technique described in Section 4.1 is successful for asymmetric
instances with |S| < |T |, see Figure 31. We compared it to a naive implementation using
an unidirectional Dĳkstra algorithm on the original graph performing |S| queries and CHs
performing |S| · |T | queries. With increasing |T | / |S|, the core size should increase for best
performance. For |S| ≥ 4, the asymmetric many-to-many technique is superior. No asymmetry
(core size 1) is required, if |S| = |T |, this slightly differs from the results for HNR since there,
even for symmetric instances, asymmetry accelerates the calculation. We startet the core size
at 211 and multiplied it in every step by 4 until core size 221. Using a smaller core could not
beat the symmetric variant on symmetric instances and using larger cores could not beat the
Dĳkstra algorithm for |S| ≤ 2. Also, for |T | ≥ 221 and core size below 215, the program provided
by [34] could not store all bucket entries in the main memory, so we could not plot those values,
but they would likely behave as expected. This is not an error in the program but merely a
limitation of the main memory, in the original paper [21], they had |S| · |T | about five times
smaller than ours.

Table 9: Computing |S| × |S| distance tables using CHs and HNR. The times for HNR are
from [34] using an older compiler version that generates slightly slower code. All times are

given in seconds.
|S| 100 500 1 000 5 000 10 000 20 000

CH 0.4 0.5 0.6 3.3 10.2 36.6
HNR 0.4 0.8 1.4 8.5 23.2 75.1
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Figure 31: Comparison of algorithms and algorithm variants for asymmetric instances. We do
not perform the CH and Dĳkstra searches because they are too time consuming. Instead, the
plottet times are the product of the average query time and the number of necessary queries.

5.6 Transit-Node Routing

To obtain a good hierarchy for TNR, we could not rely on the aggressive or economical variant
because other properties of the hierarchy are important for TNR. We do not use a preprocessing
solely based on CHs. Instead, the node ordering is used to determine the transit-node sets for
the implementation from [34]. For this purpose we partitioned the nodes into five levels7. We
compare the results with TNR based on HHs, the generous variant of [34] is used. The generous
variant has the fastest query times.

During our experiments, we learned, that not the methods (Table 4) with the fastest query
times are necessarily the best methods to use with TNR. The query times are very good for
most methods, but the construction time of TNR varies significantly. In our experience, the
upper bound on the length of search paths (letter Q) and the original edges term (letter O)
are important. Also, a small hop limit can have a positive effect on the construction time of
TNR. So we use the economical variant with additional letter Q for very good preprocessing
time (Line EDOSQ1235) and the aggressive variant with a hop limit for best query time (Line
EVOSQ5). Both variants are listed in Table 10 as separate columns. Even though we have no
natural partition of the nodes like HHs, CHs with five levels are superior to HHs. We could
improve the preprocessing time, including node ordering, by over 60%. The number of access
nodes is reduced, which in turn results in 39% better query time and lower space consumption.
Also, the locality filter works better with fewer not correctly answered queries in each level.

7Partition of the generous variant using HHs from [34]: level 4: 9 458 nodes, level 3: 48 008 nodes, level 2:
235 743, level 1: 2 446 093, level 0: 15 290 419 nodes.
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Table 10: Comparison of HH and CH w.r.t. to TNR. Both hierarchies generate the same
cardinalities of transit-node sets. The size of the level 2 distance table is given relative to the
size of a complete table. The query statistics is w.r.t. 10 000 000 randomly chosen (s, t)-pairs.
Each query is performed in a top-down fashion. For each level `, we report the percentage of

the queries that are not answered correctly in some level ≥ ` and the percentage of the
queries that are not stopped after level `.

CH economical CH aggressive HH
preprocessing time [h] 0:46 0:56 1:15
query time [µs] 3.3 3.1 4.3
overhead [B/node] 193 187 247
level 3 transit nodes 9 458 9 458 9 458
level 3 access nodes 9.9 9.8 11.3
level 2 transit nodes 293 209 293 209 293 209
level 2 distance table [%] 0.10 0.11 0.14
level 2 access nodes 4.0 3.6 4.4
level 3 wrong [%] 0.19 0.17 0.25
level 3 cont’d [%] 1.40 1.42 1.55
level 2 wrong [%] 0.0012 0.0012 0.0016
level 2 cont’d [%] 0.0141 0.0284 0.0180
level 1 wrong [%] 0.00017 0.00014 0.00019
level 1 cont’d [%] 0.0141 0.0284 0.0180
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6 Discussion

6.1 Conclusion

CHs provide a new foundation for hierarchical routing methods in road networks. Its main
advantages are its simplicity and its superior performance compared to HNR with HHs [35].
The combination of a priority queue heuristic for node sorting with extensible priority terms,
and a specialized node contraction technique that contracts only one node at a time, convinces
as sole routing algorithm with some improvements in preprocessing time and a factor five
improvement in query time compared to HNR. The improvements to the space requirements
are also noteworthy, we have negative space overhead for shortest path distance calculation.
And CHs are currently the best basis for more sophisticated routing algorithms like TNR [3]
and many-to-many routing [21]. Those algorithms are faster than CHs but crucially depend on
another technique to provide a hierarchy. CHs fill this gap and outperform all previous existing
techniques.

6.2 Future Work

For one part, CHs could not improve the node ordering time significantly compared to HHs.
A lot of time of the node ordering is spent in local searches to identify witness paths. Many
of those local searches are quite similar, think e.g. about the update of the neighbors of a
contracted node. If we could store the search spaces and reuse them later, it has the potential
to speedup the node ordering significantly. However, additional techniques, like partitioning of
large graphs, seem to be necessary to cope with the large memory requirements.

In this thesis, we introduced some useful priority terms. But those are surely not the last
word spoken about it. Depending on the application, other terms can be required to form
a hierarchy with desired properties. Currently, a routing technique for the time-dependent
scenario is developed, based on CHs, that already profits from an additional priority term. And
it is not impossible that other priority terms, especially for uniformity, improve the performance
of CHs themselves.

TNR currently uses a geometric locality filter. It might be a good idea to add a uniformity
term to the priority function based on geometry to achieve further improvements. Additionally,
the preprocessing for TNR can be completely based on CH to speedup the preprocessing. We
will possibly see such developments in the near future.

Currently, CHs only support static road networks. Another improvement would be to
implement dynamization techniques [35]. A first step toward this was changing the entire cost
function, but updates for only a few changed edges should be processed faster than a complete
hierarchy construction step. Especially for the mobile scenario edge weight changes need to be
considered due to traffic jams.
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A Implementation
An exhaustive description of every single aspect of the implementation would go beyond the
scope of this thesis. Thus, after some rather general statements in Section 5.1, here, we mainly
focus on the graph data structures. The description is partly adopted from [34].

A.1 Graph Data Structures

We use two graph data structures, an updateable graph for the node ordering and hierarchy
construction, and a search graph for queries. A previous implementation of [34] was available
and modified for the needs of CHs, especially a large number of levels. But we will provide a
self-contained description. Both implementations of these graphs share a common interface so
that queries can also be performed on the updateable graph. We first describe the common
details of both graphs and then elaborate the details.

The graph is always represented as adjacency array, which is a very space-efficient data
structure that allows fast traversal of the graph. There are two arrays, one for the nodes and
one for the edges. The edges (u, v) are grouped by the source node u and store only the ID of
the target node v and the weight w(u, v). Each node u stores the index of its first outgoing
edge in the edge array. In order to allow a search in the backward graph, we have to store an
edge (u, v) also as backward edge (v, u) in the edge group of node v. In order to distinguish
between forward and backward edges, each edge has a forward and a backward flag. By this
means, we can also store two-way edges {u, v} (which make up the large majority of all edges
in a real-world road network) in a space-efficient way: we keep only one copy of (u, v) and one
copy of (v, u), in each case setting both direction flags.

The basic adjacency array has to be extended in order to incorporate necessary level infor-
mation. For node ordering, hierarchy construction and query, we need to distinguish between
edges (u, v) with u > v and u < v. This defines a partition on the edge group of node u. We
first store the edges (u, v) with u > v and then the edges (u, v) with u < v. For fast access, a
second index into the edge array to the first edge (u, v) with u < v is stored, see Figure 32.

nodes

edges

v1 v2 . . .
> < > <

. . .

Figure 32: An adjacency array, each edge group is partitioned by level relative to the owner.

A.1.1 Updateable Graph

For node contraction (Section 3.3) we need to add shortcuts to the graph. And for the on-the-
fly edge reduction (Section 3.3.2) we need to delete edges. So we need to allow the addition
and deletion of edges at any time. Deletion is comparatively simple: we allow holes in the edge
array. This is implemented using a third index into the edge array pointing to the end of the
edge group. A deleted edge causes a hole that is filled by the last edge in the partition. If it was
the first partition, we fill the hole with the last edge of the second partition and decrement the
second edge index. In every case the third edge index is decreased. In order to allow efficient
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additions as well, we ensure that if a node u has x edges, its edge group has a capacity of at
least8 min {2y | 2y ≥ x}, i.e., we reserve some space for additional edges. Now, adding an edge
is straightforward provided that the capacity is not exceeded – we just have to move edges
between the two partitions to make room at the right spot for a new edge. If, however, the
capacity is exceeded, we copy the whole edge group to the end of the edge array (which is, in
fact, a resizable STL vector) and double its capacity. Of course, the first edge index of u has
to be updated accordingly. The second and third edge index is stored relative to the first edge
index. Note that these memory management strategies employed by our flexible graph data
structure are similar to those used by an STL vector.

A.1.2 Search Graph

The search graph does not store an edge e = (u, v) in the edge group of both nodes. According
to Section 3.5, we only need to provide the upward graph G↑ for forward search and G↓ for
backward search. If u < v, then e ∈ G↑ and we store the edge in the edge group of u as forward
edge. If u > v then e ∈ G↓ and we store the backward edge (v, u) in the edge group of v. Note
that for this backward edge holds v < u. So we only store edges (u, v) with u < v and only
one index in the edge array for each node is necessary because the other partition of the edge
group is always empty.

A.2 Priority Queue

Specification. Manages a set of elements with associated totally ordered priorities and sup-
ports the following operations:

• insert – insert an element,

• deleteMin – retrieve the element with the smallest priority and remove it,

• decreaseKey – set the priority of an element that already belongs to the set to a new value
that is less than the old value,

• increaseKey – set the priority of an element that already belongs to the set to a new value
that is larger than the old value,

Used by all variants of Dĳkstra’s algorithm and the node ordering algorithm.

Implementation. We cannot use the priority queue implementation that the Standard Tem-
plate Library provides since the decreaseKey operation is not supported. Therefore, we use the
binary heap implementation provided by [34] extended by the increaseKey operation.

8The capacity can be even higher if edge deletions have taken place. This is due to the fact that the capacity
is never reduced.
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B Code Documentation
This is not nearly a complete and exhaustive code documentation. It should merely provide
an entrance point to somebody that needs to use or extend our code. For a more detailed
documentation we refer to the inline documentation of our code.

B.1 UML Class Diagrams

For the three main use cases: node order selection, hierarchy construction and query, we will
present simplified UML class diagrams. Only the most important classes, methods, attributes
and associations are included. They are only an abridged overview of the structure of our code
but nevertheless useful to somebody who is not familiar with our code.

Node order selection. Figure 33. The class command::NodeOrder parses the command-
line arguments. It imports the original graph as datastr::graph::UpdateableGraph object and
prepares the parameters for the node ordering in a processing::ConstructCH::WeightCalculation
object. Both objects are supplied to an instance of processing::ConstructCH that performs
the node ordering and hierarchy construction calling createHierarchy(). The node contraction
happens in processNode(). After that, the graph object is a CH and the node order can be
exported using writeLevels().

+main()

command::NodeOrder +createHierarchy()

+writeLevels()

-initPQueue()

-calculateEliminationWeight()

-eliminateByPQueue()

-processNode()

-updateAfterContraction()

processing::ConstructCH

processing::ConstructCH::WeightCalculation

+addEdge()

+removeEdge()

+addShortcutEdge()

datastr::graph::UpdateableGraph

-graph

-weightCalc

«uses»

«uses»

«uses»

+insert()

+updateKey()

+deleteMin()

BinaryHeap

-pqElimination

+searchWithoutTarget()

processing::DijkstraCH
-localDijkstra

+insertNode()

+updateNode()

+searchNext()

processing::DijkstraCH
-dVoronoi

Coefficients for linear combination of

priority terms and local search limits.

Figure 33: An UML class diagram for the use case: node order selection.
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Hierarchy construction. Figure 34. Now the class command::Construct parses the command-
line arguments. Instead of creating a node order from scratch, the parameters for node contrac-
tion are prepared as a processing::ConstructCH::ContractParameters object. It is supplied to an
instance of processing::ConstructCH, along with the original graph. The node order is imported
using readLevels(). A call to constructHierarchy() forms the supplied datastr::graph::UpdateableGraph
object into a CH.

+main()

command::Construct

+readLevels()

+constructHierarchy()

-constructByLevel()

-processNode()

processing::ConstructCH

processing::ConstructCH::ContractParameters

+addEdge()

+removeEdge()

+addShortcutEdge()

datastr::graph::UpdateableGraph

-graph

-contractParams

«uses»

«uses»

«uses» +searchWithoutTarget()

processing::DijkstraCH
-localDijkstra

Local search limits and other

contraction parameters.

Figure 34: An UML class diagram for the use case: hierarchy construction.
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Query. Figure 35. Before we can run a query, we need a CH. Currently two approaches
are supported: construct a CH using a given node order or read the search graph from file.
The command-line arguments are parsed in the class command::Construct. Then either a hi-
erarchy construction is performed (see above) and the resulting graph is transformed to an
datastr::graph::SearchGraph, or we deserialize() a previously serialized search graph. The search
graph is supplied to a processing::DĳkstraCH instance and followup point-to-point queries are
performed using bidirSearch(). To expand a path to obtain a path in the original graph, call
the method pathTo() after the successful query. We added more details regarding the class
processing::DĳkstraCH that are omitted in the other diagrams, since here, they do not reduce
the clarity.

+main()

command::Construct

-construct()

+serialize()

+deserialize()

datastr::graph::SearchGraph

-graph«uses»

«uses»

«uses»

+bidirSearch()

-deleteMin()

-relaxEdges()

+pathTo()

processing::DijkstraCH

Path
«uses»

+insert()

+decreaseKey()

+deleteMin()

BinaryHeap
-pq

2

Figure 35: An UML class diagram for the use case: query.
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C Command-Line Arguments
The command-line arguments for the main-program compiled out of the source code assigned
to this thesis are listed in Table 11. Note however, that this is only the subset of command-
line arguments required to specify the contraction. Additional parameters are necessary to
specify the action and the input/output files that should be used. A short documentation of
the command-line arguments can be found in the file docu/index.html of the source code.

Table 11: Command line arguments for the methods in Table 4
method E D V O S Q W L 12345 lazy upd.

-x -w -V -e -y -S -z -n -k -p
E 190 1000
ES 190 1 1000
ESL 190 1 1000 1000
ED 190 120 1000
EDL 190 120 1000 1000
EDSL 190 120 1 1000 1000
EO 190 600 1000
EOL 190 600 1000 1000
EOSL 190 600 1 1000 1000
ED5 190 120 5 1000
EDS5 190 120 1 5 1000

EDS1235 190 120 1 1,3.3,2,10,3,10,5 1000
EDSQ1235 190 120 1 145 1,3.3,2,10,3,10,5 1000
EDOS1235 190 120 70 1 1,3.3,2,10,3,10,5 1000
EDOSQ1235 190 120 70 1 145 1,3.3,2,10,3,10,5 1000
EOS1235 190 600 1 1,3.3,2,10,3,10,5 1000
EDSQL 190 120 1 145 1000 1000
EVSQL 190 60 1 145 1000 1000
EVOSQL 190 60 70 1 145 1000 1000
EVOSQ5 190 60 70 1 145 5 1000
EDSQWL 190 120 55 1 145 400 1000 1000
EVSQWL 190 55 1 145 400 1000 1000
EVOSQWL 190 55 70 1 145 400 1000 1000
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Zusammenfassung
In dieser im Englischen verfassten Arbeit wird eine Routenplanungstechnik beschrieben, die al-
lein auf dem Konzept der Knotenkontraktion aufbaut. Es wird jeder Knoten u einzeln nachein-
ander kontrahiert, d.h. aus dem Graph entfernt und Abkürzungskanten eingefügt um die Längen
aller kürzesten Wege zu erhalten. Dazu werden alle eingehenden Kanten (v, u) und ausgehenden
Kanten (u,w) betrachtet und falls der Pfad 〈v, u, w〉 der einzige kürzeste Weg zwischen v und
w ist, wird eine Abkürzungskante (v, w) eingefügt mit Gewicht w(v, w):= w(v, u) + w(u,w).
Das Ergebnis ist eine Kontraktionshierarchie, im Englischen „contraction hierarchy (CH)“ die
aus dem Originalgraph und allen Abkürzungskanten besteht. Durch die Reihenfolge der Kno-
tenkontraktion wird auch eine Ordnung der Knoten nach „Wichtigkeit“ fixiert. Diese Ordnung
wird in einem modifizierten, bidirektionalen Dĳkstra-Algorithmus verwendet um schnell kür-
zeste Wege zu finden. Der Suchraum wird verkleinert, indem während der Vorwärtssuche nur
Kanten relaxiert werden, die zu wichtigeren Knoten führen und während der Rückwärtssuche
nur solche, die von wichtigeren Knoten kommen. Beide Suchräume treffen sich schließlich bei
dem wichtigsten Knoten eines kürzesten Weges. Durch die Abkürzungskanten in der CH wird
die Korrektheit des Suchalgorithmus gewährleistet. Da während der Suche nicht alle Kanten
eines Knoten relaxiert werden, können Knoten auf suboptimalen Pfaden erreicht werden. Durch
das Erkennen solcher Knoten und dem Abbruch der Suche an selbigen kann der Suchraum noch-
mals deutlich eingeschränkt werden. Der gefundene kürzeste Weg P kann Abkürzungskanten
benutzen, so dass er nicht direkt ein Weg im Originalgraph sein muss. Um den Weg P auszupa-
cken, also einen Weg P ′ im Originalgraph zu erhalten, wird eine rekursive Funktion verwendet.
Jede Abkürzungskante (v, w) wurde während der Kontraktion eines Knotens u für einen Pfad
〈v, u, w〉 eingefügt, deswegen wird sie durch die beiden Kanten (v, u),(u,w) ersetzt. Wird der
Knoten u mit der Abkürzungskante gespeichert, ist der Gesamtaufwand zum Auspacken von
P linear in der Anzahl Kanten in P ′.

Um die Knotenordnung zu erstellen, wird eine einfache und erweiterbare Heuristik verwen-
det. Sie benutzt im Kern eine Prioritätswarteschlange, deren Prioritätsfunktion jedem Knoten
eine Linearkombination verschiedener Terme zuordnet. Einer der wichtigsten Terme ist die
Kantendifferenz. Das ist die Differenz aus der Anzahl inzidenter Kanten des Knotens u und
der Anzahl benötigter Abkürzungskanten für die Kontraktion von u. Dieser Term sorgt dafür,
dass der Graph durch das Kontrahieren nicht zu dicht wird, also zu viele Kanten enthält, was
die Suche verlangsamen würde. Ein weiterer Term fördert die uniforme Auswahl des nächsten
zu kontrahierenden Knotens. Knoten in höheren Hierarchieebenen sollen möglichst gleichmäßig
über den Graph verteilt sein um eine hohe Beschleunigung der Suche bei beliebig gewählter
Punkt-zu-Punkt Anfrage zu erreichen. Weitere Terme sind in die Klassen Kontraktionskosten,
Suchkosten und globale Maße eingeteilt. Abhängig von der Anwendung können verschiedene
Prioritätsterme kombiniert werden um die benötigte Hierarchie zu erhalten. Die komplette
Knotenordnung wird erstellt, indem jeweils der unwichtigste Knoten u aus der Prioritätswar-
teschlange entfernt und dann kontrahiert wird. Anschließend werden die Prioritätswerte der
verbleibenden Knoten aktualisiert. Diese drei Schritte werden wiederholt, bis alle Knoten kon-
trahiert wurden. Eine Aktualisierung des Prioritätswertes ist notwendig, da sich beispielsweise
die Kantendifferenz bei einigen Knoten durch das Einfügen von Abkürzungskanten oder das
Entfernen der inzidenten Kanten von Knoten u ändern kann.

Im Vergleich zum bisher besten hierarchischen, Dĳkstra-basierten Verfahren kann die Such-
zeit nochmals um einen Faktor fünf verkleinert werden. Für ein großes Straßennetzwerk von
Westeuropa ist die Obergrenze der betrachteten Knoten einer beliebigen Suche kleiner als die
durchschnittliche Anzahl Knoten in einem kürzesten Weg. Und das geht bei einem negativen
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Speicherüberhang, d.h. die Datenstruktur für die Distanzberechnung benötigt weniger Speicher
als der Eingabegraph. Möglich wird das durch die Verwendung einer Suchgraph-Datenstruktur,
in der jede Kante, auch wenn sie ungerichtet ist, nur einmal gespeichert werden muss.

CHen sind als Basis für viele andere Routingtechniken geeignet, um die Leistung und den
Speicherplatzverbrauch zu verbessern. Beispiele hierfür sind die Distanztabellenberechnung,
Transit-Node Routing, zielgerichtetes Routing oder mobile und dynamische Szenarien.
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