
PCA-Based Compression of

Travel Time Functions

Diploma Thesis of

Marc Schmitzer

At the faculty of Computer Science

Institute for Theoretical Computer Science, Algorithmics II

Referee: Prof. Dr. Peter Sanders

Advisors: Dipl.-Inform. G. Veit Batz,

Dipl.-Inform., Dipl.-Math. Jochen Speck

February 1st � July 31st 2010

KIT � University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, 31. 07. 2010

Marc Schmitzer

Abstract

In this work, we present and evaluate multiple approaches to compressing

travel time data for time-dependent route planning in road networks. The

approaches are based on principal component analysis and introduce a limited

approximation error to the data. The compression achieved by the approaches

is compared to that achieved by an algorithm devised by H. Imai and M. Iri

which can be used for the same purpose.

The �rst approach uses heuristics to separate the input data into subsets of

similar functions which can be compressed more e�ciently than the entire data

set at once. It surpasses the compression achieved by the algorithm by Imai

and Iri by approximately 25%. The second approach attempts to increase the

similarities exploited by the former by modifying the travel time functions, but

fails to further improve the results. The third approach presented merges the

clustering of the input data with the compression process. With this approach,

the compression is improved by a factor of two compared to the algorithm by

Imai and Iri.

Finally, we demonstrate that the approximation error introduced by the

third approach is not overly detrimental to the performance of the Time-

Dependent Contraction Hierarchies route planning algorithm.

Contents

German Summary 1

1 Introduction 7

1.1 Motivation . 7
1.2 Problem statement . 7
1.3 Related work . 8

2 Foundations 10

2.1 Piecewise Linear Functions . 10
2.2 The Imai-Iri Algorithm . 10
2.3 Principal Component Analysis . 11
2.4 Compression Ratio . 12
2.5 Overhead . 13
2.6 Error Measures . 14
2.7 Implementation . 14

3 Building Blocks 15

3.1 PCA-Based Compression . 15
3.1.1 Run Length Coding . 15
3.1.2 Comparison to the Imai-Iri Algorithm 15

3.2 Sampling . 16
3.2.1 Distribution of the Data Points 16
3.2.2 Sampling Error . 17
3.2.3 Memory and Runtime Requirements 17

3.3 Normalization . 19
3.4 Smoothing . 19
3.5 Peaks . 20

4 Manual Clustering 23

4.1 Clustering . 23
4.2 Algorithm . 23

4.2.1 The Simple PCA Algorithm 24
4.3 Experiments . 24

4.3.1 Classi�cation . 24
4.3.2 Compression . 25

5 Model-Based Transformation 28

5.1 Algorithm . 28
5.1.1 Model . 28
5.1.2 Model-Fitting . 29
5.1.3 Transformation . 30

5.2 Experiments . 31

5.2.1 Sampling . 31
5.2.2 Compression . 32

6 Automatic Clustering 35

6.1 Algorithm . 35
6.1.1 Finding Clusters . 36

6.2 Experiments . 37
6.2.1 Parameters of the algorithm 37
6.2.2 Overview . 38
6.2.3 PCA Overhead . 41
6.2.4 Error Bounds . 42
6.2.5 Smoothed Input Data . 42
6.2.6 Runtime . 44
6.2.7 Additional Data Sets . 45

6.3 Application . 46
6.3.1 Higher Error Bounds . 47
6.3.2 Smoothed Input Data . 50

7 Conclusions 51

7.1 Future work . 51

References 52

German Summary � Deutsche Zusammenfassung

Einführung

Zeitabhängige Routenplanung ist eine Erweiterung der klassischen Routenplanung,
die die statischen Fahrzeitdaten durch Fahrzeitfunktionen ersetzt. Das heiÿt, die für
die Fahrt zwischen zwei Knoten a und b des Straÿennetzgraphen benötigte Zeit ist ei-
ne Funktion der Abfahrtszeit. Auf diese Weise können regelmäÿige tageszeitabhängige
Veränderungen der Fahrtzeit, zum Beispiel durch Berufsverkehr, bei der Routenpla-
nung berücksichtigt werden.

Die hierfür benötigten Fahrzeitdaten sind aber unter Umständen sehr umfang-
reich, was vor allem auf Mobilgeräten problematisch sein kann, da die Datenübertra-
gung vom Flash�Speicher des Geräts die Routenberechnung erheblich verlangsamen
kann [SSV08, p. 739].

Ziel dieser Arbeit ist es deshalb, ein Kompressionsverfahren für Fahrtzeitdaten zu
entwickeln und zu evaluieren. Das zu entwickelnde Verfahren ist verlustbehaftet, das
heiÿt eine begrenzte Abweichung zwischen originalen und dekomprimierten Daten ist
zulässig. Als Grundlage für das zu entwickelnde Verfahren wurde die Hauptkompo-
nentenanalyse (engl. Principal Component Analysis, PCA) gewählt. Diese sollte in
der Lage sein häu�g wiederkehrende Strukturen in den Fahrtzeitfunktionen bei der
Kompression zu nutzen. Als Messlatte für die erzielte Kompression dient der Algorith-
mus zur Approximation von stückweise linearen Funktionen von Imai und Iri [II87],
der von S. Neubauer für die Kompression von Fahrtzeitfunktionen implementiert und
evaluiert wurde [Neu09].

Die verwendeten Fahrtzeitdaten stammen aus einem von der PTV AG zur Verfü-
gung gestellten Datensatz und wurden für die Time-Dependent Contraction Hierar-

chies Routenplanungstechnik (TCH) [BDSV09] aufbereitet. TCH erweitert die von
R. Geisberger et al. entwickelte Contraction Hierarchies (CH) Technik um Zeitab-
hängigkeit [GSSD08]. Contraction Hierarchies ist eine hierarchische Routenplanungs-
technik, die durch Vorberechnung auf dem Straÿennetzgraphen schnelle und exakte
Routenberechnung auf groÿen Straÿennetzen ermöglicht.

Die vorliegenden Fahrtzeitfunktionen sind stückweise lineare Funktionen, de�-
niert durch Stützstellen, die die Fahrtzeit der jeweiligen Funktion zu verschiedenen
Abfahrtszeiten angeben.

Der für die Experimente verwendete Datensatz enthält insgesat 17.942.106 Fahr-
zeitfunktionen, von denen allerdings nur 2.380.285 nicht konstant sind und damit
für Kompression in Frage kommen. Die nicht konstanten Funktionen haben durch-
schnittlich rund 103 Datenpunkte.

PCA�basierte Kompression

Um Fahrtzeitfunktionen mit Hilfe der Hauptkomponentenanalyse (PCA) zu kom-
primieren, müssen die Fahrzeitfunktionen durch �Sampling� in eine homogene Form

2 German Summary

gebracht werden. Dabei werden alle Funktionen an S äquidistanten Punkten � Viel-
fachen der Samplingdistanz ∆S � evaluiert, woraus sich für jede Funktion f ein Vek-
tor von Sampelwerten sf ergibt. Von den Samplingvektoren wird deren Mittelwert s̄
abgezogen. Aus den so modi�zierten Daten wird über die Hauptkomponentenanalyse
eine alternative Basis, bestehend aus den Hauptkomponenten pi, berechnet. Wird
ein Sample�Vektor sf − s̄ in diese Basis transferiert, entsteht der Koe�zientenvektor
cf . Aus den Eigenschaften der Hauptkomponentenanalyse ergibt sich, dass die ersten
Hauptkomponenten tendenziell �wichtiger� sind als die folgenden. Das heiÿt, dass eine
Rekonstruktion s∗f des Samplingvektors aus dem Mittelwertsvektor und den ersten m
Hauptkomponenten � für ein geeignetes m � unter Umständen ausreicht, um eine
akzeptable Approximation von f zu erhalten.

sf = s̄+
∑S

i=1 ci · pi s∗f = s̄+
∑m

i=1 ci · pi (m < S)

Die PCA�basierten Kompressionsansätze in dieser Arbeit �nden für jede Funktion
jeweils das kleinste m mit dem eine gegebene Approximationsgüte erreicht wird und
reduzieren somit den Platzbedarf für die Funktion auf m Werte. Zusätzlich müssen
natürlich der Mittelwertsvektor s̄ und die benötigten Hauptkomponenten gespeichert
werden.

O�ensichtlich ist es nicht auszuschlieÿen, dass die PCA�komprimierte Darstellung
einer Funktion gröÿer ist als die Originaldaten der Funktion. Ferner steht auch der
Algorithmus von Imai und Iri zur Kompression zur Verfügung. Deshalb wird für jede
Funktion die kleinere von PCA� und Imai�Iri�komprimierter Darstellung gespeichert.

Messgröÿen

Die in den folgenden Abschnitten beschriebenen Algorithmen werden an Hand von
vier Messgröÿen verglichen:

• Die Kompressionsrate rcompr gibt das Verhältnis der komprimierten Gröÿe der
nicht konstanten Funktionen zu deren ursprünglicher Gröÿe an.

• Der Anteil der PCA�komprimierten Funktionen rPCA gibt an, wie viele der
nicht konstanten Fahrzeitfunktionen PCA�basiert komprimiert wurden. Das
heiÿt, für wie viele der Funktionen die PCA�basierte Kompression e�ektiver
war als die vom Imai�Iri�Algorithmus erzeugte.

• Der mittlere Approximationsfehler ēmean .

• Die Gröÿe der zusätzlichen PCA�spezi�schen Daten im Verhältnis zur Gröÿe
der Komprimierten Funktionsdaten roverhead . Bei diesem Overhead handelt es
sich um die Mittelwertsvektoren und die Hauptkomponenten.

German Summary 3

Algorithmus Min. Clustergröÿe rcompr rPCA ēmean roverhead

Imai�Iri � 14,26% 0% 0,12% 0%
Ohne Clustern � 13,28% 28,9% 0,094% 0,03%

Manuelles Clustern � 10,72% 61,46% 0,054% 0,16%

Automatisches 10% 10,05% 49,38% 0,072% 0,085%
Clustern 1% 6,3% 72,2% 0,049% 0,695%

Tabelle 1: Ergebnisse der vorgestellten Algorithmen bei maximalem Approximations-
fehler von 1%.

Manuelles Clustern

Da sich früh zeigte, dass der zuvor beschriebene PCA�basierte Ansatz allein nicht zu
befriedigenden Ergebnissen führt, wurden Erweiterungen für diesen entwickelt. Der
Manuelles Clustern genannte Ansatz zerlegt den Eingabedatensatz in Teilmengen
ähnlicher Funktionen und wendet die zuvor beschriebene Kompression einzeln auf
die Teilmengen an. Dieses Zerlegen des Datensatzes in Teilmengen mit anschlieÿender
separater Kompression wird hier als Clustern bezeichnet.

Als Maÿ für die Ähnlichkeit von Funktionen wird hierbei das Auftreten von signi-
�kanten Hochpunkten, sogenannten Peaks verwendet. Hierzu werden aus dem De�-
nitionsbereich der Funktionen drei Intervalle � �Morgen�, �Mittag� und �Abend� �
ausgewählt, und die Funktionen nach der Anzahl Peaks in den einzelnen Intervallen
Klassi�ziert. Die so entstehenden Teilmengen werden nach der jeweiligen Anzahl von
Peaks in den einzelnen Intervallen bezeichnet, also zum Beispiel �1�0�1�.

Ergebnisse

Tabelle 1 zeigt die Resultate des manuellen Clusterings an Hand der zuvor beschrie-
benen Messgröÿen. Als Approximationsgüte wurde 1% maximaler relativer Fehler ge-
wählt. Zum Vergleich sind die entsprechenden Werte für PCA�basierte Kompression
ohne Clustern und für den Imai�Iri�Algorithmus angegeben. Wie aus der Tabelle
ersichtlich wird, verbessert der Clustering�Ansatz die Kompression gegenüber dem
Imai�Iri�Algorithmus um etwa ein Viertel, während der mittlere Approximations-
fehler um etwa die Hälfte sinkt. Gegenüber dem einfachen PCA�basierten Verfahren
ohne Clustern konnte die Anzahl der PCA�komprimierten Funktionen etwa verdop-
pelt werden, allerdings stieg auch die Gröÿe des Overheads beträchtlich.

Ferner wurden auch Tests mit zufällig ausgewählten Teilmengen des Datensatzes
durchgeführt, um zu bestimmen ob beliebige Aufteilungen einen ähnlichen E�ekt
haben wie die oben beschriebene. Diese ergaben allerdings keine Verbesserung gegen-
über der einfachen PCA�Kompression ohne Clustern.

Modell�basierte Transformation

Die Modellbasierte Transformation ist ein Versuch, die Fahrzeitfunktionen für die
PCA�basierte Kompression aufzubereiten und somit deren E�ektivität zu erhöhen.

4 German Summary

Der Grundgedanke besteht darin, Funktionen mit vergleichbarer Form so zu modi-
�zieren, dass sie sich noch ähnlicher sind, und weniger Unterschiede durch die PCA
kodiert werden müssen.

Der Ansatz setzt auf den im vorigen Abschnitt entwickelten Teilmengen und Infor-
mationen über Ort und Form von Peaks in den Funktionen auf. Er wird beispielhaft
an den 1�0�1 Teilmengen beschrieben, also Funktionen die ein typisches Berufsver-
kehrsmuster zeigen, kann aber auch auf andere Teilmengen übertragen werden.

Um eine genaueres Bild des Aussehens der Funktionen zu erhalten, wird ein Mo-
dell de�niert, das ein Fahrzeitfunktion als eine Summe von Gauss�Funktionen be-
schreibt. Hierbei wird für jeden Peak der Funktion eine Gauss�Funktion angesetzt
und ein weiterer für die grundlegende Zunahme der Fahrtzeit am Tag gegenüber der

Nacht. Die verwendeten Gauss�Funktionen gx,h,σ(t) = h · exp
(
−1

2
·
(
t−x
σ

)2
)
werden

mir ihrer Position x, der Höhe h und der Standardabweichung σ, aus der sich die Brei-
te ergibt, parametrisiert. Um geeignete Werte für diese Parameter zu �nden, wird die
Di�erenz zwischen dem parametrisierten Modell und der Funktion mit dem Optimie-
rungsalgorithmus von Nelder und Mead [NM65] minimiert. Die Di�erenz wird hierbei
durch Auswerten von Funktion und Modell in regelmäÿigen Abständen approximiert.

Aus den so gewonnen Informationen wird für jede Fahrzeitfunktion f eine Trans-
formationsfunktion Tf abgeleitet. Diese verschiebt die Datenpunkte von f entlang der
x�Achse, sodass die Form der Funktion an die durchschnittliche Form der Funktio-
nen in der Teilmenge angenähert wird. Die so modi�zierten Funktionsmengen werden
dann mit dem einfachen PCA�basierten Algorithmus komprimiert.

Ergebnisse

Wie sich heraustellte hat die beschriebene Transformation drastische Auswirkungen
auf den Samplingprozess. Die durch das Sampling erzeugte Abweichung zwischen Ori-
ginaldaten und gesampelten Daten steigt durch die Transformation erheblich. Hier-
durch kann für viele Funktionen die angestrebte Approximationsgüte von vornherein
nicht erreicht werden, für andere steigt die Zahl der benötigten Koe�zienten und
damit die Gröÿe der komprimierten Daten. Insgesamt ist die auf den transformierten
Daten erzielte Kompression nur wenig besser als die vom Imai�Iri�Algorithmus er-
reichte. Da mit den komprimierten Daten zusätzlich noch die zur Rücktransformation
benötigten Informationen gespeichert werden müssen, ist der Transformationsansatz
in dieser Form nicht verwendbar.

Automatisches Clustern

Das Automatische Clustern führt die Idee der Verbesserung der PCA�basierten Kom-
pression durch Aufteilen des Datensatzes weiter. Im Gegensatz zum manuellen Clu-
stern �ndet die Aufteilung hier allerdings direkt auf Basis der Hauptkomponenten-
analyse statt.

Hierzu werden zunächst Hauptkomponenten und Koe�zientenvektoren für alle

German Summary 5

Funktionen im Datensatz berechnet. Funktionen, deren Koe�zientenvektor deutlich
gröÿer als die vom Imai�Iri�Algorithmus erzeugte Darstellung ist, werden �bei Seite
gelegt� und der Vorgang wird mit den verbliebenen Funktionen wiederholt. In den
folgenden Iterationen wird das Kriterium zum Entfernen der Funktionen zunehmend
verschärft, sodass die verbleibenden Funktionen schlieÿlich besser komprimiert wer-
den als durch den Imai�Iri�Algorithmus. Der Vorgang wird abgebrochen, sobald die
Menge der verbleibenden Funktionen unter eine minimale Clustergröÿe, die relativ
zur Gesamtzahl der Funktionen angegeben wird, fällt. Der letzte noch ausreichend
groÿe Cluster wird dann gespeichert und der gesamte Vorgang mit den zuvor bei
Seite gelegten Funktionen wiederholt.

Ergebnisse

Wie aus Tabelle 1 ersichtlich wird, wurden mit dem automatischen Clustern die zuvor
erzielten Ergebnisse weiter verbessert. Insbesondere durch eine relative kleine mini-
male Clustergröÿe wurde eine deutlich stärkere Kompression als mit dem manuellen
Clustern erzielt. Die vom Imai�Iri�Algorithmus erreichte Kompression wurde sogar
um den Faktor zwei verbessert. Auch der mittlere Approximationsfehler konnte noch
etwas weiter gesenkt werden.

Auswirkungen auf die Anwendung

Experimente mit dem Time-Dependent Contraction Hierarchies Routenplanungsal-
gorithmus zeigen, dass die Auswirkung der Approximation auf die berechneten Rou-
ten relativ gering sind. Zur Ermittlung der Auswirkungen wurden 1.000.000 zufällige
Routen�Anfragen auf Basis der komprimierten Daten berechnet und die berechneten
Routen und deren Fahrzeit mit den Optimalwerten verglichen.

Die durchschnittliche relative Abweichung zwischen den aus den komprimierten
Daten berechneten Reisezeiten und den korrekten Werten liegt über dem mittleren,
aber unter dem maximalen Approximationsfehler. Eine starke Ausbreitung des Ap-
proximationsfehlers durch die Verkettung mehrer approximierter Fahrzeitfunktionen
liegt also augenscheinlich nicht vor.

Die geringe Abweichung der realen Fahrzeit der auf komprimierten Daten be-
stimmten Route gegenüber dem Optimalwert lässt darauf schlieÿen, dass der Rou-
tenplanungsalgorithmus trotz des Approximationsfehlers in der Regel die optimale
Route �ndet. Dieses Verhalten setzt sich auch Kompression mit höherem Approxi-
mationsfehler von zum Beispiel 10% fort.

Fazit

Mit zwei der vorgestellten Kompressionsverfahren konnte eine beträchtliche Verbes-
serung der Kompressionsrate gegenüber dem zum Vergleich herangezogenen Algo-
rithmus von Imai und Iri erreicht werden. Mit dem � allerdings recht aufwändigen

6 German Summary

� automatischen Clustern lieÿ sich die Kompression sogar um den Faktor zwei ver-
bessern.

Positiv ist weiterhin, dass der mittlere Fehler der Approximation trotz der stärke-
ren Kompression gesenkt werden konnte. Ferner haben Experimente gezeigt, dass die
Routenberechnung mit der Time-Dependent Contraction Hierarchies Technik durch
die Approximation nicht substantiell beeinträchtigt wird.

7

1 Introduction

1.1 Motivation

Time-dependency is becoming an increasingly important aspect of route planning.
Classical route planning assumes a constant travel time for each edge in the road
network. That is, traveling from a node a to an adjacent node b in the road network is
assumed to take a static amount of time ta,b. Time dependent route planning extends
that assumption, so that the travel time ta,b becomes a function of the departure
time, that is the point in time at which the travel from node a to node b begins. This
extended model is for example able to account for increased travel times due to rush
hour tra�c.

However, with this extension, the data needed to describe the travel time of a road
segment grows from a single value to a travel time function describing the travel time
for the road segment over a given period. Detailed travel time data for large road
networks with millions of edges can result in very large amounts of data, which can be
problematic, especially for mobile devices. While the bare storage space requirements
are becoming less critical as the storage capacities of mobile devices grow, large data
sets can still adversely a�ect query time. Because the larger the travel time data, the
more data has to be transferred from�relatively slow�mass storage devices such as
�ash drives.

With Contraction Hierarchies (CH), Robert Geisberger et al. [GSSD08] have
presented a hierarchical route planning method that allows fast queries while having
low memory requirements. This technique has been extended to Time-Dependent

Contraction Hierarchies (TCH) by Batz et al. to support time-dependent route
planning [BDSV09].

1.2 Problem statement

The goal of this work is to develop and evaluate a method that produces a space�
e�cient approximation of a set of travel time functions. While this method is de-
veloped using a speci�c data set, it should be su�ciently general to produce similar
results on comparable sets of travel time functions. The primary parameter of the
compression method devised is the maximum or mean relative error of the approxi-
mation.

The decision to base the algorithm to be developed on principal component anal-
ysis was founded on the supposition that principal component analysis should be able
to exploit similarities between functions for an e�cient compression. Generally, prin-
cipal component analysis is a useful tool when little information about the structure
of the data is available, as is the case with the data set at hand.

The main data set used in this work is a road network of Germany with travel time
data for Tuesday to Thursday provided by PTV AG. The data set was preprocessed
for the Time-Dependent Contraction Hierarchies technique (TCH) [BDSV09]. As
a result of the TCH-preprocessing, the data set contains shortcuts in addition to

8 1 INTRODUCTION

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 10 100 1000 10000 100000

F
u

n
ct

io
n

s

Number of data points

Figure 1: Cumulative distribution of the sizes of non-constant functions in the data
set.

the original edges of the road network graph. Shortcuts represent paths within the
original road network and have travel time functions composed of the travel time
functions of the road segments represented by the shortcut. If, for example, a shortcut
spans two road segments A and B (in that order) with travel time functions fA and
fB, the travel time function of the shortcut fS is given by fS(t) = fA(t)+fB(t+fA(t)).

The data set contains 17,942,106 travel time functions, of which 2,380,285 are
not constant. The non-constant functions have approximately 103 data points per
function on average. While some functions in the set have several thousand data
points, 90% have less than 250. Figure 1 shows the cumulative distribution of the
number of data points per non-constant function.

1.3 Related work

In her student thesis Space E�cient Approximation of Piecewise Linear Functions

[Neu09], S. Neubauer discusses the algorithm designed by H. Imai and M. Iri [II87],
which calculates an approximation of a piecewise linear function for a given absolute
error bound. The algorithm is described in more detail in Section 2.2 of this work.
Neubauer presents an implementation of the algorithm and tests this implementation
on a previous version of the data set that is also used in this work. In the thesis, the
algorithm is also extended to support relative as well as absolute error bounds for

1.3 Related work 9

the approximation.
C. Vetter et al. [SSV08] developed a �highly compressed blocked representation� of

TCH graph data and a �fast yet compact� route reconstruction data structure which
facilitate fast and exact route planning on mobile devices. However, the devised
representation and data structure only consider the network graph data but not
travel time data and do thus not solve the problem this work is aimed at.

10 2 FOUNDATIONS

2 Foundations

2.1 Piecewise Linear Functions

The travel time functions that form the input data for the algorithms presented in
this work are continuous piecewise linear functions. A piecewise linear travel time
function f is de�ned by a sequence of n data points (xi, yi) (i = 1, . . . , n) in ascending
order of x and the function period P . The value yi is the travel time for the road
segment f belongs to if travel through the segment begins at the departure time xi.
The travel time functions in the data set at hand have a common period of 24 hours.

A value f(t) at an arbitrary time t is calculated by linear interpolation between the
two data points surrounding t as shown in Equation 1. If t is outside of [0, P), f(t) can
be calculated as through f(t+kP) = f(t) (k ∈ N). Values f(t) for t outside of [x1, xn]

can be calculated by extending the function with the points (x0, y0) = (xn − P, yn)

and (xn+1, yn+1) = (x0 + P, y0).

f(t) =
yi(xi+1 − t) + yi+1(t− xi)

xi+1 − xi
(xi ≤ t ≤ xi+1) (1)

2.2 The Imai-Iri Algorithm

The algorithm presented by H. Imai and M. Iri [II87] computes an itself piecewise
linear approximation of a piecewise linear function f that meets a given absolute error
bound w while having a minimum number of data points. The algorithm works by
calculating the polygon P (w) that delineates the corridor around the input function
de�ned by the error bounds. Within this polygon, the algorithm then constructs the
approximated function by a process that can be compared to shining a light source
into the corridor around the function. The border line between the illuminated part
of the corridor and the part containing the end of the corridor is called a window and
contains the �rst point of the approximation. From the window, the illumination
step is repeated to locate the next window, until the end of the corridor is reached.
Figure 2 illustrates the concept with an example function. The corridor P (w) is
plotted as a dashed line, and the part of the corridor that is illuminated from the
entrance is shaded.

While the authors show that the approximation can be calculated by �repeatedly
solving the edge�visibility problem� [II87, p. 1], they also provide a more e�cient so-
lution that exploits properties of P (w) to avoid the complex construction of visibility
polygons and runs in time linear in the number of data points of f .

Imai and Iri prove that the approximation produced by the algorithm has the
minimum number of points for the given error bound. However, the algorithm is
not designed to minimize the maximum or average di�erence between the original
function and the approximation.

2.3 Principal Component Analysis 11

f
P(w)

Figure 2: Imai-Iri algorithm example.

2.3 Principal Component Analysis

The idea of principal component analysis originates from K. Pearson [Pea01], however
the term �principal component� was created by Hotelling [Hot33]. The following brief
description is based on the work of Jolli�e [Jol86] and Falk et al. [FBM95], though.
Jolli�e describes the �central idea of principal component analysis� as to �reduce the
dimensionality of a data set which consists of a large number of interrelated variables,
while retaining as much as possible of the variation present in the data set� [Jol86,
p. 1].

The process of principal component analysis consists of multiple steps. Assume a
data set D containing n observations of a set of k random variables as in Equation 2.
Together, the observation vectors form the data matrix M as de�ned in Equation 3.
First, the data is centered. For this, the mean vector x̄ ∈ Rk is calculated as shown
in Equation 4 and subtracted from each column of the data matrix, resulting in the
centered data matrix M ′ (Equation 5). In the next step, the covariance matrix C
of the data matrix is calculated as shown in Equation 6. Finally, the eigenvectors
vi and corresponding eigenvalues λi of the covariance matrix are calculated. The
eigenvectors of the covariance matrix are the principal components of the data set.
The eigenvector with the largest associated eigenvalue is the direction in which the
data set has the greatest variation and is thus likely to contain the most information
about the data set. The following eigenvectors (in order of descending size of the

12 2 FOUNDATIONS

associated eigenvalue) represent successively less important directions within the data
set.

D = {x1, x2, . . . , xn} ⊂ Rk (n > k) (2)

M = (x1, x2, . . . , xn) ∈ Rk×n (3)

x̄i = n−1

n∑
j=1

Mij (i = 1, . . . , k) (4)

M ′ = (x1 − x̄, . . . , xn − x̄) (5)

C = n−1M ′M ′T ∈ Rk×k (6)

M∗ =
(
p1 . . . pm

)T
M ′ ∈ Rm×n (7)

To use this information to reduce the number of dimensions of the data set, the
number of resulting dimensions m has to be chosen. This can, for example, be done
with a heuristic method like the Scree Test [FBM95, p. 306]. The �rst m principal
components are selected and used to transform the data matrix M ′ into M∗ by
multiplying it with the matrix containing the �rst m eigenvectors of the covariance
matrix (Equation 7). An approximation of the original data can be restored from
M∗ by reversing the above transformation and restoring the mean.

Figure 3 illustrates the e�ect of principal component analysis through an example.
The left-hand plot shows a cloud of two-dimensional data points. The arrows origi-
nating from the center of the cloud indicate the directions of the principal components
p1 and p2 of the data set with the longer arrow representing the �rst principal com-
ponent p1. The right-hand plot in Figure 3 shows the same data points transferred
into the coordinate system of p1 and p2.

2.4 Compression Ratio

The primary criterion used to evaluate the compression algorithms presented in this
work is the compression ratio rcompr achieved by the algorithm.

rcompr :=
compressed size of non-constant functions
original size of non-constant functions

This de�nition re�ects the fact that the algorithms under discussion ignore the
constant functions of the data set, as there is little to be gained by attempting to
compress them. The more practical de�nition of a compression ratio r′compr that
includes the constant functions is linear in rcompr and can be calculated as follows.

r′compr =
rcompr · original size of non-constant functions + size of constant functions

total size

The size of a set of functions or compressed functions is calculated by count-
ing eight bytes for each �oating point value and four bytes for each integer value,

2.5 Overhead 13

-10

-5

 0

 5

 10

-10 -5 0 5 10

y

x

-10

-5

 0

 5

 10

-10 -5 0 5 10

p
2

p1

Figure 3: PCA example.

matching the sizes of the C++ data types double and (unsigned) int on the x86
platform.

2.5 Overhead

PCA-based compression introduces additional overhead that cannot be directly as-
signed to any function. This overhead is not taken into account by the compression
ratio rcompr de�ned in Section 2.4 because rcompr is intended to re�ect the compres-
sion of the data that has to be retrieved when evaluating a single function. This
assumes that the function independent overhead is permanently held in memory by
the application. But obviously we cannot completely ignore the overhead. To quan-
tify the overhead introduced by a compression method, the relative overhead roverhead
is de�ned as the size of the overhead data in relation to the size of the compressed
function data.

roverhead :=
size of overhead data

size of compressed function data
(8)

Again, to calculate the size of the overhead data, �oating point values are counted
as eight bytes and integer values as four bytes.

14 2 FOUNDATIONS

2.6 Error Measures

The compression approaches described in this work are lossy compression methods,
that is, the data restored from its compressed representation will not be identical
to the data originally compressed. While some deviation from the original data is
deemed acceptable for the application, this deviation must certainly be within well-
known bounds for the data to be useful.

The algorithms described in this work allow the speci�cation of upper bounds
for the maximum relative error of the approximation ê, the mean relative error ē, or
both of them. For a travel time function f with period P and an approximation f ∗,
ê and ē are de�ned as follows.

ê(f, f ∗) := max
t∈[0,P)

{
|f(t)− f ∗(t)|

f(t)

}

ē(f, f ∗) :=
1

P
·
ˆ P

0

|f(t)− f ∗(t)|
f(t)

dt

Intuitively, this means that if ê is limited to, for example, 1% the value of a
restored function f ∗ at a point t will not di�er from the value of the original function
f at the same point by more than one percent. On the other hand, limiting ē to 0.01
may result in values deviating from the original by more than one percent, but the
average value of that deviation will not exceed one percent. Note that both ê and
ē are quite simple to calculate when both f and f ∗ are piecewise linear functions,
which is generally the case here.

While ê and ē apply only to one function at a time, the concepts can be transferred
to a set S of functions and their approximations as de�ned below.

ēmean(S) := |S|−1
∑

(f,f∗)∈S

ē(f, f ∗)

ēmax (S) := max
(f,f∗)∈S

{ē(f, f ∗)}

êmean(S) := |S|−1
∑

(f,f∗)∈S

ê(f, f ∗)

êmax (S) := max
(f,f∗)∈S

{ê(f, f ∗)}

2.7 Implementation

The algorithms and techniques described in Sections 3 through 6 were implemented
in C++ and are based on the Standard Template Library (STL). Parallelization was
implemented using OpenMP and the GNU Scienti�c library (GSL) [Gal] was used for
mathematical calculations such as linear algebra operations, eigensystem calculation
and optimization.

15

3 Building Blocks

The approaches to solving the problem at hand described in Sections 4 through 6
share a number of components. These basic concepts are described in this section.

3.1 PCA-Based Compression

The choice to use principal component analysis for the compression of travel time
functions was based on the assumption that travel time functions share a number
of patterns. For example, we can expect a considerable number of functions to
feature similar rush hour peaks in the morning or afternoon. The Imai-Iri algorithm
described in Section 2.2 which has already been evaluated for the compression of
travel time functions [Neu09] makes no use of such similarity, as it compresses each
function independently. In contrast to this, principal component analysis is likely to
�nd predominant shared patterns in its input data.

Ideally, we hope to be able to describe a large number of functions using only a
few patterns found by the principal component analysis. Using this technique, the
compressed representation of a set of travel time functions consists of two parts: the
set of patterns p1, . . . , pk, which is shared among all functions, and a coe�cient vector
c = (c1, . . . , ck) for each function. As described in Section 2.3, the mean of the data
set is �rst subtracted from each function during principal component analysis. This
mean vector can be interpreted as an additional pattern vector p0 with an implicit
coe�cient of 1. A compressed function can be restored from the pattern vectors
and its coe�cient vector as a linear combination of the patterns weighted with the
elements of the coe�cient vector.

f ∗ = p0 + p1 · c1 + . . .+ pk · ck =
(
p0 p1 . . . pk

)
·

1

c1

...
ck

3.1.1 Run Length Coding

In practice, the number of pattern vectors needed to meet the error bounds varies
from function to function. Storing the same number of coe�cients for each function
would thus result in largely ine�cient compression. Instead, the number of coe�-
cients necessary to meet the error bounds is determined individually for each function
using a bisection method, and only the required coe�cients are stored. This method
obviously adds the overhead of storing an integer value indicating the number of
coe�cients for each function.

3.1.2 Comparison to the Imai-Iri Algorithm

Due to its availability and known properties, the Imai-Iri algorithm is used as the
main comparison standard for the compression methods developed in this work. Gen-

16 3 BUILDING BLOCKS

erally speaking, it is our goal to surpass the compression achieved by the Imai-Iri
algorithm for as many functions of the input data set as possible. To be able to
conveniently refer to this comparison, the ratio rImaiIri is de�ned for each function f
as shown in equation 9.

rImaiIri(f) :=
valuesPCA(f)

values ImaiIri(f)− 1
(9)

In this de�nition, valuesPCA(f) denotes the number of �oating point values re-
quired to represent f using the PCA-based compression discussed in that context,
counting only the per function data (the coe�cient vector), not the global overhead
induced by the pattern vectors. By the same token, values ImaiIri(f) denotes the
number of values required by the Imai-Iri approximation of f to the current error
bounds. The subtraction of 1 in the denominator of the de�nition is owed to the
implementation of the automatic clustering algorithm discussed in Section 6. Be-
cause valuesPCA and values ImaiIri are both integer, the condition rImaiIri(f) ≤ 1 is
equivalent to valuesPCA(f)/values ImaiIri(f) < 1.

3.2 Sampling

As described in subsection 2.3, principal component analysis works on a set of ran-
dom variables with each item in the input data containing a value for each of these
variables. In the original data, each function is de�ned as a sequence of data points
(t, f(t)). The values t for which f(t) is speci�ed vary from function to function,
as does the number of data points. To obtain a uniform set of data points for all
functions, the functions are sampled at S equidistant sampling points using linear
interpolation. From this follows directly the sampling distance ∆S := P

S
. The sample

vector sf of a function f is de�ned as follows.

sf :=
(
f(0) f(∆S) . . . f((S − 2)∆S) f((S − 1)∆S)

)
The choice of the sampling distance has an e�ect on multiple aspects of the

compression algorithm. Naturally, choosing a large sampling distance will increase
the sampling error. As the principle component analysis can only approximate the
sampled data, a high sampling error will lead to a greater approximation error and
poor compression ratio. Choosing a low sampling distance will decrease the sampling
error, but will also signi�cantly increase the memory requirements and runtime of
the compression algorithm. Because the PCA-based compression actually compresses
the sampled data, increasing the number of sampling points could also lead to worse
overall compression, because more input data is supplied to the algorithm.

3.2.1 Distribution of the Data Points

To minimize the sampling error, it is obviously desirable to sample the functions at
points close to the positions of the data points the function is made up of. Ideally,

3.2 Sampling 17

we would sample each function at each of its de�nition points and thus achieve error-
free sampling. Due to the high number of distinct de�nition points�and because the
same set of sampling points must be used for all functions�doing this would result
in a prohibitively high number of sampling points. Instead, we attempt to �nd a
set of equidistant sampling points that is reasonably close to most of the de�nition
points of the functions.

Figure 4 illustrates the in�uence of the sampling distance on the mean distance
between data points and the closest sampling points. For each sampling distance, the
left column and the values on the left axis show the absolute average distance to the
next sampling point. Note that the average absolute distance for a sampling distance
of 10 minutes is actually slightly higher than that for 15 minutes. This indicates that
10 minutes is a particularly ill��tting sampling distance for this data set. Apart from
this one case, the �gure shows that the average absolute distance decreases with the
sampling distance, as one would expect.

The right columns together with the values on the right axis in Figure 4 show the
relative average distance to the next sampling point, that is the absolute distance
divided by half the sampling distance, which is the maximum possible distance.
The horizontal line at 50% indicates the value that would result if the data points
were uniformly distributed. The �gure shows that several sampling distances achieve
relative distances lower than 50%, with 15 minutes reaching as low as approximately
one third. The fact that sampling distances of 30, 10 and 2 minutes result in average
distances of roughly 50% while 15, 5, 1.5, 1 and 0.5 minutes achieve signi�cantly
better results indicates that choosing a sampling rate that is a factor of 15 minutes
is advisable.

3.2.2 Sampling Error

Figure 5 shows the relation of the relative sampling error to the sampling distance.
For each sampling distance, the left column shows the average mean error ēmean as
de�ned in Section 2.6, while the right column indicates the global maximum error
êmax .

The �gure shows a pattern similar to the observations from the previous experi-
ment: Again, a sampling rate of ten minutes leads to signi�cantly worse results than
one of 15 minutes. The other values behave like expected, with the sampling error
decreasing with the sampling distance.

3.2.3 Memory and Runtime Requirements

The dominant factor in memory consumption in the compression algorithm is storing
the sampled representations of the travel time functions that are to be compressed.
The data set contains 2,380,285 non�constant functions. When storing each sample
as an eight byte �oating point value, the memory requirements range from approxi-
mately 436 megabytes to 51 gigabytes of data for the sampling rates examined above.

18 3 BUILDING BLOCKS

0s

100s

200s

300s

400s

500s

600s

700s

800s

900s

60 min 30 min 15 min 10 min 5 min 2 min 1.5 min 1 min 0.5 min
0%

10%

20%

30%

40%

50%

60%

D
is

ta
n

ce

R
el

at
io

n
 t

o
 m

ax
im

u
m

Sampling distance

Mean distance to next sampling point
Mean distance/(0.5 * Sampling distance)

Figure 4: Average distance between data points and closest sampling point.

1e-05%

0.0001%

0.001%

0.01%

0.1%

1%

10%

100%

60 min 30 min 15 min 10 min 5 min 2 min 1.5 min 1 min 0.5 min

R
el

at
iv

e
er

ro
r

Sampling distance

Sampling error

Average mean error
Maximum error

Figure 5: Average and maximum sampling error for di�erent sampling distances.

3.3 Normalization 19

In addition to the memory consumption, the sample rate also signi�cantly impacts
the runtime of the program. For example, the time needed for the calculation of the
covariance matrix for the principal component analysis increases with the square of
the number of samples used.

3.3 Normalization

During principal component analysis, the covariance matrix C of the sampled data is
calculated as shown in Equation 10, where sf denotes the sample vector for function
f and s̄ the mean of all sample vectors.

C =
∑
f

(sf − s̄) · (sf − s̄)T (10)

Because the dataset contains not only short inner-city street segments and mul-
tiple kilometers long highway segments, but also the shortcuts used by the TCH
algorithm, the magnitude of the functions varies greatly. The average travel times
found in the data set range from a few seconds to up to multiple hours. When cal-
culating the covariance matrix, functions with large magnitudes dominate the result,
diminishing the in�uence of many low to medium magnitude functions.

This e�ect is detrimental to the compression ratio achieved by the algorithm
because the algorithm aims to meet relative error bounds. This means that small
absolute errors on low-magnitude functions are as critical as large absolute errors on
high-magnitude functions. When high-magnitude functions virtually eliminate the
impact of low-magnitude functions on the covariance matrix, and subsequently the
principal components, it is di�cult to e�ciently compress those functions using the
resulting principal components.

To obviate this e�ect, the sampled function data can be normalized before cal-
culating the covariance matrix. Through normalization the sampled representation
of a function is e�ectively split up into a magnitude value and a vector describing
the shape of the function. We use the average of the sample values of a function as
its magnitude. The sample vector is divided by the magnitude to obtain the shape
vector. In the remaining process, only the shape vectors of the functions are consid-
ered. At the end of the compression process, the magnitude value is stored with the
compressed representation of the function. A function is restored by decompressing
the shape vector and multiplying the resulting approximation of the shape vector
with the magnitude value.

3.4 Smoothing

As the data is largely derived from measurements, it is possible�if not likely�that
it contains some sort of measurement noise. The presence of such noise would be
detrimental to the compression performance because it adds super�uous information
and blurs the patterns the principal component analysis is supposed to �nd.

20 3 BUILDING BLOCKS

To remove or at least dampen such measurement noise, the function data can
be smoothed using a Gaussian �lter. In theory, smoothing with a Gaussian �lter
is calculated by folding the data to be smoothed with a Gaussian function gσ with
standard deviation σ as de�ned in equation 11. To simplify the implementation, we
use a discrete approximation of this calculation.

The smoothing process works by replacing the travel time value yi at each data
point (xi, yi) of a travel time function f = ((x1, y1), . . . , (xn, yn)) with a weighted
average of the values of f within a radius r around xi. The weights used for the
average are the values gσ(k) of a Gaussian function with standard deviation σ for
k = −r, . . . , r. The radius r is calculated from the standard deviation σ in such a
way that gσ(r) is greater than or equal to a threshold value wmin , while gσ(r + 1) is
not. For wmin a small value (e.g., 0.001) is chosen to ensure that only insigni�cant
weights are discarded. The values of f used for the average are sampled at multiples
of a sampling distance ∆x that is a parameter of the process.

Formal de�nitions for these calculations are given in equations 11 through 14.

gσ(x) := exp

(
−1

2

(x
σ

)2
)

(11)

r := max{m ∈ N | gσ(m) ≥ wmin} (12)

smoothσ,∆x,f (x) =

∑r
i=−r gσ(i)f(x+ i∆x)∑r

i=−r gσ(i)
(13)

f ∗ =
(

(x1, smoothσ,∆x,f (x1)) , . . . , (xn, smoothσ,∆x,f (xn))
)

(14)

The impact of smoothing on the performance of the compression algorithm is,
however, of limited value. It is not possible to distinguish between measurement
noise and genuine data being smoothed out, and either case is likely to lead to lower
compression ratio.

Figure 6 shows an example of a travel time function smoothed with σ=15 minutes
and ∆x=1 minute.

3.5 Peaks

Some of the approaches described in the following sections make use of peaks of travel
time functions. We de�ne a peak of a travel time function as a signi�cant, but not
necessarily global, maximum of the function. Travel time functions generally contain
multiple local maxima, and while the peaks that are of interest are among these
local maxima, most of the local maxima are insigni�cant �uctuations. The global
maximum is obviously a far too restrictive de�nition, as there is usually only one
in each function. Consequently, a peak is de�ned as a regional maximum within a
radius W . Equation 15 gives the formal de�nition of the set of peaks of a travel time
function f for a radius W .

3.5 Peaks 21

 23.2

 23.4

 23.6

 23.8

 24

 24.2

 24.4

 24.6

 24.8

 25

 25.2

 25.4

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

T
ra

v
el

 t
im

e
[m

in
]

Time of day

Original
Smoothed

Figure 6: Example function with smoothing for σ=15 minutes and ∆x=1 minute.

peaksW (f) :=
{

(xi, yi) ∈ f
∣∣∣ yi ≥ yj ∨ |xi − xj| > W ∀(xj, yj) ∈ f

}
(15)

In other words, a peak is a point that is at least as high as all other points of the
function that are not further away from it than a distance W .

While the de�nition above is a useful de�nition for the signi�cant peaks of a
travel time function, it gives little information about the shape of the peak. For
example, it does not distinguish between a narrow peak and the highest point of a
�at plateau within a function. To compensate this, we de�ne extended peaks. An
extended peak (a, b, h) consists of the interval [a, b] the peak spans and its height
h. The calculation of an extended peak from a normal peak (xi, yi) of a travel time
function f = ((x1, y1), . . . , (xn, yn)) is described in the following equations.

var(f) := max(f)−min(f) (16)

left(xi, yi) := min
{
k ∈ [1, i]

∣∣∣ yi − f(xj) ≤ var(f) · r ∀j ∈ [k, i)
}

(17)

right(xi, yi) := max
{
k ∈ [i, n]

∣∣∣ yi − f(xj) ≤ var(f) · r ∀j ∈ (i, k]
}

(18)

extended(xi, yi) :=
(
xleft(xi ,yi), xright(xi,yi), yi

)
(19)

Equation 16 de�nes var(f) as the di�erence between the maximum and the min-

22 3 BUILDING BLOCKS

 23.2

 23.4

 23.6

 23.8

 24

 24.2

 24.4

 24.6

 24.8

 25

 25.2

 25.4

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

T
ra

v
el

 t
im

e
[m

in
]

Time of day

Figure 7: Example function with peaks for W=1h and r=20%.

imum of f . This is used in the two following de�nitions to compare the di�erence
between values of the function to the total range of its values. Equations 17 and
18 de�ne the indices of the points in f that form the borders of the interval of the
extended peak. Given a normal peak (xi, yi), a = xleft(xi,yi) is the location of the data
point in f that is furthest left of xi but still ful�lls the condition that all values yj
of f between a and xi are close to yi. Closeness is de�ned by limiting the di�erence
between yj and yi to a fraction r of var(f). In Equation 19 the pieces are put to-
gether, constructing the extension of the peak (xi, yi) from the preceding de�nitions.
The right border of the interval b is calculated in the same way.

Extended peaks can of course also be identi�ed by their center a+b
2
, width r − l,

and height h.
Figure 7 shows an example travel time function with the extended peaks found

for W=1h and r=20% drawn as dashed boxes in the plot.

23

4 Manual Clustering

Manual clustering is a simple, heuristics-based attempt at preprocessing the input
data before applying PCA-compression. It is grounded in the assumption that the
dataset contains subsets of similar functions and that PCA-compression of such sub-
sets, if they can be identi�ed, should be more e�cient than compressing the entire
data set.

4.1 Clustering

As described in Section 3.1.1, a compressed function is stored as the shortest pre�x
of its coe�cient vector that is su�cient to meet the given error bounds. Consequen-
tially, the size of the compressed representation of a function is determined by the
number of pattern vectors needed, and their position within the pattern set. This has
some notable implications on the behaviour of the compression algorithm. Even if a
function can be adequately described by a single vector, we still require k values for
its compressed representation if that vector is at position k in the set. This problem
could of course be solved by storing only coe�cients for subset of pattern vectors
actually needed to describe the function. This approach is not pursued here because
it drastically increases the complexity of �nding the compressed representation of a
function: While there are only S possible pre�xes of the coe�cient vector, there are
2S subsets of vectors that might be used.

Assuming that the problem described above adversely a�ects PCA-based com-
pression, it is appropriate to �nd and use multiple sets of pattern vectors, and to
represent each function through only one of them. This approach makes it more
likely that the pattern vectors needed to describe a given function are among the
�rst of the respective set, which leads to more e�cient compression.

The pair formed by a set of functions and the pattern vectors used to describe the
functions is called a cluster. A determining characteristic of a cluster is the number
of functions it contains, the cluster's size. While functions in a very small cluster
may be e�ciently compressed, the overhead induced by the pattern vectors will likely
be too large. It is only sensible to speak of �compression� at all, if the functions in
a cluster clearly outnumber the pattern vectors.

4.2 Algorithm

In this approach, clusters of similar functions are chosen based on peak patterns. To
determine criteria for classifying the functions into subsets, we examine the general
distribution of peaks in the data set. Based on these observations, several intervals
from the de�nition domain of the functions are selected and the functions are classi�ed
based on how many peaks they have in each interval. This results in a partitioning
of the data set into multiple subsets, which are then compressed separately using a
simple PCA-based algorithm. To limit the number of subsets and to avoid overly

24 4 MANUAL CLUSTERING

1 prog SimplePCA(D, # Data s e t .

2 e , # Error bounds .

3 s) # Sampling ra t e .

4 do

5 sample (D, s) ;
6 normal ize (D) ;
7 PC = principal_components (D) ;
8 for each f in D
9 do

10 i f pca_compress (f , PC, e) < imai_iri_compress (f , e)
11 then

12 # Use PCA compression f o r f .

13 else

14 # Use Imai−I r i compression f o r f .

15 endif

16 done

17 done

Listing 1: The simple PCA algorithm.

small subsets, subsets containing less than 5% of the non-constant functions of the
data set are not treated separately, but are instead merged into a single set.

4.2.1 The Simple PCA Algorithm

The simple PCA algorithm uses normalization (Subsection 3.3) and calculates the
compressed representation of the functions as described in Subsection 3.1. For each
function, either the coe�cient vector resulting from the PCA process, or the output
of the Imai�Iri algorithm is used, depending on which one is smaller. A pseudocode
representation of the simple PCA algorithm is shown in Listing 1.

4.3 Experiments

4.3.1 Classi�cation

As described in Subsection 3.5, the peak search algorithm requires two parameters,
the window size W and the relative di�erence r. For the experiments in this section,
the peak search was conducted with values of 0.5, 1, 2 and 3 hours for W and 10%
and 20% for r.

The peak search �nds approximately 2.2 to 2.6 peaks per non-constant function on
average. As an example, Figure 8 shows the distribution of the peaks for W=2h and
r=10%. The other parameter con�gurations produce similar results. In the �gure,
three regions with a higher concentration of peaks are visible. The three intervals
I1 = [6h, 10h), I2 = [10h, 15h), and I3 = [15h, 18h) containing these regions are
selected as marked by the dashed lines in Figure 8 and used to classify the non-
constant functions of the data set. Figure 9 shows the frequency of the di�erent peak

4.3 Experiments 25

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

N
u

m
b

er
 o

f
p

ea
k

s

Time of day

I1 I2 I3

Figure 8: Example peaks distribution.

patterns found in the data set. The pattern strings in the key of the �gure indicate
how many peaks were found in each of the three intervals.

4.3.2 Compression

The subsets obtained from the classi�cation were compressed using the simple PCA
algorithm described above with a sampling distance ∆S of �ve minutes and a max-
imum relative error êmax of 1%. The results of these experiments are shown in
Table 2. In addition to the compression ratio rcompr (see Section 2.4) the table shows
the fraction of non-constant functions that were PCA-compressed rPCA and the rel-
ative overhead roverhead (Section 2.5) introduced by the compression. The bottom
two rows of the table show the results produced by the Imai-Iri algorithm and the
simple PCA algorithm without clustering are listed for comparison. As the table
shows, the clustering results in approximately twice as many PCA-compressed func-
tions while improving the compression ratio rcompr by approximately one quarter.
While the overhead increases considerably, it is still relatively small compared to the
compressed function data.

While these results suggest that manual clustering can be used to improve the
compression ratio achieved by the simple PCA algorithm (see Listing 1), it is unclear
whether this is due to the speci�c clustering used here or if the algorithm simply
performs better on smaller data sets. To answer this question, we applied the simple

26 4 MANUAL CLUSTERING

0%

20%

40%

60%

80%

100%

10% / 0.5h 10% / 1h 10% / 2h 10% / 3h 20% / 0.5h 20% / 1h 20% / 2h 20% / 3h

R
e
la

ti
v

e
 n

u
m

b
e
r

o
f

fu
n

c
ti

o
n

s

Parameter values (r/W)

0 1 1 0 1 0 1 2 1 0 0 1 1 0 1 1 1 1

Figure 9: Frequencies of the peak patterns.

r W rcompr rPCA roverhead

10% 0.5 h 10.658% 63.5% 0.15%
1h 10.729% 63.4% 0.16%
2h 10.773% 62.2% 0.14%
3h 11.199% 56.7% 0.12%

20% 0.5 h 10.369% 62.9% 0.20%
1h 10.427% 63.2% 0.19%
2h 10.785% 60.8% 0.16%
3h 10.856% 59.0% 0.16%

Imai-Iri 14.256% 0% 0%
Not clustered 13.283% 28.9% 0.03%

Table 2: Compression results for di�erent peak search parameters.

4.3 Experiments 27

PCA algorithm to ten random sample data sets containing 5% of the non-constant
functions of the original data set each. For each of these samples, the algorithm
produced results similar to those produced for the entire data set (listed in the last
row of Table 2), albeit with much higher overhead. Furthermore, random partitions
of the data set with varying subset sizes also produced the same results.

28 5 MODEL-BASED TRANSFORMATION

5 Model-Based Transformation

In this section, we discuss an attempt improve the compression achieved by the simple
PCA algorithm presented in Section 4 through another preprocessing step. The basic
idea is to modify the travel time functions in a way that increases the similarities
between them, hopefully improving the e�ciency of the PCA-based compression.

5.1 Algorithm

We de�ne and test the model-based transformation approach with the 1�0�1 subset
produced in Section 4, that is the subset of functions containing one peak between six
and ten o'clock in the morning and one between three and six o'clock in the afternoon.
This is done because these functions match our intuition of a typical commuter tra�c
pattern with rush hour peaks in the morning and afternoon. However, the approach
can be analogously applied to the other subsets found in Section 4 that have at most
one peak per interval.

Figure 10 shows the distribution of the peaks found in the 1�0�1 set for r=20%
and W=1h. Peaks outside of I1, I2, and I3 were omitted for clarity. The results
of Section 4 showed that a partitioning of the data set based on the number and
location of the peaks of the functions can improve the compression ratio achieved
by the simple PCA algorithm. But as can be seen in Figure 10, the peaks are still
distributed over the respective interval. The approach presented in this section is
intended to modify the functions in a way that makes their peaks more similar both
in shape and location, hopefully leading to improved compression by the simple PCA
algorithm.

First, we attempt to obtain a better understanding of the shapes and locations
of the peaks. To re�ne the information returned by the peak search algorithm (Sec-
tion 3.5), a model based on Gaussian functions is �tted to each function.

5.1.1 Model

The model used in this approach approximates the peaks of the functions with Gaus-
sian functions gx,h,σ(t) as de�ned in Equation 20. Gauss functions are a natural choice
for this purpose because they have a peak-like shape and converge towards zero on
both sides of the peak. The location, height and width of the peak can be adjusted
through the x, h, and σ parameters respectively.

For a function with two peaks, like those in the 1�0�1 set, the approximation
in the model consists of a constant term c and three Gaussian functions�one base
function and one for each peak�that are added up (see Equation 21). The constant
term c models the minimum travel time of the road segment that is independent of
the tra�c situation. The base Gaussian function models a general increase in travel
time during the day time. The two remaining Gaussian functions model the peaks.

5.1 Algorithm 29

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

N
u

m
b

er
 o

f
p

ea
k

s

Time of day

I1 I2 I3

Figure 10: Distribution of peaks in the 1�0�1 set for r=20%, W=1h.

gx,h,σ(t) := h · exp

(
−1

2
·
(
t− x
σ

)2
)

(20)

f ∗(t) = c+
2∑
i=0

gxi,hi,σi(t) (21)

5.1.2 Model-Fitting

To �t the model de�ned above to a given travel time function f , we must determine
values for the parameters c and xi, hi, σi for i = 0, 1, 2 that minimize the di�er-
ence between f and its approximation f ∗. To facilitate this, we de�ne the di�erence
function ∆d(f, f

∗) in Equation 22. The di�erence function approximates the di�er-
ence between f and f ∗ by evaluating both functions at multiples of the sampling
distance d and calculating the sum of the squares of the di�erences. For each travel
time function f the sought after parameters are �rst estimated from the results of
the peak search. These estimates are then re�ned by using a generic optimization
algorithm to minimize ∆d(f, f

∗). We use the Simplex algorithm of Nelder and Mead
[NM65], implemented in the GNU Scienti�c Library, version 1.14 [Gal, p. 394f] for
this minimization. The algorithm �nds a local minimum of the supplied function.

30 5 MODEL-BASED TRANSFORMATION

0

x
-

1

s
-

x
-

2

P

0 x
1 s x

2 P

Figure 11: Example transformation function.

∆d(f, f
∗) =

bPd c∑
i=0

(f(i · d)− f ∗(i · d))2 (22)

5.1.3 Transformation

The location and width information about the peaks of the functions produced by
the �tting step (i.e., the values of x1, σ1, x2, and σ2) are used to unify the shapes of
the functions. For each travel time function f , the piecewise linear transformation
function Tf : [0, P)→ [0, P) is de�ned by �ve data points: P0 = (0, 0), X1 = (x1, x1),
S = (s, s), X2 = (x2, x2), PP = (P, P), where P is the period of the travel time
functions. Figure 11 shows an example transformation function. While the �rst
and last data points P0 and PP are the same for all functions, the remaining three
depend on the xi and σi values produced by the �tting step. X1 and X2 consist of the
locations of the peaks of the function x1 and x2 and their respective mean values x1

and x2 for the entire data set; S consists of the value s as de�ned in Equation 23 and
its mean value s̄. The formula for s is chosen as a weighted average of the locations
of the peaks, putting s closer to the peak with the smaller width σ.

s =
x1σ2 + x2σ1

σ1 + σ2

(23)

5.2 Experiments 31

23

23.5

24

24.5

25

25.5

x
-

1 x
-

2
0:00 6:00 12:00 18:00 24:00

T
ra

v
el

 t
im

e
[m

in
]

Time of day

Original
Approximation

Transformed

Figure 12: Example function with approximation and transformation.

The transformation fT of a travel time function f is calculated by replacing each
data point (x, y) of f with (Tf (x), y), thus moving the peaks of f to the average
position within the data set. Figure 12 shows an example of a travel time function,
its approximation through the Gaussian-based model and the result of the transfor-
mation. The average peak locations x1 and x2 are marked on the x-axis.

fT =
(

(Tf (x1), y1), (Tf (x2), y2), . . . , (Tf (xn), yn)
)

5.2 Experiments

The algorithm described in Section 5.1 was executed on the eight 1�0�1 subsets
resulting from the di�erent peak search parameters used in Section 4. The functions
in the 1�0�1 sets have one peak in each of I1 and I3. Before the compression results
are presented in Section 5.2.2, the sampling behavior of the transformed data is
discussed.

5.2.1 Sampling

In Figure 13, the impact of the transformation on the sampling process is illustrated
by two plots. The plot on the left shows the average mean sampling error ēmean

before and after the transformation for di�erent sampling distances; the plot on the

32 5 MODEL-BASED TRANSFORMATION

right shows the percentage of functions with maximum sampling error ê greater than
1%, again before and after the transformation and for di�erent sampling distances.
The values shown in the plots are the averages of the eight 1�0�1 sets used for the
experiments. While the plots show an expected decrease in sampling error for higher
sampling rates (cf. Section 3.2), they also show a considerably higher sampling error
for the transformed data. The increase in functions with a sampling error ê greater
than 1% is also considerable.

This considerable deterioration in the sampling behavior of the data can be ex-
plained as a direct result of the transformation. As discussed in Section 3.2, the
original data can be sampled relatively e�ectively because many data points of the
travel time functions are located at multiples of 15 minutes. As the transformation
de�ned in Section 5.1 works by moving the data points of the functions, this useful
structure is likely destroyed by the transformation. This e�ect is visible in Figure 14
which shows the average distance of the data points to the closest sampling point in
relation to the sampling distance ∆S. The �gure shows an average relative distance
as low as approximately 18% of the sampling distance for ∆S=15 minutes before the
transformation. In contrast, the same measure for the transformed data is always
approximately 25% of ∆S, which indicates a more uniform distribution of the data
points in the transformed data.

Figure 15 shows an example for the distribution of the relative distance to the
closest sampling point for ∆S=15 minutes which supports this indication. While
approximately 15% of the data points of the original data are located at or very close
to sampling points, the data points in the transformed data are distributed uniformly.

5.2.2 Compression

The simple PCA algorithm (see Section 4.2.1) was executed with sampling distance
∆S=5minutes and maximum relative error ê = 1% . Table 3 gives an overview of
the results. The �rst four columns are similar to Table 2 in Section 4, showing the
values of the peak search parameters r and W (see Section 3.5) and the compression
ratio rcompr and percentage of PCA-compressed functions rPCA achieved by the simple
PCA algorithm on the original data. The �fth and sixth column show rcompr and
rPCA achieved on the transformed data, while the last column shows the compression
ratio achieved by the Imai-Iri algorithm.

The table shows that the transformation failed to achieve the desired improve-
ments. The most striking aspect is the reduction in rPCA to approximately a third
to a quarter of the values achieved without the transformation. The low number
of PCA-compressed function is likely a direct cause of the increase in compression
ratio, which lies for the transformed data only marginally below that achieved by the
Imai-Iri algorithm.

5.2 Experiments 33

0%

0.002%

0.004%

0.006%

0.008%

0.01%

0.012%

0.014%

288 576 1440

A
v

er
ag

e
re

la
ti

v
e

er
ro

r

Number of samples

Without transformation
With transformation

0.001%

0.01%

0.1%

1%

10%

100%

288 576 1440

F
u

n
ct

io
n

s
ab

o
v

e
1

%
 m

ax
.

re
l.

 e
rr

o
r

Number of samples

Without transformation
With transformation

Figure 13: Sampling of transformed function data.

0%

5%

10%

15%

20%

25%

30%

15 min 5 min 2.5 min 1 min

R
el

at
iv

e
d

is
ta

n
ce

 t
o

 n
ex

t
sa

m
p

li
n

g
 p

o
in

t

Sampling distance

Without transformation
With transformation

Figure 14: Comparison of average relative distance to the closest sampling point.

34 5 MODEL-BASED TRANSFORMATION

0%

2%

4%

6%

8%

10%

12%

14%

16%

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

D
at

a
p

o
in

ts

Relative distance

Without transformation
With transformation

Figure 15: Example distribution of the relative distance to closest sampling point for
∆S=15min.

Before transformation After transformation
r W rcompr rPCA rcompr rPCA Imai-Iri

10% 0.5 h 11.96% 42.67% 13.11% 10.40% 13.23%
1h 13.02% 42.18% 14.24% 10.09% 14.36%
2h 9.70% 41.22% 10.52% 12.43% 10.66%
3h 7.99% 37.12% 8.55% 13.62% 8.68%

20% 0.5 h 9.73% 43.89% 10.66% 11.75% 10.79%
1h 9.76% 42.77% 10.67% 11.70% 10.79%
2h 9.27% 41.71% 10.11% 12.41% 10.24%
3h 9.05% 39.69% 8.82% 12.65% 9.95%

Table 3: Results of the model-based transformation approach.

35

1 prog AutomaticClusteringPCA (D) # Data s e t .

2 do

3 while |D| ≥ min_size
4 do

5 C = f i ndC lu s t e r (D)
6 i f C 6= ∅
7 then

8 # Store C.

9 D = D \ C
10 else

11 break

12 endif

13 ImaiIr iCompress (D)
14 done

Listing 2: Basic structure of the automatic clustering algorithm.

6 Automatic Clustering

In this section, the automatic clustering algorithm is described and evaluated. It is
based on the concepts described in Section 3 and employs some additional techniques
devised for this algorithm. The algorithm is similar to the manual clustering approach
presented in Section 4 in so far as it also separates the data set into clusters that
are compressed separately. But while the manual clustering approach chooses the
clusters beforehand, the automatic clustering approach uses the PCA-compression
itself to �nd clusters. After calculating the principal components and PCA-based
compression for a set of functions, some functions are compressed relatively good,
that is they have rImaiIri close to or below one, while others are poorly compressed
with rImaiIri clearly above one. The idea of the algorithm is, that after removing the
poorly compressed functions from the set, the principal component of the resulting
set should be even better suited to the already well-compressed functions, further
improving their compression and thus decreasing their rImaiIri value.

The algorithm is explained by means of pseudocode fragments that omit some
details and use a rather liberal syntax but convey the basic function of the algorithm.

6.1 Algorithm

A pseudocode representation of the basic structure of the automatic clustering algo-
rithm is given in Listing 2. The algorithm uses the findCluster subroutine to �nd
valid clusters in the input data set D. Here, a cluster is considered valid if it is at least
as large as a minimum size min_size that is a parameter of the algorithm. Other
requirements, for example taking into account the PCA-overhead (cf. Section 2.5)
would also be possible. When no more valid clusters can be found, the functions
remaining in D are compressed using the Imai-Iri algorithm and the algorithm termi-
nates.

36 6 AUTOMATIC CLUSTERING

1 prog f i ndC lu s t e r (D) # Input data s e t .

2 do

3 ∆T = Tdecrement

4 T = Tstart − Tdecrement

5 C = D
6 while T − T_{\mathit {decrement }} ≥ 0 and ∆T ≥ ∆Tmin

7 do

8 C' = s t a b i l i z e (C, T − ∆T)
9 i f |C ' | ≥ min_size
10 then

11 C = C'
12 T = T − ∆T
13 else

14 ∆T = ∆T/2
15 endif

16 done

17

18 i f T ≤ 1
19 then

20 return C
21 else

22 return ∅
23 endif

24 done

Listing 3: The findCluster subroutine.

6.1.1 Finding Clusters

The findCluster subroutine outlined in Listing 3 uses a tolerance value T to �nd
optimally compressed clusters that are still valid. The tolerance value is used as
an upper bound for rImaiIri (see Section 3.1.2) of the functions in the cluster and
gradually decreased in the course of the subroutine.

The new cluster C is initialized with all functions remaining in the input data set.
The tolerance value T and the tolerance decrement ∆T are initialized with the Tstart
and Tdecrement parameters, respectively. For the while loop beginning in Line 6, the
invariant �|C| ≥ min_size� holds at all times. The algorithm stabilizes the cluster
at the next tolerance value T-∆T using the stabilize subroutine. If the returned
cluster C' is valid the used tolerance value is stored in T and C' replaces C. Otherwise,
∆T is reduced by half and the loop continues with the cluster C.

The loop continues while T is positive and ∆T is greater than the minimum ∆Tmin .
Once the loop has terminated, the last valid cluster C is returned if it was produced
with a tolerance value not greater than one. Otherwise, ∅ is returned to indicate that
the subroutine failed to �nd a valid cluster. This is necessary because a cluster that
was produced with a tolerance value greater than one might contain functions that
are compressed worse than they would be by the Imai-Iri algorithm.

The stabilize subroutine outlined in Listing 4 repeatedly compresses and prunes

6.2 Experiments 37

1 prog s t a b i l i z e (C, # Clus t e r .

2 T) # Tolerance va lue .

3 do

4 do

5 compress (C)
6 pruned_out = prune (C, T)
7 while pruned_out > 0
8 return C
9 done

Listing 4: The stabilize subroutine.

the cluster. In the compression step the coe�cient vector of each function in the
cluster is calculated (cf. Section 3.1). In the pruning step, all functions for which
rImaiIri(f) > T holds are removed from the cluster. If the number of such functions
is not zero, the cycle is repeated.

When no more functions were removed by the prune step, the cluster is considered
stable. In this state, the functions in the cluster are compressed with pattern vectors
that were calculated only from those functions.

6.2 Experiments

In this subsection, we attempt to determine the in�uence of the parameters of the
algorithm on its performance. Due to the large number of parameters and possible
values and the considerable run time of the algorithm, the parameter space is not
completely covered. Instead, a basic setup with typical values for all parameters is
chosen, and the values for each parameter are varied separately.

6.2.1 Parameters of the algorithm

The output and behavior of the algorithm is controlled by the following parameters.

Error bounds. The error bounds limit the relative error of the approximation pro-
duced by the algorithm. The limit for the maximum relative error êmax is also
used as the maximum error parameter for the Imai-Iri algorithm when a func-
tion cannot PCA-compressed.
The following experiments were conducted with the maximum error êmax of the
approximation limited to 1%. The in�uence of di�erent error bounds on the
results of the algorithm is discussed separately in Section 6.2.4.
The error bounds parameter is the only parameter that directly in�uences the
quality of the approximation. The remaining parameters only in�uence the
achieved compression ratio, the run time of the algorithm and, indirectly, other
quality attributes such as the mean relative error of the approximation.

Sampling rate. The sampling rate as described in Section 3.2 is used to derive a
data matrix suitable for principal component analysis from the set of travel

38 6 AUTOMATIC CLUSTERING

Parameter Abbr. Default Alternative values

Maximum relative error err 1% 0.25% 0.5% 2.5% 5% 10%
Number of samples smp 288 96 144 192 576 960 1440
Normalization norm yes no
Minimum cluster size size 10% 1% 5% 20%
Initial tolerance ts 1.6 1.2 1.4 1.8
Tolerance decrement td 0.2 0.1 0.3 0.5

Table 4: Parameter values

time functions. In addition to in�uencing the compression performance by
introducing a sampling error, the sampling rate has a major in�uence on the
run time of the algorithm.

Normalization. As described in Section 3.3, normalization is an optional operation
that is expected to give low-magnitude functions the same in�uence on the
calculated principal components as high-magnitude ones.

Minimum cluster size. The minimum cluster size is speci�ed relative to the num-
ber of non-constant functions in the data set and determines the minimum num-
ber of functions in a cluster produced by findCluster subroutine described in
Section 6.1.1.

Tolerance setup. The tolerance and adaption mechanism described above is the
main feature of the algorithm. The setup consists of the initial tolerance Tstart
value and the decrement value Tdecrement .

The following experiments are based on a default setup from which variations were
derived for each parameter. The default and alternative values for each parameter are
listed in Table 4. Additionally, the second column of the table lists an abbreviation
for each value that is used in plots and tables.

6.2.2 Overview

To give an overview of the results of the experiments, the more interesting param-
eter sets are plotted in Figure 16, showing the two primary measures compression
ratio rcompr and mean error ēmean . Most of the parameter combinations produced
results similar to those of the default values and were omitted from the plot. The
point labeled �imai-iri� marks the compression ratio and mean error achieved by the
Imai-Iri algorithm for the same error bounds. Table 5 lists the same values for all
experiments that were conducted. Note that default parameter set is listed in each
block of the table to facilitate comparison to the non-default values. The default
values are printed in italics in the �Value� column of Table 5.

As could be expected, all parameter variations achieve better compression than
the benchmark Imai-Iri result. This follows directly from the way the algorithm
works, as it will not use more values than the Imai-Iri algorithm for any function. In

6.2 Experiments 39

Parameter Value ēmean rcompr rPCA

Defaults 0.0722136% 10.0487% 49.3756%
Imai-Iri 0.117485% 14.2559% 0.0%

norm
No 0.103175% 13.4081% 20.6027%
Yes 0.0722136% 10.0487% 49.3756%

size

1% 0.0492049% 6.29995% 72.1952%
5% 0.0648045% 8.9417% 55.7808%
10% 0.0722136% 10.0487% 49.3756%
20% 0.0731979% 11.2144% 47.3614%

smp

48 0.112611% 14.0418% 10.0927%
96 0.076667% 10.1056% 43.8132%
144 0.10083% 13.2704% 22.8581%
192 0.0884565% 11.0551% 31.0062%
288 0.0722136% 10.0487% 49.3756%
576 0.0771094% 10.2677% 42.3242%
960 0.0770273% 10.4436% 43.0677%
1440 0.0764876% 10.1549% 42.1606%

td

0.1 0.078807% 10.5249% 41.7945%
0.2 0.0722136% 10.0487% 49.3756%
0.3 0.0794997% 10.4486% 41.2767%
0.5 0.0816904% 10.5346% 38.7605%

ts

1.0 0.0810634% 10.7033% 41.7174%
1.2 0.0794165% 10.3755% 42.7345%
1.4 0.0803527% 10.5351% 39.7601%
1.6 0.0722136% 10.0487% 49.3756%
1.8 0.0755407% 10.349% 43.6036%

Table 5: Results of the automatic clustering algorithm.

40 6 AUTOMATIC CLUSTERING

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%

0.04% 0.05% 0.06% 0.07% 0.08% 0.09% 0.1% 0.11% 0.12%

C
o

m
p

re
ss

io
n

 r
at

io

Mean error

Defaults

Norm No

Size 1%%

Size 5%%

Size 20%%
Smp 192

Smp 48

Smp 144

Imai-Iri

Figure 16: Overview of the results of the automatic clustering algorithm.

addition to the superior compression performance, the automatic clustering algorithm
also achieves a lower mean error.

The in�uence of the parameters on compression ratio and mean error is rather
mixed. The tolerance-related parameters appear to have little in�uence on the com-
pression result and show no clear correlation between the parameter values and the
the results.

The minimum cluster size parameter shows a clearer behavior with smaller clus-
ter sizes achieving better compression and a smaller mean error. A smaller mini-
mum cluster is however likely result in more clusters and possibly increased function-
independent overhead that is not re�ected in the compression ratio listed here. The
overhead is discussed separately in Section 6.2.3.

The numbers resulting from the di�erent sampling rates appear to con�rm our
assumptions from Section 3.2 at least in part. As expected, a sampling distance of 10
minutes (144 samples per day) yields the worst results, both in terms of compression
ratio and mean error. Surprisingly, the remaining sampling rates except 192 (7.5
minutes distance) yield very similar results. It is unclear whether the lower sampling
error achieved by a high sampling rate fails to improve the performance of the algo-
rithm or whether this e�ect is counteracted by another e�ect of the sampling rate on
the process.

Finally, the normalization proves to be useful, as demonstrated by the signi�-
cantly worse results achieved without it. Note that the overhead induced by the

6.2 Experiments 41

0%

2%

4%

6%

8%

10%

12%

14%

16%

smp48 smp96 smp144 smp192 smp288 smp576 smp960 smp1440
0%

0.2%

0.4%

0.6%

0.8%

1%
C

o
m

p
re

ss
io

n
 r

at
io

R
el

at
iv

e
O

v
er

h
ea

d

Parameter set

Compression Ratio
Relative Overhead

Imai-Iri

Figure 17: PCA�overhead at di�erent sampling rates.

normalization is taken in account when calculating the compression ratio as it is
plotted here.

6.2.3 PCA Overhead

Unlike the Imai-Iri algorithm, PCA-based compression introduces additional over-
head that cannot be directly assigned to a single function. While this overhead is not
taken into account when calculating the compression ratio because we are primar-
ily concerned with the amount of data that has to be retrieved to evaluate a single
function, it shall not be omitted entirely from this work.

For the most part, the overhead consists of the mean and pattern vectors pro-
duced during the PCA-compression. While there is one mean vector for each cluster
produced, the number of pattern vectors per cluster varies. In addition to the number
of vectors, the extent of the overhead obviously depends on the number of sampling
points used, which is the number of elements of these vectors.

Figure 17 shows the compression ratio achieved by di�erent sampling rates and the
induced overhead per PCA-compressed function; the dashed horizontal line indicates
the compression achieved by the Imai-Iri algorithm. As mentioned before, the two
major characteristics of the output, compression ratio and mean error, are only in
part in�uenced by the sampling rate. In contrast, the overhead per compressed
function increases steadily with the sampling rate.

42 6 AUTOMATIC CLUSTERING

The number of base vectors produced by the compression appears to be in�uenced
by multiple factors. The minimum cluster size parameter has the most obvious in�u-
ence on the number of vectors as a smaller cluster size leads to more clusters. This is
re�ected by the results of the experiments, which show that the smallest used cluster
size of 1% produces one base vector for approximately 1000 compressed functions,
while a minimum cluster size of 20% results in one base vector per approximately
6500 functions. The lowest number of vectors was produced by the experiment us-
ing a sampling rate of 48 samples per day, which resulted in one vector per roughly
24,000 compressed functions.

6.2.4 Error Bounds

Figure 18 illustrates the behavior of the algorithm for di�erent values for the maxi-
mum relative error êmax compared to that of the Imai-Iri algorithm. In contrast to
most other results presented in this section, these experiments were conducted with
a minimum cluster size of 5%. At the default size of 10%, the results of the algorithm
for low error bounds are of little use because it is unable to �nd a su�cient number
of clusters. This is still the case for the 0.1% error bound, which is why the corre-
sponding data points in the plot coincide. At higher error bounds, the PCA-based
algorithm produces results superior to those of the Imai-Iri algorithm, with lower
compression ratio and mean error.

6.2.5 Smoothed Input Data

As discussed in 3.4, smoothing of the input data before compression is based on the
assumption that the data may contain measurement noise that adversely e�ects the
compression process. While it seems likely that the algorithm will produce better
compression on smoothed data, it is necessary to compare this to the behavior of
the Imai-Iri algorithm. Experiments were conducted with the �default� parameter
setup used above and êmax limited to 1%. The resulting compression ratio is shown
in Figure 19.

The experiments show that both algorithms pro�t from the smoothing as ex-
pected, although the PCA-based algorithm slightly more so. For all σ values tested,
the output produced by the PCA-based algorithm is approximately 30% smaller than
that produced by the Imai-Iri algorithm. Figure 19 shows the relationship between
the smoothing standard deviation and the resulting compression ratio rcompr for both
algorithms.

Smoothing of the input data does also cause a reduction of overhead. The ratio
of base vectors to compressed functions ranges from approximately 1:4,400 without
smoothing to 1:10,000 with σ = 15.

6.2 Experiments 43

0%

5%

10%

15%

20%

25%

-0.1% 0% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9%

C
o

m
p

re
ss

io
n

 r
at

io

Mean error

Imai-Iri

0.1%

0.25%

0.5%

1%

2.5%

5%

10%

PCA

0.1%

0.25%

0.5%

1%

2.5%

5%

10%

Figure 18: Compression ratio and mean approximation error for di�erent maximum
approximation errors.

0%

2%

4%

6%

8%

10%

12%

14%

16%

 0 1 5 10 15 30

C
o

m
p

re
ss

io
n

 r
at

io

Smoothing standard deviation [min]

PCA
Imai-Iri

Figure 19: Compression ratio on smoothed input data.

44 6 AUTOMATIC CLUSTERING

0 h

10 h

20 h

30 h

40 h

50 h

60 h

70 h

80 h

S
m

p
 2

4

S
m

p
 4

8

S
m

p
 1

4
4

S
m

p
 9

6

T
s

1
.0

S
m

p
 1

9
2

S
iz

e
2

0
%

N
o

rm
 N

o

T
d

 0
.5

T
s

1
.2

T
s

1
.4

T
d

 0
.3

D
ef

au
lt

s

T
s

1
.8

T
d

 0
.1

S
iz

e
5

%

S
m

p
 5

7
6

S
iz

e
1

%

S
m

p
 9

6
0

S
m

p
 1

4
4

0

R
u

n
ti

m
e

Parameter set

Figure 20: Runtimes for the di�erent parameter con�gurations.

6.2.6 Runtime

The runtime of the automatic clustering algorithm was not measured in a strict fash-
ion, but enough data was collected to give a qualitative impression of the runtime and
how it is in�uenced by the parameters of the algorithm. Figure 20 shows the runtime
measured for the di�erent parameter settings. Each experiment was conducted with
eight Intel Xeon processors with 2.67 GHz each in parallel on a machine with 64 GB
of memory.

Evidently, the minimum cluster size and sampling rate parameters have the
strongest in�uence on the runtime of the the algorithm. The sampling rate in�u-
ences the runtime for a single compression step because it directly determines the
size of the data vectors, and thereby the size of the covariance matrix that has to
be calculated for each compression step. The calculation of the covariance matrix
and the calculation of the number of coe�cients needed for each function, which
is in�uenced by the sampling rate in the same way, have proved to be the most
time-consuming parts of the algorithm.

The minimum cluster size parameter does not in�uence the calculation time of
a single compression step, but the total number of compression steps that are per-
formed. This is the case because the while loops in Listing 2 and Listing 3 are
executed more often with a smaller minimum cluster size. The former because more
clusters are produced and the latter because smaller clusters tend to reach a lower

6.2 Experiments 45

Data set Non-constant functions Avg. points per function

Tue � Thu 2,380,285 10.08
Fri 2,153,252 9.28
Sat 1,411,731 6.51
Sun 966,599 5.02
Mon 2,315,677 9.91

Table 6: Basic information about the input data sets.

tolerance value.

6.2.7 Additional Data Sets

In addition to the data set used for the detailed experiments described so far which
contains travel time data for the days from Tuesday to Thursday, the algorithm was
also tested on four further data sets. These data sets are based on the same road
network graph, but contain travel time data for Friday, Saturday, Sunday, and Mon-
day, respectively. The additional sets contain less non-constant travel time functions
than the Tuesday to Thursday set, and those functions have, on average, less data
points. Table 6 shows some more information about the data sets.

The additional data sets were compressed with the automatic clustering algorithm
to a maximum relative error êmax of 1%, using a sampling distance ∆S of �ve minutes
and normalization (cf. Section 6.2.1). For all sets, two compressions were calculated,
with a minimum cluster size of 1% and 10%, respectively.

Table 7 shows the results of the compression. For both PCA-compression variants,
the compression ratio rcompr , the fraction of PCA-compressed functions rPCA, the
mean approximation error ēmean , and the relative overhead roverhead are listed. For
comparison, the compression ratio and approximation error achieved by the Imai-Iri
algorithm are listed as well.

The results for the additional data sets are generally similar to those for the
Tuesday to Thursday data set. There is, although, a divergence between the perfor-
mance of the automatic clustering algorithm and the Imai-Iri algorithm, especially
on the Sunday set. For this set, the Imai-Iri algorithm produces the worst compres-
sion ratio (17.22%), while the compression ratio of the PCA-algorithm is among the
best (9.59%/5.42%). This is likely caused by two factors: As shown in Table 6, the
Sunday set has a relatively small average function size, which leaves little room for
improvement for the Imai-Iri algorithm. For the PCA-algorithm, the function size is
irrelevant because the sampled data the algorithm operates on has always the same
size. On the other hand, The PCA-algorithm does probably bene�t from the more
uniform shape of the travel time functions due to the generally low tra�c on Sundays.

46 6 AUTOMATIC CLUSTERING

Tue � Thu Fri Sat Sun Mon

Imai-Iri rcompr 14.26% 14.8% 17.08% 17.22% 14.07%
ēmean 0.117% 0.107% 0.069% 0.0473% 0.114%

Min. cluster rcompr 10.05% 10.16% 10.82% 9.59% 9.54%
size 10% rPCA 49.38% 47.64% 64.61% 74.67% 53.86%

ēmean 0.0722% 0.0662% 0.0348% 0.0198% 0.0658%
roverhead 0.086% 0.0702% 0.126% 0.128% 0.1%

Min. cluster rcompr 6.3% 6.67% 6.53% 5.42% 5.81%
size 1% rPCA 72.2% 69.65% 83.34% 90.34% 76.69%

ēmean 0.0492% 0.0485% 0.026% 0.0143% 0.0439%
roverhead 0.695% 0.613% 0.729% 0.664% 0.769%

Table 7: Results of the automatic clustering algorithm.

6.3 Application

The experiments discussed in the previous section examine the error introduced by
the compression on a per-function basis. However, when the travel time data is
used for route planning in an application based on the Time-Dependent Contraction
Hierarchies technique, paths in the road network are constructed from multiple road
segments with separate travel time functions.

When the travel time of a path is calculated from the travel time functions of the
links of the path, errors in the travel time functions caused by approximation can
in�uence the resulting total travel time beyond the relative error of each function.
Consider for example a path consisting of two segments A and B with travel time
functions fA and fB. The travel time function for the path fA,B is then given by
Equation 24. Now consider approximations of fA and fB that introduce a relative
error ε as de�ned in Equation 25. If we combine these approximations to calculate
the total travel time for the path, we obtain Equation 26. This means that f ∗B is
evaluated with the potentially incorrect result of f ∗A which might lead to an error
that is not bounded by ε.

fA,B(t) = fA(t) + fB(t+ fA(t)) (24)

f ∗A/B(t) = fA/B(t) · (1 + ε) (25)

f ∗A,B(t) = f ∗A(t) + f ∗B(t+ f ∗A(t)) = (1 + ε)
(
fA(t) + fB(t+ fA(t)(1 + ε))

)
(26)

To determine how the error introduced by the compression impacts the results
of the route planning algorithm, 1,000,000 queries were performed using compressed
travel time data. The travel times and routes calculated by the algorithm were
compared to the optimal values calculated based on uncompressed travel time data
by three measurements. The relative error of the packed routes epacked is the rel-
ative di�erence between the optimal travel time and that calculated based on the
compressed data. This travel time is calculated from the travel time functions of the

6.3 Application 47

segments of the route including shortcuts. The second measure, eunpacked it calculated
after unpacking the rout returned by the algorithm. That is, the shortcuts within
the route are recursively replaced with the shortcuts and road segments they stand
for, eventually producing a route consisting only of real world road segments. The
travel time of the unpacked route is calculated from the approximated travel time
functions of the road segments and compared to the optimal value, yielding eunpacked .
The last measure, etransferred , is the relative error between the real travel time of the
route returned by the algorithm and the optimal value. This is also referred to as
transferring the route into the original road network graph.

The experiments were conducted with two compressed data sets from Section 6.2,
the �defaults� set and the one using 1% relative cluster size because it achieved
the best compression ratio of all sets. For comparison, the same experiments were
conducted with a data set compressed only with the Imai-Iri algorithm. All three
were compressed to a maximum relative error êmax of 1%.

The following �gures show the density of epacked , eunpacked , and etransferred for the
three data sets within the interval from 0 to 1%, respectively. For all of them, more
than 99,99% of the queries produced an error within that interval. To calculate the
density, the interval was divided into 100 sub-intervals and the number of queries
was counted for each sub-interval.

Figure 21 shows the density of the relative error of in the packed routes, epacked .
Contrary to our apprehension, the error for the travel times of the paths is not higher
than the maximum approximation error of the path segments. Similar to the results
in Section 6.2, the Imai-Iri compressed data set produces the highest average error,
followed by the �defaults� set and �size0.01� sets.

Figure 22 shows the density of the relative error after unpacking the routes,
eunpacked . As the �gure shows, the error for unpacked routes is actually lower on
average than for the still packed routes shown in Figure 21.

Finally, Figure 23 shows the the distribution of the relative di�erence between the
real travel time of the route calculated from the compressed data and the travel time
of the optimal route, etransferred . For this measure, the di�erence between the three
compression variants is only marginal. It is noteworthy, that the real travel time is
virtually optimal for the vast majority of routes calculated based on approximated
data. This indicates that the algorithm �nds the optimal route in most cases, in
spite of using approximated data.

6.3.1 Higher Error Bounds

The previous experiment raises the question how much approximation error we can
allow before the real travel time of the calculated routes di�ers severely from the
optimal time. Figure 24 shows the maximum and average relative travel time error
etransferred for di�erent approximation errors. Evidently, even relatively high approx-
imation errors produce only a relatively low average error in the real travel time of
the calculated route.

48 6 AUTOMATIC CLUSTERING

0%

0.5%

1%

1.5%

2%

2.5%

3%

3.5%

4%

0% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1%

Q
u

e
ri

e
s

Relative error

Defaults
size0.01
Imai-Iri

Figure 21: Density of the relative travel time error of packed paths epacked .

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

0% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1%

Q
u

e
ri

e
s

Relative error

Defaults
size0.01
Imai-Iri

Figure 22: Density of the relative travel time error of unpacked paths eunpacked .

6.3 Application 49

0.0001%

0.001%

0.01%

0.1%

1%

10%

100%

0% 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1%

Q
u

e
ri

e
s

Relative error

Defaults
size0.01
Imai-Iri

Figure 23: Density of the relative error of real travel times etransferred .

1e-05%

0.0001%

0.001%

0.01%

0.1%

1%

10%

0.1% 0.25% 0.5% 1% 2.5% 5% 10% 20%

R
el

at
iv

e
tr

av
el

 t
im

e
er

ro
r

Maximum approximation error

Max. error
Avg. error

Figure 24: Average and maximum travel time error etransferred for di�erent approxi-
mation errors.

50 6 AUTOMATIC CLUSTERING

0.001%

0.01%

0.1%

1%

Not smoothed 1 5 10 15 30

A
v

er
ag

e
re

la
ti

v
e

er
ro

r

Smoothing standard deviation [min]

epacked
eunpacked

etransferred

Figure 25: Average relative travel time errors on smoothed input data.

6.3.2 Smoothed Input Data

As the route planning algorithm appears to cope relatively well with approximated
data, it is interesting to examine the e�ect of smoothed input data on the route plan-
ning. As discussed in Section 6.2.5, smoothing of the input data can considerably
improve the compression achieved by the automatic clustering algorithm. Figure 25
shows the average relative travel time error for smoothed input data that was com-
pressed with a maximum relative error êmax of 1%. Similar to the previous exper-
iments, the �rst column shows the error for the packed routes epacked , the second
column shows the relative travel time error after unpacking the shortcuts eunpacked ,
and the third column shows the relative di�erence between the real travel time of the
route found by the algorithm and the travel time of the optimal route, etransferred .

It appears that only eunpacked is a�ected by the smoothed input data as it increases
considerably. The other two measures change only marginally.

51

7 Conclusions

Of the three approaches presented in this work, two manage to signi�cantly improve
the compression of the travel time data compared to the algorithm by Imai and Iri.
The�albeit quite complex�automatic clustering algorithm even surpasses it by as
much as a factor two. In spite of the stronger compression, both approaches produce
a lower average approximation error than the Imai-Iri algorithm.

Furthermore, experiments show that the introduced approximation error does not
substantially impair route planning based on the compressed data.

7.1 Future work

The compression of the travel time data could be further improved by an optimized
low-level coding of the data similar to the work of C. Vetter et al. on the Contraction
Hierarchies graph structure [SSV08].

It would also be interesting to further investigate the transformation approach
described in Section 5. To improve this approach, it would be necessary to devise a
transformation that avoids the sampling-related problems introduced by the approach
presented in this work.

The original motivation for this work was the use of time dependent route planning
on mobile devices. To complete this, the next step would be to implement the
decompression procedure for the devised compression methods and to integrate it
into existing route planning implementations for mobile devices.

52 REFERENCES

References

[BDSV09] Batz, G. V., Delling, D., Sanders, P., Vetter, V.: Time-Dependent Con-
traction Hierarchies. In: Proceedings of ALENEX 2009, SIAM, 2009.

[FBM95] Falk, M., Becker, R., Marohn, F.: Angewandte Statistik. Springer, Heidel-
berg a. o., 1995, p. 297�315.

[Gal] Galassi, M. et al.: GNU Scienti�c Library Reference Manual (3rd Ed.),
Network Theory Ltd., 2009.

[GSSD08] Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hier-

archies: Faster and simpler hierarchical routing in road networks. In: Mc-
Geoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, p. 303�318. Springer, Hei-
delberg, 2008.

[Hot33] Hotelling, H.: Analysis of a complex of statistical variables into principal

components. In: J. Educ. Psychol., 24, p. 417-441, 498-520, 1933.

[II87] Imai, H., Iri. M.: An optimal algorithm for approximating a piecewise linear

function. In: Journal of information processing, 9(3):159�162, 1987.

[Jol86] Jolli�e, I. T.: Principal Component Analysis, Springer Series in Statistics,
Springer�Verlag New York, 1986

[Neu09] Neubauer, S.: Space E�cient Approximation of Piecewise Linear Functions,
Institute for Theoretical Computer Science, Algorithmics II, 2009.

[NM65] Nelder, J. A., Mead, R.: A simplex method for function minimization. Com-
puter Journal, 1965, vol 7, p. 308�313.

[Pea01] Pearson, K.: On lines and planes of closest �t to systems of points in space.

In: Phil. Mag. (6), 2, p. 559�572. 1901.

[SSV08] Sanders, P., Schultes, D., Vetter, C.: Mobile Route Planning. In: Halperin,
D., Mehlhorn, K. (eds.): ESA 2008, LNCS 5193, p. 732�743, Springer,
Heidelberg 2008.

	German Summary
	Introduction
	Motivation
	Problem statement
	Related work

	Foundations
	Piecewise Linear Functions
	The Imai-Iri Algorithm
	Principal Component Analysis
	Compression Ratio
	Overhead
	Error Measures
	Implementation

	Building Blocks
	PCA-Based Compression
	Run Length Coding
	Comparison to the Imai-Iri Algorithm

	Sampling
	Distribution of the Data Points
	Sampling Error
	Memory and Runtime Requirements

	Normalization
	Smoothing
	Peaks

	Manual Clustering
	Clustering
	Algorithm
	The Simple PCA Algorithm

	Experiments
	Classification
	Compression

	Model-Based Transformation
	Algorithm
	Model
	Model-Fitting
	Transformation

	Experiments
	Sampling
	Compression

	Automatic Clustering
	Algorithm
	Finding Clusters

	Experiments
	Parameters of the algorithm
	Overview
	PCA Overhead
	Error Bounds
	Smoothed Input Data
	Runtime
	Additional Data Sets

	Application
	Higher Error Bounds
	Smoothed Input Data

	Conclusions
	Future work

	References

