
2. Our approach: Hashing and Sorting
mixed in a single operator

Key observation: Hashing is the same as Sorting by hash value!

Idea: design an aggregation operator like a Divide’n’Conquer sort
algorithm on the hash values of the grouping attributes.

Use two subroutines in each level of recursion:

 “Hashing”: insert (and aggregate) into series of hash tables, each
of cache size efficient (sort of).

 “Partitioning”: append (w/o aggregation) to hash-partitions (like
radix sort) only sequential access efficient.

Example:

 The two routines produce a mix of hash tables and partitions.
 Some groups may still occur several times after the first pass we

recurse into hash ranges of all intermediate results combined
until every (sub)range of hash values is fully aggregated.

 Next question: when to use which routine?

SAP HANA
Database Campus

Cache-Efficient Aggregation: Hashing Is Sorting
Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, Franz Färber

5. Outlook
What else to expect in the paper?
 How to parallelize?
 How to integrate with JiT and column-wise processing?
 How to tune hashing and sorting to modern hardware?
 How to determine thresholds?
 Why does it also work well in presence of skew?

SIGMOD, June 3, 2015

1. Textbook aggregation algorithms
 Hash-Aggregation: Insert every row into hash map with grouping

attributes as key and aggregate to existing intermediate result.
 In-cache processing of small number of groups.

 Sort-Aggregation: Sort input by grouping attributes, then
aggregate consecutive rows in a single pass.

 Efficient external sort for large number of groups.

 Traditional approach: Optimizer selects physical operator based
on cardinality estimation error prone.

M = cache size
B = block size
N = input size
K = output size

3. Our adaptation mechanism
 Start with Hashing until hash table full.
 If Hashing was “worth it”, i.e., if the input was aggregated

“enough”, thus reducing the amount of work for recursive
processing, do Hashing again.

 Otherwise do Partitioning for “some time”, then start over.
 The paper gives quantifications for “enough” and “some time”.

Without prior information, this mechanism adapts to the data by:
 ending recursion with in-cache hashing as early as possible,
 using the extremely fast partition routine (97% of the speed of

memcpy) as long as necessary.

4. Evaluation: Comparison with prior work

Result:
 Our algorithm (“Adaptive”) faster than all others [1,2] for K > 220.
 Up to factor 3.7 speedup to second best.

[1] John Cieslewicz, Kenneth A. Ross. Adaptive Aggregation on Chip Multiprocessors. In
PVLDB, 2007.
[2] Yang Ye, Kenneth A. Ross, Norases Vesdapunt. Scalable Aggregation on Multicore
Processors. In Proc. of DaMoN, 2011.

1 level of recursion
2 levels

3 levels

2 Xeon E7-8870 CPUs
(each 10 cores),

uniform distribution.

T = runtime
P = #cores (20)
N = #input rows (232)
C = #columns (1)

2 Xeon E7-8870 CPUs
(each 10 cores),

uniform distribution.

T = runtime
P = #cores (20)
N = #input rows (232)
C = #columns (1)

(0100,b,3) (0010,a,7) (1110,c,2) (0100,b,4) (1100,e,3) (0100,b,6)
(0100,b,2) (1001,d,6) (0100,b,5) …

(0010,a,7) (1110,c,2)

(0100,b,6) (1100,e,3)

hash table 1:

hash table 2:

(0100,b,2) (0100,b,5) … (1001,d,6) … partitions:

 input:
(hash, group, value)

1st level of recursion

(1100,
e,3)

(1110,
c,2)

(1001,
d,6)

hash table (part):

(0010,
a,7)

hash table (part):

2nd level of recursion

result:

(0100,b,7)

(0100,
b,20)

 b: 3+4 = 7

b: 7+6+2+5 = 20

hash range “0*” hash range “1*”

Hashing

Partitioning

