

Scalable Kernelization for Maximum Independent Sets

ALENEX 2018 · 07.01.2018

Demian Hespe, Christian Schulz, Darren Strash

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

www.kit.edu

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

- Large networks with structure
- \Rightarrow millions or billions of nodes

1 Demian Hespe, Christian Schulz, Darren Strash – Scalable Kernelization for Maximum Independent Sets

- Large networks with structure
- \Rightarrow millions or billions of nodes
- Social networks (people and their connections)

- Large networks with structure
- \Rightarrow millions or billions of nodes
 - Social networks (people and their connections)

Road networks (road segments and intersections)

- Large networks with structure
- \Rightarrow millions or billions of nodes
 - Social networks (people and their connections)

Road networks (road segments and intersections)

Biological networks (proteins and their interactions)

Maximum Independent Sets

Independent Set (IS) Given a graph G = (V, E), find $I \subseteq V$ such that $\forall u, v \in I : \{u, v\} \notin E$

Find **Maximum** IS (MIS) *I*: for all IS *I'* of $G: |I| \ge |I'|$

Maximum Independent Sets

Maximum Independent Sets

 $I \subseteq V$ is a Maximum Independent Set $\Leftrightarrow V \setminus I$ is a Minimum Vertex Cover $I \subseteq V$ is a Maximum Independent Set of $G = (V, E) \Leftrightarrow I$ is a Maximum Clique of $\overline{G} = (V, \overline{E})$

- Large networks with structure
- \Rightarrow millions or billions of nodes
- Social networks (people and their connections)

Road networks (road segments and intersections)

Biological networks (proteins and their interactions)

- Large networks with structure
- \Rightarrow millions or billions of nodes
- Social networks (people and their connections)
 Application: Partition graph to minimize communication between machines
- Road networks (road segments and intersections)

Biological networks (proteins and their interactions)

- Large networks with structure
- \Rightarrow millions or billions of nodes
- Social networks (people and their connections)
 Application: Partition graph to minimize communication between machines
- Road networks (road segments and intersections) Application: Decrease storage and running time of routing
- Biological networks (proteins and their interactions)

- Large networks with structure
- \Rightarrow millions or billions of nodes
- Social networks (people and their connections)
 Application: Partition graph to minimize communication between machines
- Road networks (road segments and intersections) Application: Decrease storage and running time of routing
- Biological networks (proteins and their interactions) Application: Where can we sample to find new interactions?

Reduction Algorithm *Reduce*:

- Input: G
- Output: G' with $|G'| \leq |G|$

function KERNELMIS(G) $G' \leftarrow \text{REDUCE}(G)$ $I' \leftarrow \text{MIS}(G')$ $I \leftarrow \text{REDUCE}^{-1}(G', I')$ return I

Reduction Algorithm *Reduce*:

Input: *G* Kernel

• Output: G' with $|G'| \leq |G|$

function KERNELMIS(G) $G' \leftarrow \text{REDUCE}(G)$ $I' \leftarrow \text{MIS}(G')$ $I \leftarrow \text{REDUCE}^{-1}(G', I')$ return I

Reduction Algorithm *Reduce*: Kernel Input: G Output: G' with $|G'| \leq |G|$ function KERNELMIS(G) $G' \leftarrow \mathsf{REDUCE}(G)$ $I' \leftarrow \mathsf{MIS}(G')$ $I \leftarrow \text{REDUCE}^{-1}(G', I')$ return /

Motivation

Motivation

Motivation

Contribution

No reduction in *G* and $N_G(v) = N_{G'}(v) \Rightarrow$ No reduction in *G*'

Isolated Clique Reduction
 Degree 2 Fold Reduction
 Twin Reduction
 Twin Reduction
 LP Reduction

- Idea: Partition graph into blocks and reduce them separately
- Boundaries problematic

- Idea: Partition graph into blocks and reduce them separately
- Boundaries problematic

- Idea: Partition graph into blocks and reduce them separately
- Boundaries problematic

Idea: Partition graph into blocks and reduce them separately

We want few edges between blocks (small cut)

Idea: Partition graph into blocks and reduce them separately

- We want few edges between blocks (small cut)
- ⇒ ParHIP (part of KaHIP) finds small cuts in parallel [Meyerhenke et al., TPDS'17]

- Idea: Partition graph into blocks and reduce them separately
- Boundaries problematic

- We want few edges between blocks (small cut)
- ParHIP (part of KaHIP) finds small cuts in parallel [Meyerhenke et al., TPDS'17]
 Parallelize LP reduction with parallel maximum bipartite matching [Azad et al., TPDS'17]

- Some blocks take significantly longer than others
- Few changes after a while

- Some blocks take significantly longer than others
- Few changes after a while

- Some blocks take significantly longer than others
- Few changes after a while

- Some blocks take significantly longer than others
- Few changes after a while

Reduction Tracking: Results

Experimental Setup

- Different input graphs with >10M vertices
 - Real world: Web graphs, road networks
 - Synthetic: RGG, RHG, Delaunay triangulations
- Comparison with state of the art (sequential) algorithms:
 - VCSolver [Akiba and Iwata, TCS'16]: Slow but small kernels
 - LinearTime and NearLinear [Chang et al., MOD'17]: Fast but large kernels
 - We use LinearTime as preprocessing step

Experimental Setup

- Different input graphs with >10M vertices
 - Real world: Web graphs, road networks
 - Synthetic: RGG, RHG, Delaunay triangulations
- Comparison with state of the art (sequential) algorithms:
 - VCSolver [Akiba and Iwata, TCS'16]: Slow but small kernels
 - LinearTime and NearLinear [Chang et al., MOD'17]: Fast but large kernels
 - We use LinearTime as preprocessing step

Time vs. Kernel Size

2 x Intel Xeon E5-2683 v4 processors (16 cores each), 512 GB Memory

Time vs. Kernel Size

2 x Intel Xeon E5-2683 v4 processors (16 cores each), 512 GB Memory

Speedup Relative to 2 Threads

2 x Intel Xeon E5-2683 v4 processors (16 cores each), 512 GB Memory

Speedup Relative to 2 Threads

2 x Intel Xeon E5-2683 v4 processors (16 cores each), 512 GB Memory

Using the Kernel for Local Search

Conclusion

- Orders of magnitude smaller than fast methods
- Orders of magnitude faster than algorithms with similar-sized kernels
- Local search shows: Small kernels matter!
 - We find *larger* independent sets *faster*

Future Work

- Distributed memory
- Use faster parallel partitioning
- What about other MIS algorithms that use kernelization?
- Other problems that use kernelization
 - e.g., undirected feedback vertex set, graph coloring problems