Algorithm Engineering for Large Data Sets

Roman Dementiev

Institute for Theoretical Computer Science, Algorithmics II
University of Karlsruhe

Department 1: Algorithms and Complexity
Max-Planck-Institut für Informatik

1 Dec 2006
Outline

1. Introduction
2. Experimental Parallel Disk System
3. The STXXL Library
4. Engineering Algorithms for Large Graphs
5. Engineering Large Suffix Array Construction
6. Porting Algorithms to External Memory
7. Summary
Large Data Sets

Where they come from

- Geographic information systems: GoogleEarth, NASA’s World Wind
- Computer graphics: visualize huge scenes
- Billing systems: phone calls, traffic
- Analyze huge networks: Internet, phone call graph
- Text collections: Google, Yahoo!, etc.

How to process them

- Buy a TByte main memory? \(\Rightarrow\) impossible
- Buy many computers (a cluster)? \(\Rightarrow\) expensive
- Here: how to process very large data sets cost-efficiently
Large Data Sets

Where they come from

- Geographic information systems: GoogleEarth, NASA’s World Wind
- Computer graphics: visualize huge scenes
- Billing systems: phone calls, traffic
- Analyze huge networks: Internet, phone call graph
- Text collections: Google, Yahoo!, etc.

How to process them

- Buy a TByte main memory? ~ impossible
- Buy many computers (a cluster)? ~ expensive
- Here: how to process very large data sets cost-efficiently
RAM Model vs. Real Computer

A straightforward solution

- Use small main memory
 keep data on cheap disks, “unlimited” virtual memory
- Theory: should work (von Neumann (RAM) model)
 - Unit cost memory access
 - No locality of reference
- Practice: terrible performance
 - Random hard disk accesses are 10^6 slower than main memory accesses
 - Strong locality of reference

⇒ I/O is the bottleneck

Roman Dementiev (Uni Karlsruhe & MPI-INF) Algorithm Engineering for Large Data Sets 1 Dec 2006 4/39
The Parallel Disk Model (PDM)

[Vitter&Shriver’1994]

Parameters

- Input size N
- Memory size $M \ll N$
- Block size B
- The number of disks D

Performance

- Minimize the number of I/O steps
- In an I/O step try transfer D blocks
- Minimize the number of CPU instructions

I/O-efficient algorithms \equiv external memory algorithms
Engineering Parallel Disk Systems

Challenges

- Cheap case for \(\geq 8 \) hard disks
- Many fast PCI slots for ATA controllers (no bus bottlenecks)
- Wide Parallel ATA cables worsen airflow (later system use Serial ATA)
- File system scalability: very large files

\[\Rightarrow 375 \text{ MB/s} \approx 98\% \text{ of the peak} \text{ for about 3000 Euro in 2002} \]

\[\Rightarrow \text{Other systems: 10 disks } = 640 \text{ MB/s, 4 disks } = 214 \text{ MB/s} \]
The STXXL Library
I/O-Efficient Software Libraries

Advantages

- Abstract away the technical details of I/O
- Provide implementation of basic I/O-eff. algorithms and data structures
 ⇒ Boost algorithm engineering

Existing Libraries

- TPIE: many (geometric) search data structures
- LEDA-SM: extension of LEDA (discontinued)
 + Good demonstrations of the external memory concepts
 - Do not implement many features that speed up I/O-efficient algorithms
I/O-Efficient Software Libraries

Advantages

- Abstract away the technical details of I/O
- Provide implementation of basic I/O-eff. algorithms and data structures
 ⇒ Boost algorithm engineering

Existing Libraries

- TPIE: many (geometric) search data structures
- LEDA-SM: extension of LEDA (discontinued)
 + Good demonstrations of the external memory concepts
 − Do not implement many features that speed up I/O-efficient algorithms
The STXXL Library

- STL – C++ Standard Template Library, implements basic containers (maps, sets, priority queues, etc.) and algorithms (quicksort, mergesort, selection, etc.)

- STXXL: Standard Template Library for XXL Data Sets

 containers and algorithms that can process huge volumes of data that only fit on disks (I/O-efficient)

 - Compatible with STL
 - Performance-oriented
STXXL Features

Dementiev, Kettner, Sanders

STXXL: The Standard Template Library for Extra Large Data Sets.
ESA 2005, 13th Annual European Symposium on Algorithms

- Transparent parallel disk support
- Handles very large problems (up to petabytes)
- Pipelining saves many I/Os
- Explicitly overlaps I/O and computation
- Avoids superfluous copying
 - in OS I/O subsystem and the library itself
- Compatible with STL – C++ Standard Template Library
 - Short development times
 - Reuse of STL code (e.g. selection alg.)
STXXL Design

Applications

STL-user layer

Containers: vector, stack, set
Algorithms: priority_queue, map
sort, for_each, merge

Streaming layer

Pipelined sorting, zero-I/O scanning

Block management (BM) layer

typed block, block manager, buffered streams,
block prefetcher, buffered block writer

Asynchronous I/O primitives (AIO) layer

files, I/O requests, disk queues,
completion handlers

Operating System
STXXL Design: AIO Layer

- Hides details of async. I/O (portability, user-friendly)
- Implementations for Linux/MacOSX/BSD/Solaris and Windows systems
- Asynchrony provided by POSIX threads or Boost Threads
- Unbuffered I/O support: more control over I/O
STXXL Design: BM Layer

- Block abstraction
- Parallel disk model
- (Randomized) striping and cycling
- Parallel disk buffered writing and optimal prefetching

[Hutchinson&Sanders&Vitter01]
STXXL User Layers

- **STL-user layer**: compatible with STL, vector, stack, queue, deque, priority queue, map, sorting, scanning
- **Streaming layer**: programming with pipelining
Streaming Layer and Pipelining

- EM algorithm \(\Rightarrow\) data flow through a DAG
- Feed output data stream directly to the consumer algorithm
- A new iterator-like interface for EM algorithms
- Basic pipelined implementations (file, sorting nodes, etc.) provided by STXXL
- Saves many I/Os (factor 2–3) in many EM algorithms
Parallel Disk Sorting: an Important Part of STXXL

Sorting is the core routine of almost every I/O-eff. algorithm.

We engineer a parallel disk sorting algorithm and implementation which guarantees:

1. **Optimal** I/O volume \(\text{sort}(N) = O\left(\frac{N}{DB} \log \frac{M}{B} \frac{N}{B}\right) \)

2. Almost perfect overlapping of I/O and computation

Dementiev and Sanders
Asynchronous Parallel Disk Sorting.
SPAA 2003, 15th ACM Symposium on Parallelism in Algorithms and Architectures
I/O-Efficient Multiway Merge Sort

The Algorithm

1. Sort input chunks of size $\Theta(M)$ (aka runs)
2. $\Theta(M/B)$-way merge runs until only one sorted run left
 \[\Rightarrow O\left(\frac{N}{B} \log \frac{M}{B} \right) \text{ I/Os} \]
I/O-Efficient Multiway Merge Sort

The Challenges

1. Overlapping of I/O and computation:
 running time $\approx \max(\text{IOtime}(N), \text{CPUtime}(N))$

2. Disk balancing: $\text{IOtime}(N) \approx O\left(\frac{N}{B} \log \frac{M}{B} \frac{N}{M} \right)$
Run Formation: Easy

Two threads cooperate to build k runs of size $M/2$:

post a read request for runs 1 and 2

thread A:
for $r := 1$ to k do
 wait until run r is read
 sort run r
 post a write for run r

thread B:
for $r := 1$ to $k-2$ do
 wait until run r is written
 post a read for run $r+2$

control flow in thread A

control flow in thread B

time

Stripe data over the disks

$$T_{RF}(N) = \max(2T_{\text{sort}}(\frac{M}{2}) \frac{N}{M}, T_{\text{IO}}(N)) + T_{\text{startup}}$$
External Multiway Merging

The smallest element of a block is a trigger

merger

k sorted runs

prediction sequence σ:

sort pairs $<\text{trigger},\text{block}_i>$

k-merger
Overlapping I/O and Merging

Prediction of delay between issuing two reads is not easy:

Solution (sketch)

1. Integrate $k + 3D$ overlap buffers
2. Special I/O thread strategy
 - $\geq DB$ elements in write buffer \Rightarrow output step
 - $< DB$ elements in write buffer AND D overlap buffers avail. \Rightarrow input step
Overlapping I/O and Merging

Prediction of delay between issuing two reads is not easy:

Solution (sketch)

1. Integrate $k + 3D$ overlap buffers
2. Special I/O thread strategy
 - \geq DB elements in write buffer \Rightarrow output step
 - $< DB$ elements in write buffer AND D overlap buffers avail. \Rightarrow input step
Overlapping I/O and Merging

Prediction of delay between issuing two reads is not easy:

Solution (sketch)

1. Integrate \(k + 3D \) overlap buffers
2. Special I/O thread strategy
 - \(\geq DB \) elements in write buffer \(\Rightarrow \) output step
 - \(< DB \) elements in write buffer AND \(D \) overlap buffers avail. \(\Rightarrow \) input step
Disk Scheduling

- Use randomized striping allocation [Vitter&Hutchinson’2001]
- Prefetch buffer of $m = O(D)$ blocks: In almost every input step, $(1 - O(D/m))D$ blocks from prefetch sequence δ can be fetched [Dementiev&Sanders’2003]

Result

For any ε, $m = \Theta(D/\varepsilon)$ prefetch buffers, merging k sequences with a total N' elements can be implemented in time

$$
\max\left(\frac{2LN'}{(1-\varepsilon)DB}, \tau N'\right) + T_{\text{startup}},
$$

where L is the time to read a block and τ is the time to merge an element.
Disk Scheduling

- Use randomized striping allocation [Vitter & Hutchinson'2001]
- Prefetch buffer of $m = O(D)$ blocks: In almost every input step, $(1 - O(D/m))D$ blocks from prefetch sequence δ can be fetched [Dementiev & Sanders'2003]

Result

For any ϵ, $m = \Theta(D/\epsilon)$ prefetch buffers, merging k sequences with a total N' elements can be implemented in time

$$\max\left(\frac{2LN'}{(1-\epsilon)DB}, \tau N'\right) + T_{\text{startup}},$$

where L is the time to read a block and τ is the time to merge an element.
STXXL Performance: Sorting

2GHz Xeon, 1GByte RAM, 2 GByte input, 32-bit keys
runs of size 256 MByte, g++ 3.2

Single disk
I/O bandwidth of 45.4 MB/s
= 95% of peak bandwidth of the disk

Eight disks
I/O bandwidth of 315 MB/s
Sorting Performance: I/O Bottleneck Disappears

Changing element size

- 16 GByte input, 32-bit keys, $D = 8$, runs of size 256 MByte, g++ 3.2
- elem. size $\geq 64 \Rightarrow$ merging is I/O bound
- elem. size $\geq 128 \Rightarrow$ run formation is I/O bound
- For small elements I/O is not the bottleneck
STXXL Performance

- All other STXXL algorithms and data structures are benchmarked in the thesis against LEDA-SM, TPIE and Berkley DB (B-tree)
- STXXL implementations outperform or compete with the opponents
Engineering Algorithms for Large Graphs
Challenge

Can we compute Minimum Spanning Trees (Forests) for really huge graphs?

Dementiev, Sanders, Schultes, and Sibeyn
Engineering an External Memory Minimum Spanning Tree Algorithm.
TCS 2004: 3rd IFIP International Conference on Theoretical Computer Science
A Practical Approach

Sketch of the algorithm

1. Reduce the node set V merging nodes and finding some MST edges until $|V| = O(M)$
2. Run Kruskal’s algorithm keeping forests in internal memory (Union-Find)

Two implementation variants

- Node reduction using `stxxl::priority_queue`: very simple, only 12 lines of C++/STXXL code, CPU-bound
- Bucket version: based on `stxxl::stacks`, linear internal work

Results

- Computed MSTs for 100 GByte graphs in 8 hours on a PC
- Only 2–5 times slower than a good internal algorithm
A Practical Approach

Sketch of the algorithm

1. Reduce the node set \(V \) merging nodes and finding some MST edges until \(|V| = O(M) \)
2. Run Kruskal’s algorithm keeping forests in internal memory (Union-Find)

Two implementation variants

- Node reduction using stxxl::priority_queue: very simple, only 12 lines of C++/STXXL code, CPU-bound
- Bucket version: based on stxxl::stacks, linear internal work

Results

- Computed MSTs for 100 GByte graphs in 8 hours on a PC
- Only 2–5 times slower than a good internal algorithm
A Practical Approach

Sketch of the algorithm

1. Reduce the node set V merging nodes and finding some MST edges until $|V| = O(M)$

2. Run Kruskal’s algorithm keeping forests in internal memory (Union-Find)

Two implementation variants

- Node reduction using `stxxl::priority_queue`: very simple, only 12 lines of C++/STXXL code, CPU-bound
- Bucket version: based on `stxxl::stacks`, linear internal work

Results

- Computed MSTs for 100 GByte graphs in 8 hours on a PC
- Only 2–5 times slower than a good internal algorithm
I/O-Efficient Breadth First Search

Ajwani, Dementiev and Meyer
A Computational Study of External-Memory BFS Algorithms.
SODA 2006, ACM Symposium on Discrete Algorithms

Study two I/O-efficient BFS algorithms
(MunagalaRanade and MehlhornMeyer)

Use STXXL pipelining

Results

- BFS of a real huge WWW crawl graph (130 · 10^6 nodes, 1.4 · 10^9 edges) in about 2 hours on a PC
I/O-Efficient Breadth First Search

Ajwani, Dementiev and Meyer
A Computational Study of External-Memory BFS Algorithms.
SODA 2006, ACM Symposium on Discrete Algorithms

- Study two I/O-efficient BFS algorithms (MunagalaRanade and MehlhornMeyer)
- Use STXXL pipelining

Results
- BFS of a real huge WWW crawl graph (130 · 10^6 nodes, 1.4 · 10^9 edges) in about 2 hours on a PC
I/O-Efficient Breadth First Search

Ajwani, Dementiev and Meyer
A Computational Study of External-Memory BFS Algorithms.
SODA 2006, ACM Symposium on Discrete Algorithms

Study two I/O-efficient BFS algorithms (MunagalaRanade and MehlhornMeyer)
Use STXXL pipelining

Results

- BFS of a real huge *WWW crawl* graph (130 · 10^6 nodes, 1.4 · 10^9 edges) in about 2 hours on a PC
Engineering Algorithms for Large Graphs

In the thesis
- Maximal Independent Set
- Connected Components and Spanning Trees
- Listing All Triangles
- (Heuristics for) Graph Coloring
Engineering Large Suffix Array Construction
Engineering Large Suffix Array Construction

Suffix Array: $SA[i]$ is the starting pos of the i-th smallest suffix of input S

Example:
$S = [b, a, n, a, n, a]$
$SA = [5, 3, 1, 0, 4, 2]$

Applications: full-text index, compression

Our Work
- Design, implement, evaluate several new I/O-efficient algorithms
- Apply pipelining to external memory suffix array construction

Dementiev, Kärkkäinen, Mehnert, Sanders
Better External Memory Suffix Array Construction.
JEA and ALENEX05: Algorithm Engineering and Experiments
Engineering Large Suffix Array Construction

Suffix Array: $SA[i]$ is the starting pos of the i-th smallest suffix of input S

Example:
$S = [b, a, n, a, n, a]$
$SA = [5, 3, 1, 0, 4, 2]$

Applications: full-text index, compression

Our Work

- Design, implement, evaluate several new I/O-efficient algorithms
- Apply pipelining to external memory suffix array construction

Dementiev, Kärkkäinen, Mehnert, Sanders
Better External Memory Suffix Array Construction.
JEA and ALENEX05: Algorithm Engineering and Experiments
Considered algorithms

- Doubling, a-Tupling (quadrupling), doubling+discarding, quadrupling+discarding, difference cover (DC3 aka Skew, I/O-optimal)

Input instances: random and real world

- Concatenation of a random string (make heuristics look bad)
- Gutenberg text collection (≈ 3 GBytes)
- Human genome (small alphabet, ≈ 3 GBytes)
- HTML (text + tags, ≈ 4 GBytes)
- (C++) source code (≈ 500 MBytes)
Results

- Pipelining saves a factor of 3 in I/O volume
 - a speedup of 1.9-2.4 for $D = 1$
- Optimal DC3 outperforms all opponents on all inputs
- Suffix array of a 4 GByte input can be computed in a few hours on a PC with a small main memory
 - Very price-efficient
Porting Algorithms to External Memory

Replace few underlying non-I/O-efficient algorithms by corresponding I/O-efficient versions

We have applied this technique obtaining algorithms for

- Bipartiteness test (aka 2-coloring): $O(sort(|E| + |V|))$ I/Os
- 5-Coloring Planar Graphs: $O(sort(|E| + |V|))$ I/Os
- Finding 1/2-Approximation of Maximum Weighted Matching: $O(sort(|E| + |V|))$ I/Os
- Finding Perfect Matchings in Bipartite Multigraphs: $O(sort(|E| + |V|)\log_2(|E|))$ I/Os

⇒ Can be easily implemented with STXXL
Summary

Engineering from the bottom to the top:

- many disks \rightarrow CPU-bound \rightarrow look at internal algorithms, RAID-0 \rightarrow suboptimal
- Pipelining to save I/Os, overlap I/O and computation, easy to use library, abstraction, rapid prototyping
- Controlled unbuffered asynchronous I/O, scalable file systems
- Bottleneck-free hardware I/O-subsystem with parallel disks
Summary

Engineering from the bottom to the top:

- many disks \leadsto CPU-bound \leadsto look at internal algorithms, RAID-0 \leadsto suboptimal
- Pipelining to save I/Os, overlap I/O and computation, easy to use library, abstraction, rapid prototyping
- **Controlled** unbuffered asynchronous I/O, scalable file systems
- Bottleneck-free hardware I/O-subsystem with parallel disks
Summary

Engineering from the bottom to the top:

- many disks \(\rightarrow\) CPU-bound \(\rightarrow\) look at internal algorithms, RAID-0 \(\rightarrow\) suboptimal
- Pipelining to save I/Os, overlap I/O and computation, easy to use library, abstraction, rapid prototyping
- Controlled unbuffered asynchronous I/O, scalable file systems
- Bottleneck-free hardware I/O-subsystem with parallel disks
Summary

Engineering from the bottom to the top:

- many disks ⇝ CPU-bound ⇝ look at internal algorithms,
 RAID-0 ⇝ suboptimal

- Pipelining to save I/Os, overlap I/O and computation, easy to use library, abstraction, rapid prototyping

- Controlled unbuffered asynchronous I/O, scalable file systems

- Bottleneck-free hardware I/O-subsystem with parallel disks
Conclusion

The STXXL library

- high-performance (parallel disks, pipelining, overlapping of I/O and computation)
- easy to use (STL-compatible)

STXXL applications: solve very large problem instances externally using a low cost hardware in record time

⇒ Price-efficient

Outlook

- Possible efficiency improvements:
 - pipelining+overlapping
 - parallel processing (Multi-Core STL)
 - pipelining+task-based parallelism
- Submit to the BOOST libraries
Conclusion

The STXXL library

- **high-performance** (parallel disks, pipelining, overlapping of I/O and computation)
- easy to use (STL-compatible)

STXXL applications: solve very large problem instances externally using a low cost hardware in record time

⇒ Price-efficient

Outlook

- Possible efficiency improvements:
 - pipelining+overlapping
 - parallel processing (Multi-Core STL)
 - pipelining+task-based parallelism
- Submit to the BOOST libraries
Active STXXL Users We Know About

1. University of Karlsruhe, Germany (text processing, graph algorithms, practical courses)
2. Max-Planck-Institut für Informatik, Germany (graph algorithms)
3. University of Rome “La Sapienza”, Italy (connected components)
4. University of Texas at Austin, USA (Gaussian elimination)
5. Bitplane AG, Switzerland (visualization and analysis of 3D and 4D microscopic images)
6. Philips Research, The Netherlands (differential cryptographic analysis)
7. Dalhousie University, Canada (N-gram extraction)
8. Florida State University, USA (construction of Voronoi diagrams)
9. Montefiore Institute, Belgium (big sparse matrices)
10. University of British Columbia, Canada (topology analysis of large networks)
11. Bayes Forecast, Spain (statistics and time series analysis)
12. Indian Institute of Science in Bangalore, India (suffix array construction)
13. Rensselaer Polytechnic University, USA (suffix array construction)
14. Institut français du pèrole, France (analysis of seismic files)
15. Northumbria University, UK (search trees)
16. University of Trento, Italy (text compression)
17. Norwegian University of Science and Technology in Trondheim, Norway (suffix array construction)