Algorithmen II

Peter Sanders, Thomas Worsch, Simon Gog

Übungen:
Demian Hespe, Yaroslav Akhremtsev

Institut für Theoretische Informatik, Algorithmik II

Web:
http://algo2.iti.kit.edu/AlgorithmenII_WS17.php
1 Algorithm Engineering

A detailed definition

- in general
 [with Kurt Mehlhorn, Rolf Möhring, Petra Mutzel, Dorothea Wagner]

- A few examples, usually sorting

- A little bit on experimental methodology
(Caricatured) Traditional View: Algorithm Theory

Theory

- models
- design
- analysis
- perf. guarantees

Practice

- implementation
- applications

deduction
Gaps Between Theory & Practice

<table>
<thead>
<tr>
<th>Theory</th>
<th>←→</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple</td>
<td>appl. model</td>
<td>complex</td>
</tr>
<tr>
<td>simple</td>
<td>machine model</td>
<td>real</td>
</tr>
<tr>
<td>complex</td>
<td>algorithms</td>
<td>FOR</td>
</tr>
<tr>
<td>advanced</td>
<td>data structures</td>
<td>arrays,…</td>
</tr>
<tr>
<td>worst case max</td>
<td>complexity measure</td>
<td>inputs</td>
</tr>
<tr>
<td>asympt. O(·)</td>
<td>efficiency</td>
<td>42% constant factors</td>
</tr>
</tbody>
</table>
Algorithmics as Algorithm Engineering

algorithm
engineering

models

design

analysis

deduction

perf.–
guarantees

? experiments
Algorithmics as Algorithm Engineering

Algorithm engineering

- models
- design
- analysis
- falsifiable hypotheses
- induction
- experiments
- implementation
- perf.-guarantees
- deduction
Algorithmics as Algorithm Engineering

algorithm engineering

- realistic models
- real. design
- experiments
- implementation
- falsifiable hypotheses
- induction
- real.
- analysis
- perf.– guarantees
- deduction
Algorithmics as Algorithm Engineering

Algorithm Engineering

- realistic models
- design
- real Inputs
- analysis
- falsifiable hypotheses
- induction
- experiments
- implementation
- perf.- guarantees
- algorithm- libraries
- deduction
Algorithmics as Algorithm Engineering

- Algorithm Engineering
- Realistic models
- Design
- Falsifiable hypotheses
- Induction
- Analysis
- Deduction
- Performance guarantees

- Implementation
- Experiments
- Applications
- Deduction
- Real Inputs
- Algorithmic libraries
Bits of History

1843– Algorithms in theory and practice

1950s, 1960s Still infancy

1970s, 1980s Paper and pencil algorithm theory.

Exceptions exist, e.g., [D. Johnson], [J. Bentley]

1986 Term used by [T. Beth],
lecture “Algorithmentechnik” in Karlsruhe.

1988– Library of Efficient Data Types and Algorithms (LEDAs) [K. Mehlhorn]

1997– Workshop on Algorithm Engineering

⇝ ESA applied track [G. Italiano]

1997 Term used in US policy paper [Aho, Johnson, Karp, et. al]

1998 Alex workshop in Italy ⇝ ALENEX
Realistic Models

<table>
<thead>
<tr>
<th>Theory</th>
<th></th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple</td>
<td>appl. model</td>
<td>complex</td>
</tr>
<tr>
<td>simple</td>
<td>machine model</td>
<td>real</td>
</tr>
</tbody>
</table>

- **Careful refinements**
- **Try to preserve (partial) analyzability / simple results**

[Image of a realistic model diagram]
Design

of algorithms that work well in practice

- simplicity
- reuse
- constant factors
- exploit easy instances
Analysis

- Constant factors matter
 Beispiel: quicksort

- Beyond worst case analysis

- Practical algorithms might be difficult to analyze
 (randomization, meta heuristics,…)
Implementation

sanity check for algorithms!

Challenges

Semantic gaps:

Abstract algorithm

\[\text{\(\leftrightarrow\)}\]

C++...

\[\text{\(\leftrightarrow\)}\]

hardware
Experiments

- sometimes a good surrogate for analysis
- too much rather than too little output data
- reproducibility (10 years!)
- software engineering

Stay tuned.
Algorithm Libraries — Challenges

- software engineering, e.g. CGAL
- standardization, e.g. java.util, C++ STL and BOOST
- performance \leftrightarrow generality \leftrightarrow simplicity
- applications are a priori unknown
- result checking, verification
Problem Instances

Benchmark instances for NP-hard problems

- TSP
- Steiner-Tree
- SAT
- set covering
- graph partitioning
- ...

have proved essential for development of practical algorithms

Strange: much less real world instances for polynomial problems
(MST, shortest path, max flow, matching...)
Example: Sorting Benchmark (Indy)

100 byte records, 10 byte random keys, with file I/O

<table>
<thead>
<tr>
<th>Category</th>
<th>data volume</th>
<th>performance</th>
<th>improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraySort</td>
<td>100 000 GB</td>
<td>564 GB / min</td>
<td>17×</td>
</tr>
<tr>
<td>MinuteSort</td>
<td>955 GB</td>
<td>955 GB / min</td>
<td>> 10×</td>
</tr>
<tr>
<td>JouleSort</td>
<td>100 000 GB</td>
<td>3 400 Recs/Joule</td>
<td>???×</td>
</tr>
<tr>
<td>JouleSort</td>
<td>1 000 GB</td>
<td>17 500 Recs/Joule</td>
<td>5.1×</td>
</tr>
<tr>
<td>JouleSort</td>
<td>100 GB</td>
<td>39 800 Recs/Joule</td>
<td>3.4×</td>
</tr>
<tr>
<td>JouleSort</td>
<td>10 GB</td>
<td>43 500 Recs/Joule</td>
<td>5.7×</td>
</tr>
</tbody>
</table>

Also: PennySort
GraySort: inplace multiway mergesort, exact splitting

<table>
<thead>
<tr>
<th>Xeon</th>
<th>Xeon</th>
<th>16 GB RAM</th>
<th>240 GB</th>
<th>Infiniband switch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400 MB / s node all−all</td>
</tr>
</tbody>
</table>
JouleSort

- Intel Atom N330
- 4 GB RAM
- 4×256 GB SSD (SuperTalent)

Algorithm similar to GraySort
Applications that “Change the World”

Algorithmics has the potential to SHAPE applications (not just the other way round)

Bioinformatics: sequencing, proteomics, phylogenetic trees,…

Information Retrieval: Searching, ranking,…

Traffic Planning: navigation, flow optimization, adaptive toll, disruption management

Geographic Information Systems: agriculture, environmental protection, disaster management, tourism,…

Communication Networks: mobile, P2P, cloud, selfish users,…
Conclusion:

Algorithm Engineering \leftrightarrow Algorithm Theory

- algorithm engineering is a wider view on algorithmics (but no revolution. None of the ingredients is really new)
- rich methodology
- better coupling to applications
- experimental algorithmics \ll algorithm engineering
- algorithm theory \subset algorithm engineering
- sometimes different theoretical questions
- algorithm theory may still yield the strongest, deepest and most persistent results within algorithm engineering
More On Experimental Methodology

Scientific Method:

- Experiment need a possible outcome that **falsifies** a hypothesis
- Reproducible
 - keep data/code for at least 10 years
 - documentation (aka laboratory journal (Laborbuch))
 - clear and detailed description in papers / TRs
 - share instances and code

algorithm engineering

- realistic models
- design
- falsifiable hypotheses
- induction
- experiments
- implementation
- perf.-guarantees
- algorithm-libraries
- real Inputs
- appl. engin.
Quality Criteria

☐ Beat the state of the art, globally – (not your own toy codes or the toy codes used in your community!)

☐ Clearly demonstrate this!
 - both codes use same data ideally from accepted benchmarks (not just your favorite data!)
 - comparable machines or fair (conservative) scaling
 - Avoid incomparabilities like:
 “Yeah we have worse quality but are twice as fast”
 - real world data wherever possible
 - as much different inputs as possible
 - its fine if you are better just on some (important) inputs
Not Here but Important

- describing the setup
- finding sources of measurement errors
- reducing measurement errors (averaging, median, unloaded machine...)
- measurements in the creative phase of experimental algorithmics.
The Starting Point

☐ (Several) Algorithm(s)

☐ A few quantities to be measured: time, space, solution quality, comparisons, cache faults, . . . There may also be measurement errors.

☐ An unlimited number of potential inputs. ⇞ condense to a few characteristic ones (size, $|V|$, $|E|$, . . . or problem instances from applications)

Usually there is not a lack but an abundance of data ≠ many other sciences
The Process

Waterfall model?

1. Design

2. Measurement

3. Interpretation

Perhaps the paper should at least look like that.
The Process

- Eventually stop asking questions (Advisors/Referees listen !)
- build measurement tools
- automate (re)measurements
- Choice of Experiments driven by risk and opportunity
- Distinguish mode
 - explorative: many different parameter settings, interactive, short turnaround times
 - consolidating: many large instances, standardized measurement conditions, batch mode, many machines
Of Risks and Opportunities

Example: Hypothesis = my algorithm is the best

big risk: untried main competitor

small risk: tuning of a subroutine that takes 20 % of the time.

big opportunity: use algorithm for a new application

⇒ new input instances