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Abstract

We present a fast algorithm for computing all shortest paths

between source nodes s ∈ S and target nodes t ∈ T . This

problem is important as an initial step for many operations

research problems (e.g., the vehicle routing problem), which

require the distances between S and T as input. Our

approach is based on highway hierarchies, which are also

used for the currently fastest speedup techniques for shortest

path queries in road networks. We show how to use highway

hierarchies so that for example, a 10 000× 10 000 distance

table in the European road network can be computed in

about one minute. These results are based on a simple

basic idea, several refinements, and careful engineering of

the approach. We also explain how the approach can be

parallelized and how the computation can be restricted to

computing only the k closest connections.

1 Introduction

Many logistics problems like tour planning, warehouse
location or vehicle routing problems1 require the knowl-
edge of distances (and sometimes the actual paths) be-
tween all pairs of nodes (s, t) ∈ S × T for node sets
S, T ⊆ V in some road network G = (V,E). For ex-
ample, S = T might be the nodes to be connected by
a traveling salesman tour. In practice, fast heuristics
are used for the logistics problems, and often the initial
step to compute the distances takes more time than to
solve the ‘real’ problem.

The underlying road networks are huge, e.g. cur-
rently around 20 million nodes for Western Europe or
North America. Let us consider two obvious approaches
to solve the problem using |S| = |T | = 10 000 as an ex-
emplary input size. We can find all required paths by
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doing |S| single source shortest path computations. Us-
ing an efficient implementation of Dijkstra’s algorithm,
this approach (DIJKSTRA) would take about 10 000
times 10 s, i.e., about one day. For most applications,
this is too slow. We also could use the query algorithm
from [16] which can answer an s–t query in about one
millisecond. However, making 10 000× 10 000 queries
would need about the same time—one day—as the naive
algorithm for the instance under consideration. How-
ever, we will see that the problem can be solved very
efficiently using an approach that is based on high-
way hierarchies. We review the basic concepts needed
for this paper in Section 2 (see [16] for more details)
and present our algorithm in Section 3. Implementa-
tion details are explained in Section 4. Our code solves
the 10 000× 10 000 problem mentioned above in 67 s—
more than 1 000 times faster than either DIJKSTRA
or 10 0002 highway hierarchy queries.2 This experiment
and many more are presented in Section 5. Section 6
presents generalizations, parallelization, and incremen-
tal computation of shortest connections. A summary
and further directions of research are found in Section 7.

Related Work. There are results that accelerate
many-to-many shortest paths for rather dense graphs
with |E| � |V |, e.g., [19]. However, we are not aware of
specific results that would be useful for road networks
(or any other kind of sparse graphs). In practice, it
is very common to speed up the single-pair variant of
Dijkstra’s algorithm using goal-directed search [10] or
bidirectional search. These techniques need no prepro-
cessing and usually yield a speed-up factor of around
2. We adapted these techniques to the many-to-many
case and observed speed-up factors up to 2 or 3 (de-
pending on the type of input) compared to DIJKSTRA
(cf. [11]). In this paper, however, we aim at speed-
up factors that are orders of magnitude larger, allowing
a certain amount of preprocessing. Of course, we can
use any speedup technique for individual shortest path
queries to perform |S| × |T | queries. But, as the above

2If not otherwise mentioned, execution times are given without

the time for computing the highway hierarchies (about 15 minutes
for the case above).



example has shown, we can do much better than this
direct approach.

For geometric speedup techniques it is not clear
how to adapt them efficiently to the multiple target
case: Goal directed search with preprocessed informa-
tion (e.g., [7, 13]) directs search towards the target.3

Geometric containers [18] and edge flags [14, 12] explore
edges only if they lead to the target.4

Reach based routing [9] prunes edges if they are
sufficiently far away from both source and target. By
pruning edges based on the supposedly closest target,
reach based routing can search for several targets.
However, this is a very conservative assumption and the
involved bookkeeping is likely to be prohibitive unless
|T | is very small or highly clustered.

Besides highway hierarchies, there are several
speedup techniques based on bidirected, non-goal-
directed search. Our approach can be adapted to all
of these techniques. The bidirectional ‘self bounded’
variant of reach based routing [6] only explores nodes
or edges which appear in shortest paths “far enough”
away from source or target. The multi-level method
(e.g., [17, 3]) accelerates search by precomputing con-
nections between nodes from graph separators. We have
only implemented our approach with highway hierar-
chies because this technique is currently fastest both
with respect to query time and preprocessing time.

Very recently, transit node routing [2] has acceler-
ated shortest path queries by another two orders of mag-
nitude. However, transit node routing needs consider-
ably more preprocessing time and space. Furthermore
its preprocessing uses our algorithm to precompute a
huge distance table. Even if the information for transit
node routing is available, our algorithm remains up to
one order of magnitude faster for large distance tables.

2 Highway Hierarchies

The basic idea of the highway hierarchies approach is
that outside some local areas around the source and the
target node, only a subset of ‘important’ edges has to
be considered in order to be able to find the shortest
path. The concept of a local area is formalized by the
definition of a neighborhood node set5 N(v) for each

3In [11] we also show how the landmark approach from [7]

can be turned—by using some of the query nodes as implicit
landmarks—into a technique without preprocessing that achieves

speed-up factors of up to 3 or 4 compared to the DIJKSTRA
approach.

4Although this test could be generalized to test efficiently

whether the edge leads to some target, this is not likely to be

successful if the target nodes spread sufficiently widely.
5In [16], we give more details on the definition of neighbor-

hoods. In particular, we distinguish between a forward and a

backward neighborhood. However, in this context, we would like

node v. We then get a straightforward definition of a
highway network of a graph G = (V,E) that has the
property that all shortest paths are preserved: an edge
(u, v) ∈ E belongs to the highway network iff there are
nodes s, t ∈ V such that the edge (u, v) appears in the
canonical shortest path6 〈s, . . . , u, v, . . . , t〉 from s to t
in G with the property that v 6∈ N(s) and u 6∈ N(t).

The size of a highway network (in terms of the
number of nodes) can be considerably reduced by a
contraction procedure: for each node v, we check a
bypassability criterion that decides whether v should
be bypassed—an operation that creates shortcut edges
(u, w) representing paths of the form 〈u, v, w〉. The
graph that is induced by the remaining nodes and
enriched by the shortcut edges forms the core of the
highway network. The bypassability criterion takes into
account the degree of the node v and the number of
shortcuts that would be created if v was bypassed. For
details, we refer to [16].

A highway hierarchy of a graph G consists of several
levels G0, G1, G2, . . . , GL. Level 0 corresponds to the
original graph G. Level 1 is obtained by computing the
highway network of level 0, level 2 by computing the
highway network of the core G′

1 of level 1 and so on.
Starting with the source node s as root, Dijkstra’s

algorithm grows a shortest path tree that contains
shortest paths from s to all other nodes. A node u
that already belongs to the tree is said to be ‘settled ’:
a shortest path from s to u has been found and
the shortest path distance d(s, u) is known. In the
beginning, only s is settled. A node u that is adjacent
to a settled node v is said to be ‘reached ’: a path
from s to u (via v), which might not be the shortest
one, has been found and a tentative distance from s is
known. As long as there are nodes left that are reached
but not settled, Dijkstra’s algorithm picks the one
with the smallest tentative distance and settles it. A
bidirectional version of Dijkstra’s algorithm can be
used to find a shortest path from a given node s to
a given node t. Two Dijkstra searches are executed
in parallel: one searches from the source node s in
the original graph; another searches from the target
node t backwards, i.e., it searches in the reverse graph←−
G = (V,

←−
E ),

←−
E := {(v, u) | (u, v) ∈ E}. When both

search scopes meet, a shortest path from s to t has been
found.

The highway query algorithm [16] performs a mod-

to slightly simplify the notation and concentrate on the concepts

that are important to understand the subsequent sections.
6For each connected node pair (s, t), we select a unique

canonical shortest path in such a way that each subpath of a

canonical shortest path is canonical as well. For details, we refer
to [15].



ified bidirectional Dijkstra search. We only describe
the forward search. The backward search works analo-
gously. The search is controlled by the current level `
of the search which in turn depends on the neighbor-
hood sets of the nodes. A node s` is called an entrance
point into level ` if it marks the point where the search
switches to level `. The next point s′` on a shortest path
from s over s` that is in the core G′

` of level ` is called
an entrance point into the core of level ` (if s` itself be-
longs to the core of level `, we have s` = s′`). Suppose
the current search path has the form 〈s, . . . , s′`, . . . , u〉
and we consider to relax an edge (u, v). If the node v is
outside the neighborhood of s′` in level `, then the search
switches to level ` + 1. There are two restrictions that
are responsible for the accelerated search: Do not relax
edges which are not in the current level of the highway
hierarchy. Do not relax edges going from nodes in the
core of level ` to bypassed nodes. Note that these rules
have the disadvantage that the usual stopping criterion
for bidirectional search does not work. We have to con-
tinue searching until the search radius of both directions
reaches the length of the shortest path found so far.

3 The Algorithm

Without loss of generality we will assume |T | ≥ |S|.
Otherwise, it is more efficient to apply the algorithm
below to the reverse graph. We will first only explain
how to compute distances d(s, t) for (s, t) ∈ S × T . In
Section 6.1 we outline how this can be generalized to
computing actual shortest paths. Our starting point
is the naive application of |S| × |T | queries using the
highway hierarchy query algorithm from [16] as outlined
in Section 2. We transform this approach step by step
to a more efficient approach so that the preservation of
correctness is evident.

Our first step is to introduce a tuning parameter K
by using only levels 0, . . . ,K of the highway hierarchy.
Since level K can have considerable size, it would be
wasteful to search it from both directions. Rather,
backward search never looks beyond entrance points
to G′

K—the core of level K. This restriction is
implemented by not relaxing the outgoing edges of an
entrance point to the core of level K. Backward search
relies on the forward search to explore enough of level
K to meet it.7

The next and crucial idea is to execute both for-
ward and backward searches only once. More precisely,
we store the (fairly small) search spaces of the backward

7An optimized version of the algorithm in [16] does something
similar—both search directions stop searching at level K and the

remaining distance is covered by a precomputed distance table
between nodes in G′

K .

Level K

s

Figure 1: Schematic view of our asymmetric many-to-
many algorithm. Forward search explores all of level K
whereas the backward searches stop at entrance points
to the core of level K. Note that ‘well separated’ search
spaces only interact at these entrance points.

searches and when we perform a forward search, we ac-
cess the stored information from the backward searches
to emulate the behavior of |S| × |T | pairwise searches.
Figure 1 illustrates our basic approach.

It remains to explain how the information gained
during forward and backward searches can be brought
together efficiently. We do this by associating a bucket
b(v) with each node of the graph. Bucket b(v) stores
a set of pairs (t, d) representing paths from v to
t ∈ T with length d encountered during the backward
searches. During the forward searches, we maintain a
two-dimensional array D of tentative distances for each
source-destination pair. These distances are initialized
to∞ (or some sufficiently large value). When a forward
search settles node v, it scans b(v). For each pair (t, d)
stored in b(v), it sets D[s, t] to min{D[s, t], d(s, v) + d}.

3.1 Refinements.

Fewer Bucket Entries. We can speed up bucket
scanning by reducing the number of bucket entries that
are made during the backward searches. Our algorithm
finds a shortest path P from s ∈ S to t ∈ T if there is at
least one intermediate node v ∈ P such that t is entered
into bucket b(v) during backward search from t and v is
scanned during forward search from s. Every additional
bucket entry with this property costs unnecessary extra
scanning time. We can save such scans based on the
observation that during a highway search the current
search level can differ from the actual level of a node.
Due to this fact, bucket entries at nodes in the core
of level K are made while the search is still in a level
` < K. Because every forward search settles all nodes
in G′

K , a bucket entry (t, d) ∈ b(v) can be omitted if
it corresponds to a path of the form (v, v′, . . . , t) where
both v′ and v are in the core of level K.

Accurate Backward Search. The reduction of
bucket scans described in the previous paragraph



can be strengthened by performing accurate backward
searches. The current version of backward search is not
accurate because we break the search at entrance points
to the core of the topmost level. To make them exact,
backward searches are enlarged: We do not prune the
search at core entrance points and continue until all
nodes in the priority queue are in the core of level K.
This method leads to fewer bucket entries, because the
restriction of the previous paragraph applies more often.

3.2 Analysis. Since highway hierarchies do not give
worst case performance guarantees that hold for arbi-
trary graphs, our analysis will be based on parameter-
izations and assumptions that still have to be checked
experimentally. We nevertheless believe such an analy-
sis to be valuable because it explains the behavior of the
algorithm and helps choosing the tuning parameters.

Let F (K) denote the average size of (forward and
backward) search spaces below the core of level K.
until the entrance points into the core of level K are
found and let f(K) denote the average number of bucket
entries made by a backward search in the core of level
K. If the value of K is clear from the context, we
simply write F and f . Let Dijkstra(k) denote the cost
of Dijkstra-search when exploring k nodes in a road
network.

The backward searches have cost |T | · Dijkstra(F ).
Building buckets costs time O(|T | · F ). The forward
searches have cost about |S| · Dijkstra(F + |G′

K |) for
the search itself where G′

K is the core of level K. To
estimate the cost of scanning buckets during forward
search, we first make the simplifying assumption that
the search spaces of forward searches and backward
searches only meet in the core of level K. Then only the
buckets in entrance points to the core of level K need to
be scanned and the total scanning cost is O(|S| · |T | ·f).
We get a total cost of

|S|·Dijkstra(F +|G′
K |)+|T |·Dijkstra(F )+O(|S|·|T |·f).

If both sets S and T are large, the dominating term is
|S| · |T | ·f . From this we can learn several things. First,
since the constant behind this term is very small, we
can expect very good performance for large problems.
Second, since f(K) can be expected to grow8 with the
maximum search level K, we can actually save time by
choosing K smaller than the maximum possible level.

It is also interesting to look at extreme cases.
When |S| = |T | = 1, it is best to choose K as the

8When K is so large that most backward searches explore most
of level K this is no longer true. However, in that case we can

also expect considerable overlaps in the search spaces below level
K.

highest level and we essentially get the ordinary highway
hierarchy query algorithm (except that we do not stop
the backward search early when source and target are
close together). When T = V , it is best to choose
K = 0 and we get the ordinary Dijkstra algorithm
for (repeated) single source shortest path. In other
words, our algorithm smoothly interpolates between the
best algorithms for these extreme cases and promises
considerable speedups in the middle where none of these
other algorithms works very well.

Reducing K also reduces the bucket scans below
level K that we have so far ignored. The experimental
section will show that bucket scans only dominate cost
for rather large inputs so that we could use random
sampling to estimate the amount of overlap present
in the input. This approach yields a more accurate
cost model that has the potential to determine (near)
optimal values for K.

4 Implementation

We have implemented our many-to-many query al-
gorithm in C++. It uses the highway hier-
archies computed with the code from [16] but
the query is a largely independent implementa-
tion. During backward search, our implementation
records the search spaces by just collecting triples
(intermediate node, target index,distance) in a resize-
able array. The target index is a number between 0
and T − 1 that can be used for direct addressing of
the tentative distance array D. After all backward
searches are completed, we use a variant of counting
sort to group the triples by intermediate node. After-
wards, the now redundant intermediate node informa-
tion is discarded and we end up with a representation
of all buckets concatenated into a single array B hold-
ing pairs (target index,distance). Each node stores its
bucket size and an offset into B indicating the beginning
of its bucket.9

5 Experiments

We performed the experiments on two 64-bit machines
with 8 GB and 16 GB of main memory, respectively,
1 MB L2 cache using one out of two AMD Opteron
processors clocked at 2.6 GHz, running SUSE Linux
10.1. Our programs were compiled with the GNU C++
compiler version 3.4 using optimisation level 3.

We used commercial data for Western Europe with
18 029 721 nodes and 42 199 587 directed edges. Edge
weights correspond to travel time estimates based on 13

9This implementation brought a speedup of more than two
compared to an initial attempt that dynamically filled a C++
vector attached to each node.



road categories. The conventions are the same as in [16].
Constructing the highway hierarchy for this instance
takes about 15 minutes. For choosing S and T we use
random instances of two types. Symmetric instances
with S = T and asymmetric ones with |S| · |T | =
3 240 000. Node sets are chosen uniformly at random
without replacement. We also have nine symmetric
real world instances with |S| = |T | in the range
of 173–2 892 nodes stemming from vehicle routing
problems. We also tried random symmetric instances on
a commercial graph of North America with 18 741 705
nodes and 47 244 849 directed edges. The results are
quite analogous to those for Europe. We refer to [11]
for more details.

Figures 2 and 3 gives running times for different
variants of our algorithm using a 20 000× 20 000 sym-
metric instance and an asymmetric instance, respec-
tively. We can see that reducing the number of bucket
entries without changing the backward search is al-
ways helpful. Investing more into backwards search
pays (only) for large symmetric instances and is highly
counterproductive for asymmetric instances. From now
on we stick to the variant with reducing the number
of bucket entries but without more accurate backward
search. This seems to be a good compromise that always
improves on the basic variant.

Performance for random symmetric instances with
|S| = |T | between 100 and 20 000 with maximum level
K between 5 and 9 is given in Figure 4. We see that
K = 7 is always a good value. Only for very large
inputs, K = 6 is somewhat better. The break even point
is near |S| = |T | = 6 000. Since the inputs from our
applications are usually symmetric and not so big, we
have decided not to implement an automatic algorithm
for selecting the best value of K. It is interesting
to compare this with the running time of alternative
algorithms given in Figure 5. Over the entire range
of input sizes, our algorithm outclasses both Dijkstra’s
algorithm and a naive highway hierarchy algorithm
that performs |S| × |T | individual queries (Highway
Hierarchies2).

Figure 6 shows the performance for asymmetric in-
puts with fixed |S| · |T |. As to be expected, forward
search and bucket scanning dominates for near symmet-
ric instances while backward search dominates for large
|T |. With decreasing |S|, the optimal level for K goes all
the way down from seven to one. But even for |S| = 5
our algorithm with level 1 outperforms Dijkstra’s algo-
rithm. Figure 7 gives the total execution time for an
even larger spectrum of size ratios and also includes the
competing algorithms.

Of course, it is interesting whether our measure-
ments with random data have any relation to the perfor-

mance on real world inputs. Figure 8 compares our real
world instances with random instances of the same size.
An important difference in the inputs is that the real
world data is clustered (mostly in some area the size of
the Netherlands). Overall, the running times are fairly
close together and never more than a factor 1.7 apart.
Hence, using random data for measurements is not com-
pletely unreasonable. The main difference is that real
world instances need considerably more time for bucket
scanning. This is easily explained by the clustering
since search spaces will more often overlap on lower lev-
els of the search. Real world instances need noticeably
less time for backward search and sorting although the
search spaces are very similar in size (data not shown
here). A possible explanation are cache effects. Subse-
quent backward searches from clustered nodes are more
likely to find the graph data they need in cache.

The time for forward search is about the same for
both, real world and random instance families. The
reason is that our current implementation does not
break forward search when all entrance points have been
covered. Thus, it cannot profit from the clustering
of the inputs. We plan to investigate the following
modification of our query algorithm that improves the
behavior exactly for such clustered inputs: A forward
search from s can stop when its remaining search space
is completely in the core of level K and when all
nonempty buckets in the core of level K have been
scanned. This condition can be checked efficiently and
might give significant speedup if sources and targets are
concentrated in a small part of the road network.

6 Generalizations

6.1 Outputting Paths. So far we have only de-
scribed how to compute distances. We now describe
how the algorithm can be modified so that it computes
a data structure that allows output of an (s, t)-shortest
path P (for (s, t) ∈ S × T ) in time O(|P |).

First note, that any path in the highway hierarchy
can be efficiently converted to a path in the input:
Store the constituent edges (from the same level in the
hierarchy) of each shortcut in a separate list. This leads
to a linear increase in space consumption and allows
efficient recursive conversion of a highway hierarchy
edge into a path in the input graph. A more detailed
explanation can be found in [4].

We explicitly store the search spaces of forward and
backward searches in the highway hierarchy in the form
of rooted trees.10 For each query pair (s, t), the shortest

10Alternatively we could use buckets associated with each node

in the highway hierarchy. But this is at least conceptually more
complicated.
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path from s to t consists of a path s–v in the forward
search space from s and a path v–t in the backwards
search space to t. Hence, all we need to store are
pointers to v in the two search spaces. This information
is updated during the main computation whenever a
better s–t path is encountered.

We can save some space by pruning those parts of
the search spaces that are not needed for any shortest
connection. At least for the forward search spaces, this
pruning can be done incrementally whenever a forward
search finishes.

6.2 Computing Shortest Connections Incre-
mentally. In many applications we are not really inter-
ested in a complete distance table. For example, many
heuristics for the traveling salesman problem start with
the closest connections for each node and only compute
additional connections on demand [8]. For such appli-
cations, the asymmetry in our search algorithm is again
helpful. As before, the (small) backwards search is done
for all t ∈ T until all entrance points to level K are en-
countered. The (large) forward searches that require
heavy scanning of buckets are only progressing incre-
mentally after their search frontier is completely in the
core of level K.

To do this we remember the number of entrance
points to level K encountered by each backward search.
Each forward search is equipped with a copy of this
counter array. When the forward search encounters
an entrance point to level K and scans a bucket entry
(t, d) it decrements the counter for t. When the counter
reaches zero, D[s, t] = d(s, t) and we can output the
newly found distance.

6.3 Parallelization. Suppose we have a shared
memory parallel computer with P processing elements
(PEs). Then the problem is easy to parallelize—each PE
performs d|S|/P e forward searches and d|T |/P e back-
ward searches. If P > |S| we can achieve further paral-
lelism by partitioning |T | and the corresponding buckets
into k groups. Now P/k processors are assigned to each
group and perform a forward search from all nodes in |S|
considering only the target nodes in their group. The
algorithm can even be adapted to a distributed memory
machine as long as all of level K and the search space
in levels 0..K − 1 for one node at a time fits into the
local memory of a processor.

6.4 Precomputed Cluster Distances. Suppose a
network has been partitioned into clusters V1

.
∪ · · ·

.
∪

Vk. In [13] it is shown how the cluster distances
d(Vi, Vj) := mins∈Vi,t∈Vj

d(s, t) can be used to make
shortest path search goal directed. For large networks
this method achieves higher speedups and needs less
memory than the successful landmark A∗ method [7,
13]. Using a variation of our algorithm, we can now
compute cluster distances quickly: add new level 0
nodes si and tj for each cluster that are connected
to the border nodes of a cluster by weight zero edges.
Solve the many-to-many problem for S = {s1, . . . , sk}
and T = {t1, . . . , tk}. There is no need to recompute
the highway hierarchy, since the new nodes would be
contracted away in the initial contraction phase anyway.

7 Conclusions

We have presented a simple approach that efficiently
solves the many-to-many routing problem in road net-



works. The basic idea—storing backwards search spaces
in buckets—works with any speedup technique based on
non-goal-directed bidirectional search.

Therefore, it is likely that our approach will work
well in any other graph where such a speedup technique
may prove useful in the future. For example, exper-
iments in [2] indicate that the approach also works if
we optimize for travel distances instead of travel times.
If the tables are big enough (something like table size
> 100 × 100) our algorithm even beats Dijkstra’s algo-
rithm if computing the highway hierarchy is considered
to be part of our task. If this is necessary, it might be
interesting however to find ways to compute a hierarchy
specially tailored to S and T—after all we only need to
preserve shortest paths between nodes in S and T . The
hope would be that this can be done more efficiently
than building a complete highway hierarchy.
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[14] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner,
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