Recap: Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]

Given a text T of length n, the **suffix array** (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

Definition: Longest Common Prefix Array

Given a text T of length n and its SA, the **LCP-array** is defined as

$$LCP[i] = \begin{cases} 0 & i = 1 \\ \max\{\ell : T[SA[i]..SA[i] + \ell) = T[SA[i-1]..SA[i-1] + \ell) \} & i \neq 1 \end{cases}$$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

The table above shows the suffix array SA and the LCP-array for the text $T = a b a b c a b c a b b a$. The LCP-array indicates the length of the longest common prefix between consecutive suffixes in the suffix array.
Naive Computation of the LCP-Array

Task
- given: text T of length n and its suffix array
- wanted: longest common prefix array

Naive Construction
- for each pair $(SA[i-1], SA[i])$
- compare $T[SA[i-1] + \ell]$ and $T[SA[i] + \ell]$
- until missmatch

Running Time
- naive construction requires $O(n^2)$ time
- all-a texts are worst case
- here $LCP[1] = 0$, $LCP[1] = 0$, and $LCP[i] = i - 2$
- only distinguishable character is $\$
Properties of the LCP-Array

- do not compare all suffixes naively
- compare only unknown parts

Lemma: Values in LCP-array

Given a text T of length n, its suffix array SA and LCP-array LCP, then

$$\exists i \in [1, n): \ LCP[i] = \ell > 0 \Rightarrow \exists j \in [1, n): \ LCP[j] = \ell - 1$$

Proof (Sketch)

- let $LCP[i] = k > 0$
- $T[SA[i]..SA[i] + k) = T[SA[i - 1]..SA[i - 1] + k]$
- $T[SA[i] + 1..SA[i] + k) = T[SA[i - 1] + 1..SA[i - 1] + k)$
- not necessarily next to each other in SA
The Inverse Suffix Array

Definition: Inverse Suffix Array

Given a suffix array SA of length n, the inverse suffix array ($ISA = SA^{-1}$) is

$$ISA[SA[i]] = i$$

for $n \in [1..n]$

- inverse permutation as hinted by the name
- where is a suffix in the suffix array
Linear Time Construction [Kas+01]

Function LinearTimeLCP(T, $SA[1..n]$):

1. for $i = 1, \ldots, n$ do $ISA[SA[i]] = i$
2. $\ell = 0$, $LCP[1] = 0$
3. for $i = 1, \ldots, n$ do
 4. if $ISA[i] \neq 1$ then
 5. $j = SA[ISA[i] - 1]$
 6. while $T[i + \ell] = T[j + \ell]$ do
 7. $\ell = \ell + 1$
 8. $LCP[ISA[i]] = \ell$
 9. $\ell = \max\{0, \ell - 1\}$
4. return LCP

- compute suffixes in text order
- use ISA to find lexicographically smaller suffix

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>$$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>ISA</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td>11</td>
<td>13</td>
<td>5</td>
<td>10</td>
<td>12</td>
<td>4</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>⊥</td>
</tr>
</tbody>
</table>
The Φ-Array

Definition: Φ-Array

Given a text T of length n and its suffix array SA, the Φ-array is defined (for $i > 1$) as

$$\Phi[SA[i]] = SA[i - 1]$$

- $\Phi[i]$ gives suffix that is needed for comparison
- not a permutation of SA

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Φ</td>
<td>12</td>
<td>11</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>13</td>
<td>-</td>
</tr>
</tbody>
</table>
Function Φ-Algorithm(T, $SA[1..n]$):

1. $\Phi[n] = SA[n]$ \(\bullet\) $SA[1] = n$; T has sentinel
2. for $i = 2, \ldots, n$ do $\Phi[SA[i]] = SA[i-1]$
3. $\ell = 0$
4. for $i = 1, \ldots, n$ do
5. $j = \Phi[i]$
6. while $T[i + \ell] = T[j + \ell]$ do
7. $\ell = \ell + 1$
8. $\Phi[i] = \ell$
9. $\ell = \max\{0, \ell - 1\}$
10. for $i = 1, \ldots, n$ do $LCP[i] = \Phi[SA[i]]$
11. return LCP

compute LCP-array in text order
reorder LCP-array as final step

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Φ</td>
<td>12</td>
<td>11</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

example: 🎯
correctness and running time similar

Better Linear Time Construction [KMP09]
brief remainder: cache & cache misses

- cache is small but fast memory
- located on CPU
- cache miss is failure to retrieve data from cache
- instead data has to be loaded from main memory

cache sizes (amd ryzen 7 pro 4750u)

- L1: 256 KiB (8 instances)
- L2: 4 MiB (8 instances)
- L3: 8 MiB (2 instances)

Latency Numbers

- L1 cache reference ≈ 1 ns
- L2 cache reference ≈ 4 ns
- main memory reference ≈ 100 ns

Pingo how much slower is a main memory compared to L1 cache?
Better Due to Less Cache Misses

Function LinearTimeLCP(T, $SA[1..n]$):
1. for $i = 1, \ldots, n$ do $ISA[SA[i]] = i$
2. $\ell = 0$, $LCP[1] = 0$
3. for $i = 1, \ldots, n$ do
4. if $ISA[i] \neq 1$ then
5. $j = SA[ISA[i] - 1]$
6. while $T[i + \ell] = T[j + \ell]$ do
7. $\ell = \ell + 1$
8. $LCP[ISA[j]] = \ell$
9. $\ell = \max\{0, \ell - 1\}$
10. return LCP

Function Φ-Algorithm(T, $SA[1..n]$):
1. $\Phi[n] = SA[n]$ \(\oplus\) $SA[1] = n$; T has sentinel
2. for $i = 2, \ldots, n$ do $\Phi[SA[i]] = SA[i - 1]$
3. $\ell = 0$
4. for $i = 1, \ldots, n$ do
5. $j = \Phi[i]$
6. while $T[i + \ell] = T[j + \ell]$ do
7. $\ell = \ell + 1$
8. $\Phi[i] = \ell$
9. $\ell = \max\{0, \ell - 1\}$
10. for $i = 1, \ldots, n$ do $LCP[i] = \Phi[SA[i]]$
11. return LCP

PINGO number of cache misses?
Practical Comparison of Both Algorithms (1/2)

Pizza & Chili Corpus
- http://pizzachili.dcc.uchile.cl/
- de facto standard text corpus

Used in Experiment (50 MB)
- dblp XML-Data providing bibliographic information
- DNA DNA reads from the Gutenberg Project
- english English texts of the Gutenberg Project
- sources Source code from the Linux kernel

Experimental Setup
- used text described above
- on T14s with AMD Ryzen 7 PRO 4750U
- times are average of five runs
Practical Comparison of Both Algorithms (2/2)

<table>
<thead>
<tr>
<th>Text</th>
<th>Naive (ms)</th>
<th>[Kas+01] (ms)</th>
<th>[KMP09] (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dblp</td>
<td>9121.6</td>
<td>3479.0</td>
<td>2567.2</td>
</tr>
<tr>
<td>DNA</td>
<td>6763.0</td>
<td>6152.2</td>
<td>4174.6</td>
</tr>
<tr>
<td>english</td>
<td>99811.4</td>
<td>4899.8</td>
<td>3316.2</td>
</tr>
<tr>
<td>sources</td>
<td>12687.6</td>
<td>3486.4</td>
<td>2536.6</td>
</tr>
</tbody>
</table>
Permuted LCP-Array [KMP09]

Definition: PLCP-Array

- \(PLCP[SA[i]] = LCP[i] \)
- \(PLCP[i] = lcp(i, SA[i - 1]) = lcp(i, \Phi[i]) \)

- \(PLCP[i] \geq PLCP[i - 1] - 1 \)
- \(T[i - 1] = T[\Phi[i] - 1] \implies PLCP[i] \) is reducible
- \(PLCP[i] \) is reducible \(\implies PLCP[i] = PLCP[i - 1] - 1 \)

- only compute irreducible PLCP-values
- sum of all irreducible PLCP-values is \(\leq n \lg n \)
Recap: Pattern Matching with the Suffix Array

Function `SeachSA(T, SA[1..n], P[1..m])`:

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
3. \(i = \lfloor (\ell + r)/2 \rfloor \)
4. if \(P > T[SA[i]..SA[i] + m] \) then
5. \(\ell = i + 1 \)
6. else \(r = i \)
7. \(s = \ell, \ell = \ell - 1, r = n \)
8. while \(\ell < r \) do
9. \(i = \lceil \ell + r/2 \rceil \)
10. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
11. else \(r = i - 1 \)
12. return \([s, r]\)

Lemma: Running Time `SeachSA`

The `SeachSA` answers counting queries in \(O(m \log n) \) time and reporting queries in \(O(m \log n + \text{occ}) \) time.

Proof (Sketch)

- two binary searches on the `SA` in \(O(\log n) \) time
- each comparison requires \(O(m) \) time
- counting in \(O(1) \) additional time
- reporting in \(O(\text{occ}) \) additional time
- comparison of pattern is expensive
remember how many characters of the pattern and suffix match
identify how long the prefix of the old and next suffix is
do so using the LCP-array and
range minimum queries detailed introduction in Advanced Data Structures

Definition: Range Minimum Queries

Given an array $A[1..m]$, a range minimum query for a range $\ell \leq r \in [1, n)$ returns

$$RMQ_A(\ell, r) = \arg \min\{A[k] : k \in [\ell, r]\}$$

- $lcp(i, j) = \max\{k : T[i..i+k)\}$
- $lcp(i, j) = T[j..j+k) = LCP[RMQ_{LCP}(i+1, j)]$
- RMQs can be answered in $O(1)$ time and require $O(n)$ space
during binary search matched
- \(\lambda \) characters with left border \(\ell \) and
- \(\rho \) characters with right border \(r \)
- w.l.o.g. let \(\lambda \geq \rho \)

middle position \(i \)
- decide if continue in \([\ell, i] \) or \([i, r]\)

let \(\xi = lcp(SA[\ell], SA[i]) \) \(\in O(1) \) time with RMQs
Speeding Up Pattern Matching with the LCP-Array (3/4)

- Let $\xi = \text{lcp}(SA[\ell], SA[i])$

$\xi > \lambda$
- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$
- Compare as before

$\xi < \lambda$
- $\xi \geq \rho$ and $P[\xi + 1] < T[SA[i] + \xi]$
- $r = i$ and $\rho = \xi$ without character comparison

<table>
<thead>
<tr>
<th>ℓ</th>
<th>i</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ</td>
<td>$P[1]$</td>
<td>ρ</td>
</tr>
<tr>
<td>ξ</td>
<td>$P[2]$</td>
<td>\ldots</td>
</tr>
<tr>
<td>ξ</td>
<td>$P[\lambda]$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$P[\lambda]$</td>
<td>$T[.]$</td>
<td>$T[.]$</td>
</tr>
<tr>
<td>\ldots</td>
<td>$T[.]$</td>
<td>\ldots</td>
</tr>
<tr>
<td>ξ</td>
<td>$P[\rho]$</td>
<td>\downarrow</td>
</tr>
</tbody>
</table>

SA

18/22 2022-11-14 Florian Kurpicz | Text Indexing | 03 LCP-Array

Institute for Theoretical Informatics, Algorithm Engineering
Lemma:
Using RMQs, SeachSA answers counting queries in $O(m + \lg n)$ time and reporting queries in $O(m + \lg n + occ)$ time.

Proof (Sketch):
- either halve the range in the suffix array ($\xi \neq \lambda$) or
- compare characters of the pattern (at most m)
Back to the Roots: Suffix Tree Construction

- naive in $O(n^2)$ time

- use SA and LCP
- only look at rightmost path in tree
- find deepest node with string-depth $\leq LCP[i]$
- total $O(n)$ time

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$$</td>
</tr>
<tr>
<td>SA</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Conclusion and Outlook

This Lecture
- linear time LCP-array construction
- suffix tree construction based on SA and LCP
- engineered LCP-Array construction algorithms
- cache misses are costly
- interesting properties of the PLCP-array

Linear Time Construction

Next Lecture
- text compression using SA and LCP
One More Thing: The Project

- programming project including
- experimental evaluation and
- short presentation (5 minutes)

The Task

Implement a non-naive suffix array construction algorithm and three LCP-array construction algorithms: (1) the naive algorithm, (2) the Kasai et al. algorithm (LinearTimeLCP), and the (3) \(\Phi \)-Algorithm.

Grading

- documentation
- evaluation
- presentation
- implementation

exact rules can be found on the website

small programming contest
fastest construction algorithms wins
75 % construction time
25 % space overhead

