Advanced Data Structures

Lecture 05: Predecessor and Range Minimum Query Data Structures

Florian Kurpicz
Recap

Succinct Planar Graphs
- using spanning tree of graph and
- special spanning tree of dual graph
- both represented succinctly
- represent planar graph succinctly
- remember whether edge is in spanning tree or not

(Dynamic) Range Min-Max Trees
- use dynamic balanced binary tree
- updating range min-max tree similar to bit vector
- additionally, information in nodes has to be updated
- same dynamic balanced binary tree can be used as foundation for dynamic bit vector and range min-max tree
Predecessor and Successor

Setting
- assume universe \(\mathcal{U} = [0, u) \)
- let \(u = 2^w \)
- sorted array of \(n \) integers \(A \subseteq \mathcal{U} \)
- \(\log n \leq w \) since \(n \leq u \)

Definition: Predecessor & Successor

Given an array \(A \) of \(n \) integers from an universe \(\mathcal{U} \) and an integer \(x \in \mathcal{U} \), the predecessor and successor of \(x \) in \(A \) are
- \(\text{pred}(A, x) = \max\{ y \in A : y \leq x \} \)
- \(\text{succ}(A, x) = \min\{ y \in A : y \geq x \} \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

- \(\text{pred}(3) = 2 \)
- \(\text{pred}(10) = 10 \)
- \(\text{succ}(23) = 32 \)

in what time and space can we solve this using
bit vectors?
Predecessor and Successor: Simple Solutions

- binary search
 - $O(\log n)$ query time
 - no space overhead

- using bit vector
 - $O(1)$ query time
 - $u + o(u)$ bits space

Predecessor of x in Bit Vector

- $z = \text{rank}_1(x + 2)$
- predecessor is $\text{select}_1(z)$

```
0 1 2 3 4 5 6 7 8 9
0 1 2 4 7 10 20 21 22 32
```

- $\text{pred}(3) = 2$
- $\text{rank}_1(21) = 6$
- $\text{select}_1(6) = 10$
- $\text{pred}(19) = 10$

```
11101001001000000000111000000001
```

Predecessor of x **in Bit Vector**

- $z = \text{rank}_1(x + 2)$
- predecessor is $\text{select}_1(z)$
Elias-Fano Coding [Eli74; Fan71] (1/3)

- n integers from universe $\mathcal{U} = [0, u)$
- split number in upper and lower halves
- upper half: $\lceil \log n \rceil$ most significant bits
- lower half: $\lceil \log u - \log n \rceil$ remaining bits

Upper Half
- monotonous sequence of $\lceil \log n \rceil$ bit integers
- not strictly monotonous
- let p_0, \ldots , p_{n-1} be sequence
- use bit vector of length $2n + 1$ bits
- represent p_i with a 1 at position $i + p_i$
- rank and select support requires $o(n)$ bits

Lower Half
- store lower half plain using $\lceil \log \frac{u}{n} \rceil$ bits
- $n \log \lceil \frac{u}{n} \rceil$ bits for lower half

<table>
<thead>
<tr>
<th>Upper Half</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>30</td>
<td>000000</td>
<td>001010</td>
<td>010100</td>
<td>010101</td>
<td>010110</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>000001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000010</td>
<td>000100</td>
<td>000101</td>
<td>000110</td>
<td>001000</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>000010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>000100</td>
<td>000110</td>
<td>001010</td>
<td>001011</td>
<td>001100</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>000100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001000</td>
<td>001001</td>
<td>001010</td>
<td>001011</td>
<td>001100</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>000111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>001100</td>
<td>001101</td>
<td>001110</td>
<td>001111</td>
<td>010000</td>
</tr>
</tbody>
</table>

Elias-Fano Coding [Eli74; Fan71] (1/3)
Elias-Fano Coding (2/3)

Access \(i\)-th Element

- upper: \(select_1(i) - i\)
- lower: corresponding bits from lower bit vector

Predecessor \(x\)

- let \(x'\) be \(\lceil \log n \rceil\) MSB of \(x\)
- \(p = select_0(x') \land select_0(0)\) returns 0
- scan corresponding values in lower till predecessor is found
- how many elements do we have to scan?

PINGO

scanning at most \(O(\log \frac{u}{n})\) elements

<table>
<thead>
<tr>
<th>Upper Bits</th>
<th>Lower Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: 000000</td>
<td>0: 000000</td>
</tr>
<tr>
<td>1: 000001</td>
<td>10: 001010</td>
</tr>
<tr>
<td>2: 000010</td>
<td>20: 010100</td>
</tr>
<tr>
<td>4: 000100</td>
<td>21: 010101</td>
</tr>
<tr>
<td>7: 000111</td>
<td>22: 010110</td>
</tr>
<tr>
<td>30: 100000</td>
<td>30: 100000</td>
</tr>
</tbody>
</table>

upper: 11101101000111000100

lower: 00 01 10 00 11 10 00 01 10 00
Lemma: Elias-Fano Coding

Given an array containing n distinct integers from a universe $\mathcal{U} = [0, n)$, the array can be represented using

$$n(2 + \log \left\lceil \frac{u}{n} \right\rceil) \text{ bits}$$

while allowing $O(1)$ access time and $O(\log \frac{u}{n})$ predecessor/successor time.
x-Fast Tries

- each number has \(w \) bits
- build binary tree where leaves represent numbers
- edges are labeled 0 or 1
- labels on path from root to leaf are value represented in leaf

- store nodes in hash tables with bit prefix as key
- also store pointer to min and max in right and left subtree
- leaves are stored in doubly linked list
- using perfect hashing on each level requires \(O(wn) \) space

- pointers to min and max are missing
- tree most likely not complete
x-Fast Tries: Queries

- traversing tree requires $O(w)$ time
- using binary search on levels requires $O(\log w)$ time
- if value not found go to min or max depending on query
- if value is found use doubly linked list to find predecessor or successor

- example on the board
y-Fast Tries

- x-fast trie requires $O(wn)$ space
- group w consecutive objects into one block B_i
- for each block B_i choose maximum m_i as representative
- build x-fast trie for representatives
- store blocks in balanced binary trees

Dynamic y-Fast Trie

- use cuckoo hashing
- representative does not have to be maximum
- any element separating groups suffices
- merge and split blocks that are too small/too big
- query time only expected

x-fast trie requires $O(n)$ space
- search in x-fast trie requires $O(\log \log \frac{n}{w})$ time
- search in balanced binary tree requires $O(\log w) = O(\log \log n)$ time
Range Minimum Queries

Setting
- array of \(n \) integers
- not necessarily sorted

Definition: Range Minimum Queries

Given an array of \(A \) of \(n \) integers

\[
rmq(A, s, e) = \arg \min_{s \leq i \leq e} A[i]
\]

returns the position of minimum in \(A[s, e] \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>20</td>
<td>22</td>
<td>4</td>
</tr>
</tbody>
</table>

- \(rmq(0, 9) = 3 \)
- \(rmq(0, 2) = 1 \)
- \(rmq(4, 8) = 4 \)

- naive in \(O(1) \) time
- how much space does a naive \(O(1) \)-time solution need?

\(rmq(s, e) = M[s][e] \) using \(O(n^2) \) space
Range Minimum Queries in $O(1)$ Time and $O(n \log n)$ Space

- instead of storing all solutions
- store solutions for intervals of length 2^k for every k
- $M[0..n][0..\lfloor \log n \rfloor)$

Queries

- query $rmq(A, s, e)$ is answered using two subqueries
- let $\ell = \lfloor \log(e - s - 1) \rfloor$
- $m_1 = rmq(A, s, s + 2^\ell - 1)$ and $m_2 = rmq(A, e - 2^\ell + 1, e)$
- $rmq(A, s, e) = \arg\min_{m \in \{m_1, m_2\}} A[m]$

Construction

$M[x][\ell] = rmq(A, x, x + 2^\ell - 1)$

$= \arg\min\{A[i] : i \in [x, x + 2^\ell)\}$

$= \arg\min\{A[i] : i \in \{rmq(A, x, x + 2^{\ell-1} - 1),$

$= \quad rmq(A, x + 2^{\ell-1}, x + 2^\ell - 1)\}\}$

$= \arg\min\{A[i] : i \in \{M[x][\ell - 1],$

$= \quad M[x + 2^{\ell-1}][\ell - 1]\}\}$

- how much time do we need to fill the table?
- dynamic programming in $O(n \log n)$ time
divide A into blocks of size $s = \frac{\log n}{4}$
blocks B_1, \ldots, B_m with $m = \left\lceil \frac{n}{s} \right\rceil$
query $rmq(A, s, e)$ is answered using at most three subqueries
one query spanning multiple block
at most two queries within a block each

example on the board

Query Spanning Blocks
- use array B containing minimum within each block
- B has m entries
- use $O(n \log n)$ data structure for B
- $O(m \log m) = O\left(\frac{n}{s} \log \frac{n}{s}\right) = O\left(\frac{n}{\log n} \log \frac{n}{\log n}\right) = O(n)$
- use additional array B' storing position of minimum in each block
- for queries within block use Cartesian trees
Definition: Cartesian Tree

Given an array A of length n, a Cartesian tree $C(A)$ of A is a labeled binary tree with:

- root r is labeled with \(x = \arg \min \{ A[i] : i \in [0, n) \} \)
- left and right children of r are Cartesian trees $C(A[0, x))$ and $C(A[x + 1, n))$ if interval exists

Lemma: Cartesian Tree Construction

A Cartesian tree for an array of size n can be computed in $O(n)$ time

Proof (Sketch)

- scan array from left to right
- insert each element by
 - following rightmost path from leaf to root till element can be inserted
 - everything below becomes left child of new node
- each node is removed at most once from the rightmost path
- moving subtree to left child in constant time gives $O(n)$ construction time

- example on the board
Lemma: Equality of Cartesian Trees

Given two arrays A and B of length n with equal Cartesian trees, then

$$rmq(A, s, e) = rmq(B, s, e)$$

for all $0 \leq s < e < n$

Proof (Sketch)

- proof by induction over the size of the array
- if the array has size one, this is true
- assuming this is correct for arrays of size n, showing this for arrays of size $n + 1$ uses recursive definition of Cartesian trees
Range Minimum Queries in $O(1)$ Time and $O(n)$ Space (2/2)

Query Within a Block

- consider every possible Cartesian tree for arrays of size $s = \frac{\log n}{4}$
- tree can be represented using $2s + 1$ bits
- store bit representation of Cartesian tree for every block
- for every possible Cartesian tree and every start and end position store position of minimum
- $O(2^{2s+1} \cdot s \cdot s) = O(\sqrt{n} \log^2 n) = O(n)$ space
Conclusion and Outlook

This Lecture
- successor and predecessor data structures
- range minimum query data structures

Advanced Data Structures

- Successor
 - static/dynamic
 - BV
- RMQ
 - static/dynamic
 - succ. trees
- range min-max tree
-succ. graphs
Bibliography I

