Advanced Data Structures

Lecture 05: Predecessor and Range Minimum Query Data Structures

Florian Kurpicz
Recap

Succinct Planar Graphs

- using spanning tree of graph and
- special spanning tree of dual graph
- both represented succinctly
- represent planar graph succinctly
- remember whether edge is in spanning tree or not
## Recap

### Succinct Planar Graphs
- Using spanning tree of graph and
- Special spanning tree of dual graph
- Both represented succinctly
- Represent planar graph succinctly
- Remember whether edge is in spanning tree or not

### (Dynamic) Range Min-Max Trees
- Use dynamic balanced binary tree
- Updating range min-max tree similar to bit vector
- Additionally, information in nodes has to be updated
- Same dynamic balanced binary tree can be used as foundation for dynamic bit vector and range min-max tree
Predecessor and Successor

Setting

- assume universe $\mathcal{U} = [0, u)$
- let $u = 2^w$
- sorted array of $n$ integers $A \subseteq \mathcal{U}$
- $\log n \leq w$ since $n \leq u$
Predecessor and Successor

Setting

- Assume universe $\mathcal{U} = [0, u)$
- Let $u = 2^w$
- Sorted array of $n$ integers $A \subseteq \mathcal{U}$
- $\log n \leq w$ since $n \leq u$

Definition: Predecessor & Successor

Given an array $A$ of $n$ integers from an universe $\mathcal{U}$ and an integer $x \in \mathcal{U}$, the predecessor and successor of $x$ in $A$ are

- $\text{pred}(A, x) = \max\{y \in A : y \leq x\}$
- $\text{succ}(A, x) = \min\{y \in A : y \geq x\}$
Predecessor and Successor

Setting
- assume universe $\mathcal{U} = [0, u)$
- let $u = 2^w$
- sorted array of $n$ integers $A \subseteq \mathcal{U}$
- $\log n \leq w$ since $n \leq u$

Definition: Predecessor & Successor
Given an array $A$ of $n$ integers from an universe $\mathcal{U}$ and an integer $x \in \mathcal{U}$, the predecessor and successor of $x$ in $A$ are
- $\text{pred}(A, x) = \max\{y \in A : y \leq x\}$
- $\text{succ}(A, x) = \min\{y \in A : y \geq x\}$
Predecessor and Successor

Setting
- assume universe $\mathcal{U} = [0, u)$
- let $u = 2^w$
- sorted array of $n$ integers $A \subseteq \mathcal{U}$
- $\log n \leq w$ since $n \leq u$

Definition: Predecessor & Successor
Given an array $A$ of $n$ integers from an universe $\mathcal{U}$ and an integer $x \in \mathcal{U}$, the predecessor and successor of $x$ in $A$ are
- $\text{pred}(A, x) = \max\{y \in A : y \leq x\}$
- $\text{succ}(A, x) = \min\{y \in A : y \geq x\}$

Example:
- $\text{pred}(3) = 2$

Table:

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
</tr>
</tbody>
</table>

$\text{pred}(3) = 2$
Setting

- Assume universe \( \mathcal{U} = [0, u) \)
- Let \( u = 2^w \)
- Sorted array of \( n \) integers \( A \subseteq \mathcal{U} \)
- \( \log n \leq w \) since \( n \leq u \)

Definition: Predecessor & Successor

Given an array \( A \) of \( n \) integers from an universe \( \mathcal{U} \) and an integer \( x \in \mathcal{U} \), the predecessor and successor of \( x \) in \( A \) are

- \( \text{pred}(A, x) = \max\{ y \in A : y \leq x \} \)
- \( \text{succ}(A, x) = \min\{ y \in A : y \geq x \} \)

\[ \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 10 & 20 & 21 & 22 & 32 \\
\hline
0 & 1 & 2 & 4 & 7 & 10 & 20 & 21 & 22 & 32
\end{array} \]

- \( \text{pred}(3) = 2 \)
- \( \text{pred}(10) = 10 \)
Predecessor and Successor

**Setting**
- Assume universe $\mathcal{U} = [0, u)$
- Let $u = 2^w$
- Sorted array of $n$ integers $A \subseteq \mathcal{U}$
- $\log n \leq w$ since $n \leq u$

**Definition: Predecessor & Successor**
Given an array $A$ of $n$ integers from an universe $\mathcal{U}$ and an integer $x \in \mathcal{U}$, the predecessor and successor of $x$ in $A$ are
- $\text{pred}(A, x) = \max\{y \in A: y \leq x\}$
- $\text{succ}(A, x) = \min\{y \in A: y \geq x\}$

---

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
</tr>
</tbody>
</table>

- $\text{pred}(3) = 2$
- $\text{pred}(10) = 10$
- $\text{succ}(23) = 32$
**Predecessor and Successor**

**Setting**
- Assume universe \( \mathcal{U} = [0, u) \)
- Let \( u = 2^w \)
- Sorted array of \( n \) integers \( A \subseteq \mathcal{U} \)
- \( \log n \leq w \) since \( n \leq u \)

**Definition: Predecessor & Successor**

Given an array \( A \) of \( n \) integers from an universe \( \mathcal{U} \) and an integer \( x \in \mathcal{U} \), the predecessor and successor of \( x \) in \( A \) are

- \( \text{pred}(A, x) = \max\{y \in A : y \leq x\} \)
- \( \text{succ}(A, x) = \min\{y \in A : y \geq x\} \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

- \( \text{pred}(3) = 2 \)
- \( \text{pred}(10) = 10 \)
- \( \text{succ}(23) = 32 \)

- In what time and space can we solve this using bit vectors? 🌐 PINGO
Predecessor and Successor: Simple Solutions

- binary search
- $O(\log n)$ query time
- no space overhead

\[ \text{pred}(3) = 2 \]
Predecessor and Successor: Simple Solutions

- Binary search
  - $O(\log n)$ query time
  - No space overhead

- Using bit vector
  - $O(1)$ query time
  - $u + o(u)$ bits space

Predecessor of $x$ in Bit Vector

\[ z = \text{rank}_1(x + 2) \]

Predecessor is $\text{select}_1(z)$

\[ \text{pred}(3) = 2 \]

\[ 11101001001000000000111000000001 \]
Predecessor and Successor: Simple Solutions

- binary search
  - \(O(\log n)\) query time
  - no space overhead

- using bit vector
  - \(O(1)\) query time
  - \(u + o(u)\) bits space

Predecessor of \(x\) in Bit Vector

- \(z = rank_1(x + 2)\)
- predecessor is \(select_1(z)\)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
</tr>
</tbody>
</table>

\[ \text{pred}(3) = 2 \]

\[ \text{rank}_1(21) = 6 \]

\[ \text{select}_1(6) = 10 \]

\[ \text{pred}(19) = 10 \]
Predecessor and Successor: Simple Solutions

- Binary search
  - \( O(\log n) \) query time
  - No space overhead

- Using bit vector
  - \( O(1) \) query time
  - \( u + o(u) \) bits space

Predecessor of \( x \) in Bit Vector
- \( z = \text{rank}_1(x + 2) \)
- Predecessor is \( \text{select}_1(z) \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>pred(3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>rank_1(21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>select_1(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pred(19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
n integers from universe $\mathcal{U} = [0, u)$

split number in upper and lower halves

upper half: $\lceil \log n \rceil$ most significant bits

lower half: $\lceil \log u - \log n \rceil$ remaining bits
Elias-Fano Coding [Eli74; Fan71] (1/3)

- $n$ integers from universe $\mathcal{U} = [0, u)$
- split number in upper and lower halves
  - upper half: $\lceil \log n \rceil$ most significant bits
  - lower half: $\lceil \log u - \log n \rceil$ remaining bits

**Upper Half**
- monotonous sequence of $\lceil \log n \rceil$ bit integers
- not strictly monotonous
- let $p_0, \ldots, p_{n-1}$ be sequence
- use bit vector of length $2n + 1$ bits
- represent $p_i$ with a 1 at position $i + p_i$
- rank and select support requires $o(n)$ bits
Elias-Fano Coding [Eli74; Fan71] (1/3)

- $n$ integers from universe $\mathcal{U} = [0, u)$
- split number in upper and lower halves
- upper half: $\lceil \log n \rceil$ most significant bits
- lower half: $\lceil \log u - \log n \rceil$ remaining bits

**Upper Half**
- monotonous sequence of $\lceil \log n \rceil$ bit integers
- not strictly monotonous
- let $p_0, \ldots, p_{n-1}$ be sequence
- use bit vector of length $2n + 1$ bits
- represent $p_i$ with a 1 at position $i + p_i$
- rank and select support requires $o(n)$ bits

**Lower Half**
- store lower half plain using $\lceil \log \frac{u}{n} \rceil$ bits
- $n \log \left\lceil \frac{u}{n} \right\rceil$ bits for lower half
Elias-Fano Coding [Eli74; Fan71] (1/3)

- $n$ integers from universe $\mathcal{U} = [0, u)$
- split number in upper and lower halves
- upper half: $\lceil \log n \rceil$ most significant bits
- lower half: $\lceil \log u - \log n \rceil$ remaining bits

**Upper Half**
- monotonous sequence of $\lceil \log n \rceil$ bit integers
- not strictly monotonous
- let $p_0, \ldots, p_{n-1}$ be sequence
- use bit vector of length $2n + 1$ bits
- represent $p_i$ with a 1 at position $i + p_i$
- rank and select support requires $o(n)$ bits

**Lower Half**
- store lower half plain using $\lceil \log \frac{u}{n} \rceil$ bits
- $n \log \left\lceil \frac{u}{n} \right\rceil$ bits for lower half

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>09</td>
</tr>
<tr>
<td>0</td>
<td>00000</td>
<td>00001</td>
<td>00010</td>
<td>00011</td>
<td>00100</td>
<td>00111</td>
<td>01000</td>
<td>01001</td>
<td>01010</td>
</tr>
</tbody>
</table>

0: 000000 10: 001010
1: 000001 20: 010100
2: 000010 21: 010101
4: 000100 22: 010110
7: 000111 30: 100000
Elias-Fano Coding (2/3)
**Elias-Fano Coding (2/3)**

**Access \(i\)-th Element**
- **upper**: \(select_1(i) - i\)
- **lower**: corresponding bits from lower bit vector

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>000000</td>
<td>1:</td>
<td>000001</td>
<td>2:</td>
<td>000010</td>
<td>4:</td>
<td>000100</td>
<td>7:</td>
<td>000111</td>
</tr>
</tbody>
</table>

**upper**: \(11101101000111000100\)

**lower**: \(00\ 01\ 10\ 00\ 11\ 10\ 00\ 01\ 10\ 00\)
Elias-Fano Coding (2/3)

Access $i$-th Element
- upper: $select_1(i) - i$
- lower: corresponding bits from lower bit vector

Predecessor $x$
- let $x'$ be $\lfloor \log n \rfloor$ MSB of $x$
- $p = select_0(x') \oplus select_0(0)$ returns 0
- scan corresponding values in lower till predecessor is found
- how many elements do we have to scan?

PINGO

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>001010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>010100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>010101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>010110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>100000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

upper: $11101101000111000100$
lower: $00011000111000011000$

PINGO
Elias-Fano Coding (2/3)

Access $i$-th Element
- upper: $select_1(i) - i$
- lower: corresponding bits from lower bit vector

Predecessor $x$
- let $x'$ be $\lceil \log n \rceil$ MSB of $x$
- $p = select_0(x')$ \& $select_0(0)$ returns 0
- scan corresponding values in lower till predecessor is found
- how many elements do we have to scan?

PINGO
- scanning at most $O(\log \frac{u}{n})$ elements

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>32</td>
</tr>
</tbody>
</table>

| 0: 000000 | 1: 000001 | 2: 000010 | 4: 000100 | 7: 000111 |

**upper**: 11101101000111000100
**lower**: 00 01 10 00 11 10 00 01 10 00
Lemma: Elias-Fano Coding

Given an array containing $n$ distinct integers from a universe $\mathcal{U} = [0, n)$, the array can be represented using

$$n(2 + \log \left\lceil \frac{u}{n} \right\rceil)$$

bits

while allowing $O(1)$ access time and $O(\log \frac{u}{n})$ predecessor/successor time.
x-Fast Tries

- each number has $w$ bits
- build binary tree where leaves represent numbers
- edges are labeled 0 or 1
- labels on path from root to leaf are value represented in leaf

- pointers to min and max are missing

```
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1
```

The tree most likely not complete.
x-Fast Tries

- each number has \( w \) bits
- build binary tree where leaves represent numbers
- edges are labeled 0 or 1
- labels on path from root to leaf are value represented in leaf

- store nodes in hash tables with bit prefix as key
- also store pointer to \( \min \) and \( \max \) in right and left subtree
- leaves are stored in doubly linked list
- using perfect hashing on each level requires \( O(wn) \) space
x-Fast Tries

- each number has $w$ bits
- build binary tree where leaves represent numbers
- edges are labeled 0 or 1
- labels on path from root to leaf are value represented in leaf

- store nodes in hash tables with bit prefix as key
- also store pointer to $min$ and $max$ in right and left subtree
- leaves are stored in doubly linked list
- using perfect hashing on each level requires $O(wn)$ space

- pointers to $min$ and $max$ are missing
- tree most likely not complete
x-Fast Tries

- Each number has $w$ bits
- Build binary tree where leaves represent numbers
- Edges are labeled 0 or 1
- Labels on path from root to leaf are value represented in leaf

- Store nodes in hash tables with bit prefix as key
- Also store pointer to $min$ and $max$ in right and left subtree
- Leaves are stored in doubly linked list
- Using perfect hashing on each level requires $O(wn)$ space

- Pointers to $min$ and $max$ are missing
- Tree most likely not complete
x-Fast Tries: Queries

- Traversing tree requires $O(w)$ time
- Using binary search on levels requires $O(\log w)$ time
- If value not found go to $\text{min}$ or $\text{max}$ depending on query
- If value is found use doubly linked list to find predecessor or successor

Example on the board 🎨
y-Fast Tries

- x-fast trie requires $O(wn)$ space
- group $w$ consecutive objects into one block $B_i$
- for each block $B_i$ choose maximum $m_i$ as representative
- build x-fast trie for representatives
- store blocks in balanced binary trees

- example on the board

Dynamic y-Fast Trie
- use cuckoo hashing
- representative does not have to be maximum
- any element separating groups suffices
- merge and split blocks that are too small/too big
- query time only expected
y-Fast Tries

- x-fast trie requires $O(wn)$ space
- group $w$ consecutive objects into one block $B_i$
- for each block $B_i$ choose maximum $m_i$ as representative
- build x-fast trie for representatives
- store blocks in balanced binary trees

- x-fast trie requires $O(n)$ space
- search in x-fast trie requires $O(\log \log \frac{n}{w})$ time
- search in balanced binary tree requires $O(\log w) = O(\log \log n)$ time

example on the board
y-Fast Tries

- x-fast trie requires $O(wn)$ space
- group $w$ consecutive objects into one block $B_i$
- for each block $B_i$ choose maximum $m_i$ as representative
- build x-fast trie for representatives
- store blocks in balanced binary trees

x-fast trie requires $O(n)$ space
- search in x-fast trie requires $O(\log \log \frac{n}{w})$ time
- search in balanced binary tree requires $O(\log w) = O(\log \log n)$ time

example on the board

Dynamic y-Fast Trie

- use cuckoo hashing
- representative does not have to be maximum
- any element separating groups suffices
- merge and split blocks that are too small/too big
- query time only expected
Range Minimum Queries

**Setting**
- array of \( n \) integers
- not necessarily sorted

**Definition: Range Minimum Queries**
Given an array of \( A \) of \( n \) integers

\[
rmq(A, s, e) = \arg \min_{s \leq i \leq e} A[i]
\]

returns the position of minimum in \( A[s, e] \)

---

<table>
<thead>
<tr>
<th>( s )</th>
<th>( A[s] )</th>
<th>( e )</th>
<th>( A[e] )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

- \( rmq(0, 9) = 3 \)
- \( rmq(0, 2) = 1 \)
- \( rmq(4, 8) = 4 \)
Range Minimum Queries

Setting
- array of $n$ integers
- not necessarily sorted

Definition: Range Minimum Queries

Given an array of $A$ of $n$ integers

$$rmq(A, s, e) = \arg \min_{s \leq i \leq e} A[i]$$

returns the position of minimum in $A[s, e]$

- $rmq(0, 9) = 3$
- $rmq(0, 2) = 1$
- $rmq(4, 8) = 4$

naive in $O(1)$ time

how much space does a naive $O(1)$-time solution need

PINGO
Range Minimum Queries

Setting
- array of \( n \) integers
- not necessarily sorted

Definition: Range Minimum Queries
Given an array of \( A \) of \( n \) integers

\[
rmq(A, s, e) = \arg\min_{s \leq i \leq e} A[i]
\]

returns the position of minimum in \( A[s, e] \)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>20</td>
<td>22</td>
<td>4</td>
</tr>
</tbody>
</table>

- \( rmq(0, 9) = 3 \)
- \( rmq(0, 2) = 1 \)
- \( rmq(4, 8) = 4 \)

naive in \( O(1) \) time
how much space does a naive \( O(1) \)-time
solution need

using \( O(n^2) \) space \( \text{rmq}(s, e) = M[s][e] \)
Range Minimum Queries in $O(1)$ Time and $O(n \log n)$ Space

- instead of storing all solutions
- store solutions for intervals of length $2^k$ for every $k$
- $M[0..n)[0..\lceil \log n \rceil)$
instead of storing all solutions
store solutions for intervals of length $2^k$ for every $k$
$M[0..n][0..\lfloor \log n \rfloor)$

Queries

query $rmq(A, s, e)$ is answered using two subqueries
let $\ell = \lfloor \log(e - s - 1) \rfloor$
$m_1 = rmq(A, s, s + 2^\ell - 1)$ and
$m_2 = rmq(A, e - 2^\ell + 1, e)$
$rmq(A, s, e) = \arg \min_{m \in \{m_1, m_2\}} A[m]$
instead of storing all solutions
store solutions for intervals of length $2^k$ for every $k$
$M[0..n][0..\lceil \log n \rceil)$

Queries
- query $rmq(A, s, e)$ is answered using two subqueries
- let $\ell = \lfloor \log(e - s - 1) \rfloor$
- $m_1 = rmq(A, s, s + 2^\ell - 1)$ and
  $m_2 = rmq(A, e - 2^\ell + 1, e)$
- $rmq(A, s, e) = \arg \min_{m \in \{m_1, m_2\}} A[m]$

Construction

$M[x][\ell] = \text{rmq}(A, x, x + 2^\ell - 1)$

$= \arg \min \{A[i] : i \in [x, x + 2^\ell)\}$

$= \arg \min \{A[i] : i \in \{\text{rmq}(A, x, x + 2^{\ell - 1} - 1), \}$

$= \text{rmq}(A, x + 2^{\ell - 1}, x + 2^\ell - 1)\}}\}$

$= \arg \min \{A[i] : i \in \{M[x][\ell - 1], \}$

$= \text{rmq}(A, x + 2^{\ell - 1}, x + 2^\ell - 1)\}}\}$

$= \arg \min \{A[i] : i \in \{M[x][\ell - 1], \}$

$= \text{rmq}(A, x + 2^{\ell - 1}, x + 2^\ell - 1)\}}\}$

$= \arg \min \{A[i] : i \in \{M[x][\ell - 1], \}$

$= \text{rmq}(A, x + 2^{\ell - 1}, x + 2^\ell - 1)\}}\}$

how much time do we need to fill the table?

PINGO
instead of storing all solutions
store solutions for intervals of length $2^k$ for every $k$
$M[0..n][0..\lfloor \log n \rfloor)$

Queries

query $\text{rmq}(A, s, e)$ is answered using two subqueries
let $\ell = \lfloor \log (e - s - 1) \rfloor$
$m_1 = \text{rmq}(A, s, s + 2^\ell - 1)$ and $m_2 = \text{rmq}(A, e - 2^\ell + 1, e)$
$\text{rmq}(A, s, e) = \arg\min_{m \in \{m_1, m_2\}} A[m]$

Construction

$M[x][\ell] = \text{rmq}(A, x, x + 2^\ell - 1)$

$= \arg\min\{A[i] : i \in [x, x + 2^\ell)\}$

$= \arg\min\{A[i] : i \in \{\text{rmq}(A, x, x + 2^{\ell-1} - 1),$

$\text{rmq}(A, x + 2^{\ell-1}, x + 2^\ell - 1)\}\}$

$= \arg\min\{A[i] : i \in \{M[x][\ell - 1],$

$M[x + 2^{\ell-1}][\ell - 1]\}\}$

how much time do we need to fill the table?

dynamic programming in $O(n \log n)$ time
Range Minimum Queries in $O(1)$ Time and $O(n)$ Space (1/2)

- divide $A$ into blocks of size $s = \frac{\log n}{4}$
- blocks $B_1, \ldots, B_m$ with $m = \lceil n / s \rceil$
- query $rmq(A, s, e)$ is answered using at most three subqueries
  - one query spanning multiple block
  - at most two queries within a block each

example on the board ◊
Range Minimum Queries in $O(1)$ Time and $O(n)$ Space (1/2)

- divide $A$ into blocks of size $s = \frac{\log n}{4}$
- blocks $B_1, \ldots, B_m$ with $m = \lceil n/s \rceil$
- query $rmq(A, s, e)$ is answered using at most three subqueries
  - one query spanning multiple block
  - at most two queries within a block each
- example on the board

Query Spanning Blocks

- use array $B$ containing minimum within each block
- $B$ has $m$ entries
- use $O(n \log n)$ data structure for $B$
- $O(m \log m) = O\left( \frac{n}{s} \log \frac{n}{s} \right) = O\left( \frac{n}{\log n} \log \frac{n}{\log n} \right) = O(n)$
- use additional array $B'$ storing position of minimum in each block
Range Minimum Queries in $O(1)$ Time and $O(n)$ Space (1/2)

- divide $A$ into blocks of size $s = \frac{\log n}{4}$
- blocks $B_1, \ldots, B_m$ with $m = \lceil n/s \rceil$
- query $rmq(A, s, e)$ is answered using at most three subqueries
  - one query spanning multiple block
  - at most two queries within a block each

Query Spanning Blocks

- use array $B$ containing minimum within each block
- $B$ has $m$ entries
- use $O(n \log n)$ data structure for $B$
- $O(m \log m) = O\left(\frac{n}{s} \log \frac{n}{s}\right) = O\left(\frac{n}{s} \log \frac{n}{s} \log \log n\right) = O(n)$
- use additional array $B'$ storing position of minimum in each block

- for queries within block use Cartesian trees

example on the board
Definition: Cartesian Tree

Given an array $A$ of length $n$, a Cartesian tree $C(A)$ of $a$ is a labeled binary tree with:

- **root** $r$ is labeled with $x = \arg \min \{ A[i] : i \in [0, n) \}$
- left and right children of $r$ are Cartesian trees $C(A[0, x))$ and $C(A[x + 1, n))$ if interval exists

Lemma: Cartesian Tree Construction

A Cartesian tree for an array of size $n$ can be computed in $O(n)$ time.

Proof (Sketch)

- Scan array from left to right.
- Insert each element by following the rightmost path from leaf to root until the element can be inserted.
- Everything below becomes the left child of the new node.
- Each node is removed at most once from the rightmost path, and moving the subtree to the left child takes constant time, giving $O(n)$ construction time.

Example on the board
Definition: Cartesian Tree

Given an array $A$ of length $n$, a Cartesian tree $C(A)$ of $a$ is a labeled binary tree with

- root $r$ is labeled with $x = \arg\min\{A[i]: i \in [0, n]\}$
- left and right children of $r$ are Cartesian trees $C(A[0, x))$ and $C(A[x + 1, n))$ if interval exists

Lemma: Cartesian Tree Construction

A Cartesian tree for an array of size $n$ can be computed in $O(n)$ time
**Definition: Cartesian Tree**

Given an array $A$ of length $n$, a Cartesian tree $C(A)$ of $a$ is a labeled binary tree with

- root $r$ is labeled with $x = \arg \min \{ A[i] : i \in [0, n) \}$
- left and right children of $r$ are Cartesian trees $C(A[0, x))$ and $C(A[x + 1, n))$ if interval exists

**Lemma: Cartesian Tree Construction**

A Cartesian tree for an array of size $n$ can be computed in $O(n)$ time

**Proof (Sketch)**

- scan array from left to right
- insert each element by
  - following rightmost path from leaf to root till element can be inserted
  - everything below becomes left child of new node
- each node is removed at most once from the rightmost path
- moving subtree to left child in constant time gives $O(n)$ construction time
Definition: Cartesian Tree

Given an array $A$ of length $n$, a Cartesian tree $C(A)$ of $A$ is a labeled binary tree with

- root $r$ is labeled with $x = \arg \min \{A[i] : i \in [0, n)\}$
- left and right children of $r$ are Cartesian trees $C(A[0, x))$ and $C(A[x + 1, n))$ if interval exists

Lemma: Cartesian Tree Construction

A Cartesian tree for an array of size $n$ can be computed in $O(n)$ time

Proof (Sketch)

- scan array from left to right
- insert each element by
  - following rightmost path from leaf to root till element can be inserted
  - everything below becomes left child of new node
- each node is removed at most once from the rightmost path
- moving subtree to left child in constant time gives $O(n)$ construction time

example on the board
Lemma: Equality of Cartesian Trees

Given two arrays $A$ and $B$ of length $n$ with equal Cartesian trees, then

$$rmq(A, s, e) = rmq(B, s, e)$$

for all $0 \leq s < e < n$
Lemma: Equality of Cartesian Trees

Given two arrays $A$ and $B$ of length $n$ with equal Cartesian trees, then

$$rmq(A, s, e) = rmq(B, s, e)$$

for all $0 \leq s < e < n$

Proof (Sketch)

- proof by induction over the size of the array
- if the array has size one, this is true
- assuming this is correct for arrays of size $n$, showing this for arrays of size $n + 1$ uses recursive definition of Cartesian trees
Query Within a Block

- consider every possible Cartesian tree for arrays of size \(s = \frac{\log n}{4}\)
- tree can be represented using \(2s + 1\) bits
- store bit representation of Cartesian tree for every block
- for every possible Cartesian tree and every start and end position store position of minimum
- \(O(2^{2s+1} \cdot s \cdot s) = O(\sqrt{n}\log^2 n) = O(n)\) space
Conclusion and Outlook

This Lecture
- successor and predecessor data structures
- range minimum query data structures

Advanced Data Structures

Successor
- static/dynamic
  - BV
  - range min-max tree

RMQ
- static/dynamic
  - succ. trees
  - succ. graphs
Bibliography I


[Fan71] Robert Mario Fano. On the Number of Bits Required to Implement an Associative Memory. 1971.