Text Indexing

Lecture 06: Wavelet Trees

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©️®️: www.creativecommons.org/licenses/by-sa/4.0 | commit 224e27c compiled at 2022-12-05-13:02
PINGO

https://pingo.scc.kit.edu/345678
Recap: Rank-Queries

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$
- information for 0s or 1s enough

 \[rank_1(i) = i - rank_0(i) \]
Recap: Rank-Queries

- For a bit vector of size n
- Blocks of size $s = \lceil \frac{\log n}{2} \rceil$
- Super blocks of size $s' = s^2 = \Theta(\log^2 n)$
- Information for 0s or 1s enough
 \[rank_1(i) = i - rank_0(i) \]

- For all $\lceil \frac{n}{s'} \rceil$ super blocks, store number of 0s from beginning of bit vector to end of super-block
- $\frac{n}{s'} \cdot \log n = O(\frac{n}{\log n}) = o(n)$ bits of space
Recap: Rank-Queries

- for a bit vector of size n
- blocks of size $s = \left\lfloor \frac{\lg n}{2} \right\rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$
- information for 0s or 1s enough
 \[\text{rank}_1(i) = i - \text{rank}_0(i) \]

- for all $\left\lfloor \frac{n}{s'} \right\rfloor$ super blocks, store number of 0s from beginning of bit vector to end of super-block
 \[n/s' \cdot \lg n = O\left(\frac{n \lg \lg n}{\lg n}\right) = o(n) \text{ bits of space} \]

- for all $\left\lfloor \frac{n}{s} \right\rfloor$ blocks, store number of 0s from beginning of super block to end of block
 \[n/s \cdot \lg s' = O\left(\frac{n \lg \lg n}{\lg n}\right) = o(n) \text{ bits of space} \]
Recap: Rank-Queries

- for a bit vector of size n
 - blocks of size $s = \lfloor \frac{\log n}{2} \rfloor$
 - super blocks of size $s' = s^2 = \Theta(\log^2 n)$
 - information for 0s or 1s enough
 \[\text{rank}_1(i) = i - \text{rank}_0(i) \]

- for all $\lfloor \frac{n}{s'} \rfloor$ super blocks, store number of 0s from beginning of bit vector to end of super-block
 \[\frac{n}{s'} \cdot \log n = O\left(\frac{n \log n \log n}{\log n}\right) = o(n) \text{ bits of space} \]

- for all $\left\lfloor \frac{n}{s} \right\rfloor$ blocks, store number of 0s from beginning of super block to end of block
 \[\frac{n}{s} \cdot \log s' = O\left(\frac{n \log \log n}{\log n}\right) = o(n) \text{ bits of space} \]

- for all length-s bit vectors, for every position i
 - store number of 0s up to i
 \[2^{\frac{\log n}{2}} \cdot s \cdot \log s = O\left(\sqrt{n} \log n \log \log n\right) = o(n) \text{ bits of space} \]
Recap: Rank-Queries

- for a bit vector of size n
- blocks of size $s = \lfloor \frac{\lg n}{2} \rfloor$
- super blocks of size $s' = s^2 = \Theta(\lg^2 n)$
- information for 0s or 1s enough
 - $\text{rank}_1(i) = i - \text{rank}_0(i)$

- for all $\lfloor \frac{n}{s} \rfloor$ super blocks, store number of 0s from beginning of bit vector to end of super-block
- $n/s' \cdot \lg n = O\left(\frac{n}{\lg n}\right) = o(n)$ bits of space

- for all $\lfloor \frac{n}{s} \rfloor$ blocks, store number of 0s from beginning of super block to end of block
- $n/s \cdot \lg s' = O\left(\frac{n \cdot \lg \lg n}{\lg n}\right) = o(n)$ bits of space

- for all length-s bit vectors, for every position i
 - store number of 0s up to i
 - $2^\frac{\lg n}{2} \cdot s \cdot \lg s = O(\sqrt{n} \lg n \lg \lg n) = o(n)$ bits of space

- query in $O(1)$ time using three subqueries
 - one in super-block
 - one in block
 - one for remaining bitvector smaller than s
Select in $o(n)$ Space and $O(1)$ Time

- $select_0$ in a bit vector of size n that contains k zeros
- naive solutions
 - scan bit vector: $O(n)$ time and no space overhead
 - store k solutions in $S[1..k]$ and $select_0(i) = S[i]$ if $k \in O(n/\lg n)$ this suffice
Select in $o(n)$ Space and $O(1)$ Time

- $select_0$ in a bit vector of size n that contains k zeros
- naive solutions
 - scan bit vector: $O(n)$ time and no space overhead
 - store k solutions in $S[1..k]$ and
 $select_0(i) = S[i] \oplus 1$ if $k \in O(n/\lg n)$ this suffice

- better: k/b variable-sized super-blocks B_i, such that super-block contains $b = \lg^2 n$ zeros
 - $select_0(i) =
 \sum_{j=0}^{\lfloor i/b \rfloor - 1} |B_j| + select_0(B_{\lfloor i/b \rfloor}, j - (\lfloor i/b \rfloor b))$

- storing all possible results for the (prefix) sum $O((k \lg n)/b) = o(n)$ bits of space
- select on block depends on size of block $|B_{\lfloor i/b \rfloor}| \geq \lg 4 n$: store answers naively requires $O(b \lg n) = O(\lg 3 n)$ bits of space
- there are at most $O(n/\lg 4 n)$ such blocks total $O(n/\lg n) = o(n)$ bits of space
- $|B_{\lfloor i/b \rfloor}| < \lg 4 n$: divide super-block into blocks same idea: variable-sized blocks containing $b' = \sqrt{\lg n}$ zeros (prefix) sum $O((k \lg \lg n)/b') = o(n)$ bits if size $\geq \lg n$ store all answers if size $< \lg n$ store lookup table
Select in $o(n)$ Space and $O(1)$ Time

- $select_0$ in a bit vector of size n that contains k zeros
- naive solutions
 - scan bit vector: $O(n)$ time and no space overhead
 - store k solutions in $S[1..k]$ and
 - $select_0(i) = S[i] \mathbf{1}$ if $k \in O(n/\lg n)$ this suffice

better: k/b variable-sized super-blocks B_i, such that super-block contains $b = \lg^2 n$ zeros

- $select_0(i) =$
 \[
 \sum_{j=0}^{\lfloor i/b \rfloor - 1} |B_j| + select_0(B_{\lfloor i/b \rfloor}; j - (\lfloor i/b \rfloor b))
 \]

- storing all possible results for the (prefix) sum
- $O((k \lg n)/b) = o(n)$ bits of space
Select in $o(n)$ Space and $O(1)$ Time

- $select_0$ in a bit vector of size n that contains k zeros
- naive solutions
 - scan bit vector: $O(n)$ time and no space overhead
 - store k solutions in $S[1..k]$ and $select_0(i) = S[i]$ if $k \in O(n/\lg n)$ this suffice

- better: k/b variable-sized super-blocks B_i, such that super-block contains $b = \lg^2 n$ zeros
- $select_0(i) = \sum_{j=0}^{\lfloor i/b \rfloor - 1} |B_j| + select_0(B_{\lfloor i/b \rfloor}, j - (\lfloor i/b \rfloor b))$

- storing all possible results for the (prefix) sum
- $O((k \lg n)/b) = o(n)$ bits of space

- select on block depends on size of block

- storing all possible results for the (prefix) sum
 - $O((k \lg n)/b) = o(n)$ bits of space

- select on block depends on size of block

- storing all possible results for the (prefix) sum
 - $O((k \lg n)/b) = o(n)$ bits of space

- select on block depends on size of block
Select in $o(n)$ Space and $O(1)$ Time

- \textit{select}_0 in a bit vector of size n that contains k zeros
- naive solutions
 - scan bit vector: $O(n)$ time and no space overhead
 - store k solutions in $S[1..k]$ and \textit{select}_0(i) = S[i] \text{ if } k \in O(n/\log n)$ this suffice

better: k/b variable-sized super-blocks B_i, such that super-block contains $b = \log^2 n$ zeros

- \textit{select}_0(i) =
 \sum_{j=0}^{\lfloor i/b \rfloor - 1} |B_j| + \textit{select}_0(B_{\lfloor i/b \rfloor}; j - (\lfloor i/b \rfloor b))$

- storing all possible results for the (prefix) sum $O((k \log n)/b) = o(n)$ bits of space

- select on block depends on size of block
 - $|B_{\lfloor i/b \rfloor}| \geq \log^4 n$: store answers naively
 - requires $O(b \log n) = O(\log^3 n)$ bits of space
 - there are at most $O(n/ \log^4 n)$ such blocks
 - total $O(n/ \log n) = o(n)$ bits of space
Select in $o(n)$ Space and $O(1)$ Time

- select_0 in a bit vector of size n that contains k zeros
- naive solutions
 - scan bit vector: $O(n)$ time and no space overhead
 - store k solutions in $S[1..k]$ and $\text{select}_0(i) = S[i]$ if $k \in O(n/\log n)$ this suffice

- better: k/b variable-sized super-blocks B_i, such that super-block contains $b = \log^2 n$ zeros
- $\text{select}_0(i) = \sum_{j=0}^{\floor{i/b}-1} |B_j| + \text{select}_0(B_{\floor{i/b}}, j - (\floor{i/b}b))$

- storing all possible results for the (prefix) sum
 - $O((k \log n)/b) = o(n)$ bits of space

- select on block depends on size of block
 - $|B_{\floor{i/b}}| \geq \log^4 n$: store answers naively
 - requires $O(b \log n) = O(\log^3 n)$ bits of space
 - there are at most $O(n/\log^4 n)$ such blocks
 - total $O(n/\log n) = o(n)$ bits of space
 - $|B_{\floor{i/b}}| < \log^4 n$: divide super-block into blocks
 - same idea: variable-sized blocks containing $b' = \sqrt{\log n}$ zeros
 - (prefix) sum $O((k \log n)/b') = o(n)$ bits
 - if size $\geq \log n$ store all answers
 - if size $< \log n$ store lookup table
Rank- and Select-Queries on Bit Vectors

Lemma: Binary Rank- and Select-Queries

Given a bit vector of size n, there exists data structures that can be computed in time $O(n)$ of size $o(n)$ bits that can answer rank and select queries on the bit vector in $O(1)$ time.
Definition: Bit Representation

Given a text T over an alphabet of size σ, each character can be represented using $\lceil \lg \sigma \rceil$ bits.

- the leftmost bit is the most significant bit and
- the rightmost bit is the least significant bit

<table>
<thead>
<tr>
<th>Character</th>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Definition: Bit Representation

Given a text T over an alphabet of size σ, each character can be represented using $\lceil \lg \sigma \rceil$ bits.

- the leftmost bit is the **most significant bit** and
- the rightmost bit is the **least significant bit**

For simplicity characters are integers

Bit representation is integer in binary
Definition: Bit Representation

Given a text T over an alphabet of size σ, each character can be represented using $\lceil \lg \sigma \rceil$ bits.

- the leftmost bit is the most significant bit and
- the rightmost bit is the least significant bit

For simplicity characters are integers

Bit representation is integer in binary

Definition: Bit Prefix

A bit prefix of length k are the k MSBs of a character’s bit representation
Definition: Wavelet Tree

Given a text T of length n over an alphabet $\Sigma = [1, \sigma]$, a wavelet tree is a binary tree, where

- each node represents characters in $[\ell, r] \subseteq [1, \sigma]$,
- if a node represents characters in $[\ell, r]$, then its left and right child
- represent characters in $[\ell, (\ell + r)/2)$ and $[(\ell + r)/2, r]$
- a node is a leaf if $\ell + 2 \geq r$
- characters are represented using a bit vector
- an entry is 1 if the character is represented in the right child and 0 otherwise
Wavelet Trees [GGV03] (1/2)

Definition: Wavelet Tree

Given a text T of length n over an alphabet $\Sigma = [1, \sigma]$, a wavelet tree is a binary tree, where

- each node represents characters in $[\ell, r] \subseteq [1, \sigma]$,
- if a node represents characters in $[\ell, r]$, then its left and right child
- represent characters in $[\ell, (\ell + r)/2)$ and $[(\ell + r)/2, r]$
- a node is a leaf if $\ell + 2 \geq r$
- characters are represented using a bit vector
- an entry is 1 if the character is represented in the right child and 0 otherwise

Definition: Level-wise Wavelet Tree

A wavelet tree, where all bit vectors on the same depth in the tree are concatenated is called level-wise wavelet tree
Definition: Wavelet Tree
Given a text T of length n over an alphabet $\Sigma = [1, \sigma]$, a wavelet tree is a binary tree, where
- each node represents characters in $[\ell, r] \subseteq [1, \sigma]$,
- if a node represents characters in $[\ell, r]$, then its left and right child represent characters in $[\ell, (\ell + r)/2)$ and $[(\ell + r)/2, r]$
- a node is a leaf if $\ell + 2 \geq r$
- characters are represented using a bit vector
- an entry is 1 if the character is represented in the right child and 0 otherwise

Definition: Level-wise Wavelet Tree
A wavelet tree, where all bit vectors on the same depth in the tree are concatenated is called level-wise wavelet tree
- in practice, level-wise wavelet trees have less overhead
- navigation still easy
Wavelet Trees (2/2)

\[[0, 7] \]

\[
\begin{array}{cccccccc}
0 & 1 & 6 & 7 & 1 & 5 & 4 & 2 & 6 & 3 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]
Wavelet Trees (2/2)

$$[0, 7]$$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>6</th>
<th>7</th>
<th>1</th>
<th>5</th>
<th>4</th>
<th>2</th>
<th>6</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$$\rightarrow$$

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>6</th>
<th>7</th>
<th>1</th>
<th>5</th>
<th>4</th>
<th>2</th>
<th>6</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Wavelet Trees (2/2)

Wavelet Trees (2/2)
Wavelet Trees (2/2)

[0, 7]

\[
\begin{array}{cccccccc}
0 & 1 & 6 & 7 & 1 & 5 & 4 & 2 & 6 & 3 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
\end{array}
\]

[0, 3]

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 1 \\
\end{array}
\]

[4, 7]

\[
\begin{array}{cccc}
6 & 7 & 5 & 4 & 6 \\
1 & 1 & 0 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
0 & 1 & 6 & 7 & 1 & 5 & 4 & 2 & 6 & 3 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]
Wavelet Trees (2/2)

[0, 7]

\[
\begin{array}{cccccccc}
0 & 1 & 6 & 7 & 1 & 5 & 4 & 2 & 6 & 3 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
\end{array}
\]

[0, 3]

\[
\begin{array}{cccc}
0 & 1 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 1 \\
\end{array}
\]

[4, 7]

\[
\begin{array}{cccc}
6 & 7 & 5 & 4 & 6 \\
1 & 1 & 0 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
0 & 1 & 6 & 7 & 1 & 5 & 4 & 2 & 6 & 3 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]
Wavelet Trees (2/2)

Wavelet Trees (2/2)
Wavelet Trees (2/2)

![Wavelet Tree Diagram]

- **[0, 7]**
 - **[0, 3]**
 - **[0, 1]**
 - **[2, 3]**
 - **[4, 7]**
 - **[4, 5]**
 - **[6, 7]**
Wavelet Trees (2/2)

Wavelet Trees are a data structure used for efficient data indexing and searching. They are particularly useful for text indexing and pattern matching. The diagram illustrates the construction of a wavelet tree for a given sequence of symbols, using rank and select functions to perform operations efficiently.

The tree is built by splitting the sequence into subsets based on the value of the symbols at specific positions. Each level of the tree corresponds to a split based on a particular symbol. The leaves of the tree represent the original sequence, and the internal nodes represent splits.

The rank function allows us to count the number of elements up to a certain position, while the select function allows us to find the position of a certain number of elements.

For example, the rank function `rank₆(9)` in the diagram denotes the position of the 9th occurrence of 1 in the sequence, which is 110 in this case.
Wavelet Trees (2/2)

Wavelet Trees (2/2)

[0, 7]

[0, 3] [4, 7]

[0, 1] [2, 3] [4, 5] [6, 7]

rank₆(9)
Wavelet Trees (2/2)

```
\[
[0,7] \quad [0,3] \quad [4,7]
\]
```

```
\[
\begin{array}{cccccccc}
0 & 1 & 6 & 7 & 1 & 5 & 4 & 2 & 6 & 3 \\
\hline
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
\end{array}
\]
```

```
\[
[0,1] \quad [2,3] \quad [4,5] \quad [6,7]
\]
```

```
\[
\begin{array}{cccc}
0 & 1 & 1 \\
\hline
0 & 1 & 1 \\
\end{array}
\quad \begin{array}{cccc}
2 & 3 \\
\hline
2 & 3 \\
\end{array}
\quad \begin{array}{cccc}
5 & 4 \\
\hline
5 & 4 \\
\end{array}
\quad \begin{array}{cccc}
6 & 7 & 6 \\
\hline
6 & 7 & 6 \\
\end{array}
\]
```

```
\[
\text{rank}_6(9) \quad \begin{array}{c}
1 & 1 & 0 \\
\end{array}
\]
```
Wavelet Trees (2/2)

Wavelet Trees are a data structure used for efficient string matching and rank operations. They are constructed from a bit vector and allow for fast access to information about the positions of certain patterns in the vector.

The diagram illustrates a wavelet tree with the bit vector

$$\begin{bmatrix}
0 & 1 & 6 & 7 & 1 & 5 & 4 & 2 & 6 & 3 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0
\end{bmatrix}$$

The tree is constructed by partitioning the vector into subintervals and recursively applying the same process to each subinterval. The root node represents the entire vector, and each subsequent level represents a subinterval.

For example, to find the rank of an element, we start at the root and follow the path corresponding to the binary representation of the element. The rank at each node is the sum of the ranks of all elements to its left in the bit vector.

The rank of 9 in this vector is 110, as shown in the diagram.
Wavelet Trees (2/2)

Wavelet Trees (2/2)
Wavelet Trees (2/2)

Wavelet Trees (2/2)
The Intervals of a Wavelet Tree

- in each node, all represented characters share a bit prefix
- on depth ℓ the longest common bit prefix has length $\ell - 1$
- the bit prefixes form intervals
The Intervals of a Wavelet Tree

- in each node, all represented characters share a bit prefix
- on depth ℓ the longest common bit prefix has length $\ell - 1$
- the bit prefixes form intervals

\[
\begin{align*}
(\epsilon)_2 \\
(0)_2 & (1)_2 \\
(00)_2 & (01)_2 & (10)_2 & (11)_2
\end{align*}
\]
The Intervals of a Wavelet Tree

- In each node, all represented characters share a bit prefix.
- On depth ℓ, the longest common bit prefix has length $\ell - 1$.
- The bit prefixes form intervals.

- Finding characters in the wavelet tree requires finding the correct interval.
- Finding the position of a character requires finding the position in the last interval.

![Diagram showing intervals of a wavelet tree](image)
Rank-, Select-, and Access-Queries in Wavelet Trees (1/2)

Rank-Queries
- use rank queries on bit vectors
- at depth ℓ as for ℓ-th MSB
- follow through tree according to bit
- as seen on a previous slide

Select-Queries
identify leaf containing character
select corresponding occurrence in leaf
backtrack position up the tree to the root
requires up and down traversal of the wavelet tree
see example on the board

Access-Queries
follow bits through the wavelet tree
return read bits
same as rank but returning bit pattern instead of final rank
see example on the board
Rank-Queries
- use rank queries on bit vectors
- at depth ℓ as for ℓ-th MSB
- follow through tree according to bit
- as seen on a previous slide

Select-Queries
- identify leaf containing character
- select corresponding occurrence in leaf
- backtrack position up the tree to the root
- requires up and down traversal of the wavelet tree
- see example on the board

Access-Queries
- follow bits through the wavelet tree
- return read bits
- same as rank but returning bit pattern instead of final rank
- see example on the board
Rank-, Select-, and Access-Queries in Wavelet Trees (1/2)

<table>
<thead>
<tr>
<th>Rank-Queries</th>
<th>Select-Queries</th>
<th>Access-Queries</th>
</tr>
</thead>
</table>
| - use rank queries on bit vectors
- at depth ℓ as for ℓ-th MSB
- follow through tree according to bit
- as seen on a previous slide | - identify leaf containing character
- select corresponding occurrence in leaf
- backtrack position up the tree to the root
- requires up and down traversal of the wavelet tree
- see example on the board | - follow bits through the wavelet tree
- return read bits
- same as rank but returning bit pattern instead of final rank
- see example on the board |
Rank-, Select-, and Access-Queries in Wavelet Trees (1/2)

Rank-Queries
- use rank queries on bit vectors
- at depth ℓ as for ℓ-th MSB
- follow through tree according to bit
- as seen on a previous slide

Select-Queries
- identify leaf containing character
- select corresponding occurrence in leaf
- backtrack position up the tree to the root
- requires up and down traversal of the wavelet tree
- see example on the board

Access-Queries
- follow bits through the wavelet tree
- return read bits
- same as rank but returning bit pattern instead of final rank
- see example on the board

PINGO what is the query time of rank queries in wavelet trees?
Lemma: Query Times Wavelet Tree

Given a text T over an alphabet of size σ, the wavelet tree of the text can answer rank, select, and access queries in $O(\lg \sigma)$ time.

Proof (Sketch)

All queries require

- just a constant number of rank and select queries on the bit vectors and
- at most one traversals from the root of the tree to a leaf and
- one traversal from a leaf to the root of the tree
Bit Reversal Permutation

- given a bit representation of a character α
- $\text{reverse}(\alpha)$ reverses the bits
- the MSB becomes the least significant bit

Definition: Bit-Reversal Permutation

The bit-reversal permutation ρ_k is a permutation of the numbers $[0, 2^k)$ with

$$\rho_k(i) = \text{reverse}(i)$$

for $i \in [0, 2^k)$
Bit Reversal Permutation

- given a bit representation of a character \(\alpha \)
- \(\text{reverse}(\alpha) \) reverses the bits
- the MSB becomes the least significant bit

Definition: Bit-Reversal Permutation

The **bit-reversal permutation** \(\rho_k \) is a permutation of the numbers \([0, 2^k)\) with

\[
\rho_k(i) = \text{reverse}(i)
\]

for \(i \in [0, 2^k) \)

- \(\rho_2 = (0, 2, 1, 3) = ((00)_2, (10)_2, (01)_2, (11)_2) \)
- \(\rho_{k+1} = (2\rho_k(0), \ldots, 2\rho_k(2^k - 1), 2\rho_k(0) + 1, \ldots, 2\rho_k(2^k - 1) + 1) \)
given a bit representation of a character α

$\text{reverse}(\alpha)$ reverses the bits

the MSB becomes the least significant bit

Definition: Bit-Reversal Permutation

The **bit-reversal permutation** ρ_k is a permutation of the numbers $[0, 2^k)$ with

$$\rho_k(i) = \text{reverse}(i)$$

for $i \in [0, 2^k)$

$\rho_2 = (0, 2, 1, 3) = ((00)_2, (10)_2, (01)_2, (11)_2)$

$\rho_{k+1} = (2\rho_k(0), \ldots, 2\rho_k(2^k - 1), 2\rho_k(0) + 1, \ldots, 2\rho_k(2^k - 1) + 1)$

same intervals as a wavelet tree

used in the wavelet matrix
Alternative Representation

- alternative representation of wavelet trees
- removing tree structure
- only two areas per level of the intervals discussed before still exist
Alternative Representation

- alternative representation of wavelet trees
- removing tree structure
- only two areas per level: the intervals discussed before still exist

Definition: Wavelet Matrix [CNP15]

Given a text T of length n over an alphabet of size σ, a wavelet matrix consists of

- bit vectors BV_ℓ for $\ell \in [1, \lceil \lg \sigma \rceil]$ of size n and
- an array $Z[1..\lceil \lg \sigma \rceil]$

Such that

- $Z[\ell]$ contains the number of zero bits in BV_ℓ
- BV_1 contains all MSBs in text order
- BV_ℓ contains the ℓ-th MSB the character at position i in $BV_{\ell-1}$ at position
 - $\text{rank}_0(i)$ if $BV_{\ell-1} = 0$ and
 - $Z[\ell-1] + \text{rank}_1(i)$ if $BV_{\ell-1} = 1$
Alternative Representation

- alternative representation of wavelet trees
- removing tree structure
- only two areas per level
- the intervals discussed before still exist

- better suited for large alphabets
- seemingly less structure
- retaining all important properties

Definition: Wavelet Matrix [CNP15]

Given a text T of length n over an alphabet of size σ

\[a \text{ wavelet matrix consists of} \]
- bit vectors BV_ℓ for $\ell \in [1, \lceil \lg \sigma \rceil]$ of size n and
- an array $Z[1..\lceil \lg \sigma \rceil]$

Such that
- $Z[\ell]$ contains the number of zero bits in BV_ℓ
- BV_1 contains all MSBs in text order
- BV_ℓ contains the ℓ-th MSB the character at position i in $BV_{\ell-1}$ at position
 - $\text{rank}_0(i)$ if $BV_{\ell-1} = 0$ and
 - $Z[\ell - 1] + \text{rank}_1(i)$ if $BV_{\ell-1} = 1$
Intervals of a Wavelet Matrix

- A wavelet matrix has the same intervals a wavelet tree has.
- Intervals not bounded by parent: no tree structure.
Intervals of a Wavelet Matrix

- A wavelet matrix has the same intervals a wavelet tree has.
- Intervals not bounded by parent: no tree structure.

Intervals of a wavelet tree (for comparison)
Intervals of a Wavelet Matrix

- A wavelet matrix has the same intervals a wavelet tree has.
- Intervals not bounded by parent → no tree structure.

PINGO is answering queries with a wavelet matrix as simple as with a wavelet tree?
Example Wavelet Tree and Wavelet Matrix

- queries on the wavelet matrix work similar
- example on the board 🎨
Wavelet Tree

- first level are MSBs of characters of text
- for each level $\ell > 1$
 - stably sort text using Radix sort by bit prefixes of length $\ell - 1$
 - take ℓ-th MSB of sorted sequence
 - sorted sequence is new text
Wavelet Tree
- first level are MSBs of characters of text
- for each level $\ell > 1$
 - stably sort text using Radix sort by bit prefixes of length $\ell - 1$
 - take ℓ-th MSB of sorted sequence
 - sorted sequence is new text

Wavelet Matrix
- first level are MSBs of characters of text
- for each level $\ell > 1$
 - stably sort text by $\ell - 1$ MSB
 - take ℓ-th MSB of sorted sequence
 - sorted sequence is new text
to make both fully functional bit vectors are augmented with binary rank and select support

Lemma: Running Time and Memory Requirements Wavelet Tree and Wavelet Matrix

Given a text T over an alphabet of size σ, the wavelet tree and wavelet matrix require $(1 + o(1))n\lceil\lg \sigma\rceil$ bits of space and can be constructed in $O(n \lg \sigma)$ time.
to make both fully functional bit vectors are augmented with binary rank and select support

Lemma: Running Time and Memory Requirements Wavelet Tree and Wavelet Matrix

Given a text T over an alphabet of size σ, the wavelet tree and wavelet matrix require $(1 + o(1))n\lceil\lg \sigma\rceil$ bits of space and can be constructed in $O(n\lg \sigma)$ time

PINGO is there a asymptotically faster construction method?
Better Wavelet Tree Construction [Bab+15; MNV16]

- using requires broadword programming
- every τ-th level is a big level
- big levels contain enough information to compute small levels below
- small levels computed by splitting big levels
- $O(b/\lg n)$ characters at a time with $b = o(\lg n)$
- sketch on board 📚
Better Wavelet Tree Construction \[\text{[Bab+15; MNV16]}\]

- using requires broadword programming
- every \(\tau\)-th level is a big level
- big levels contain enough information to compute small levels below
- small levels computed by splitting big levels
- \(O(b/\lg n)\) characters at a time with \(b = o(\lg n)\)
- sketch on board

Lemma: Better Wavelet Tree Construction

Given a text \(T\) over an alphabet of size \(\sigma\), the wavelet tree and wavelet matrix require \((1 + o(1))n\lceil\lg \sigma\rceil\) bits of space and can be constructed in \(O(n\lg \sigma/\sqrt{\lg n})\) time.
Lemma: Better Wavelet Tree Construction

Given a text T over an alphabet of size σ, the wavelet tree and wavelet matrix require $(1 + o(1))n\lceil \lg \sigma \rceil$ bits of space and can be constructed in $O(n \lg \sigma / \sqrt{\lg n})$ time.
Huffman-shaped Wavelet Trees

- wavelet trees can be compressed
- more precise: the text can be compressed
- use Huffman codes
- wavelet trees cannot handle holes
- use canonical Huffman codes
Huffman-shaped Wavelet Trees

- wavelet trees can be compressed
- more precise: the text can be compressed
- use Huffman codes
- wavelet trees cannot handle holes
- use canonical Huffman codes

Huffman Codes (Recap)

- idea is to create a binary tree
- each character α is a leaf and has weight $\text{Hist}[\alpha]$
- create node for two nodes without parent with smallest weight
- give new node total weight of children
- repeat until only one node without parent remains
- label edges:
 - left edge: 0
 - right edge: 1
- path to children gives code for character
Huffman-shaped Wavelet Trees

- wavelet trees can be compressed
- more precise: the text can be compressed
- use Huffman codes
- wavelet trees cannot handle holes
- use canonical Huffman codes

Huffman Codes (Recap)

- idea is to create a binary tree
- each character \(\alpha\) is a leaf and has weight \(Hist[\alpha]\)
- create node for two nodes without parent with smallest weight
- give new node total weight of children
- repeat until only one node without parent remains
- label edges:
 - left edge: 0
 - right edge: 1
- path to children gives code for character

Canonical Huffman Codes (Recap)

- start with Huffman codes, code word 0, and length 1
- to get canonical code for current length, then add 1 to code word
- to update length add 1 and append required amount of zeros to code word
Huffman-shaped Wavelet Trees

<table>
<thead>
<tr>
<th>α</th>
<th>$hc(\alpha)$</th>
<th>$chc(\alpha)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(11)$_2$</td>
<td>(11)$_2$</td>
</tr>
<tr>
<td>3</td>
<td>(01)$_2$</td>
<td>(10)$_2$</td>
</tr>
<tr>
<td>6</td>
<td>(100)$_2$</td>
<td>(011)$_2$</td>
</tr>
<tr>
<td>7</td>
<td>(101)$_2$</td>
<td>(010)$_2$</td>
</tr>
<tr>
<td>0</td>
<td>(0000)$_2$</td>
<td>(0011)$_2$</td>
</tr>
<tr>
<td>2</td>
<td>(0001)$_2$</td>
<td>(0010)$_2$</td>
</tr>
<tr>
<td>4</td>
<td>(0010)$_2$</td>
<td>(0001)$_2$</td>
</tr>
<tr>
<td>5</td>
<td>(0011)$_2$</td>
<td>(0000)$_2$</td>
</tr>
</tbody>
</table>

- Huffman codes (hc)
- canonical Huffman codes (chc) that are bit-wise negated
Huffman-shaped Wavelet Trees

<table>
<thead>
<tr>
<th>α</th>
<th>$hc(\alpha)$</th>
<th>$chc(\alpha)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(11)$_2$</td>
<td>(11)$_2$</td>
</tr>
<tr>
<td>3</td>
<td>(01)$_2$</td>
<td>(10)$_2$</td>
</tr>
<tr>
<td>6</td>
<td>(100)$_2$</td>
<td>(011)$_2$</td>
</tr>
<tr>
<td>7</td>
<td>(101)$_2$</td>
<td>(010)$_2$</td>
</tr>
<tr>
<td>0</td>
<td>(0000)$_2$</td>
<td>(0011)$_2$</td>
</tr>
<tr>
<td>2</td>
<td>(0001)$_2$</td>
<td>(0010)$_2$</td>
</tr>
<tr>
<td>4</td>
<td>(0010)$_2$</td>
<td>(0001)$_2$</td>
</tr>
<tr>
<td>5</td>
<td>(0011)$_2$</td>
<td>(0000)$_2$</td>
</tr>
</tbody>
</table>

- Huffman codes (hc)
- canonical Huffman codes (chc) that are bit-wise negated

- intervals are only missing to the right (white space)
- no holes allow for easy querying
Bottom-Up Construction [FKL18]

- scan the text and create histogram
- while scanning compute first level
- use histogram to compute borders of intervals
- scan text again and fill bit vectors

- example on the next slide
Experimental Setup

- 64 GB RAM
- two Intel Xeon E5-2640v4 CPUs (10 cores at 2.4 GHz base frequency, 3.4 GHz maximum turbo frequency, and cache sizes: 32 KB L1D and L1I, 256 KB L2, 25.6 MB L3)

- same texts as in chapter 04
- results are average of 5 runs
Experiments: Sequential Wavelet Tree Construction

Commoncrawl
DNA
Proteins
Wikipedia

Input size $\log n$ (B)

Throughput (Mbit/s)

- naive
- pc
- pc.ss
- ps
- sdsl.pc
- serialWT
Parallel Wavelet Tree Construction in Practice

Domain Decomposition [Fue+17]
- create wavelet tree in parallel using p PEs
- each PE gets a consecutive slice of text
- each PE builds partial wavelet tree for its text
- merge partial wavelet trees in parallel

- can utilize any sequential algorithm
- very fast in practice
- $O(n \log \sigma / \sqrt{\log n})$ work and $O(\sigma + \log n)$ time
 [Shu20]
partial wavelet trees

compute wavelet tree

parallel merge

final wavelet tree

compute wavelet tree
Experiments: Parallel Wavelet Tree Construction

Common crawl throughput (Gbit/s)

- **256 MiB per PE**
- **512 MiB per PE**
- **1024 MiB per PE**

PEs

- ddWT
- dd.ps
- levelWT
- ppc.ss
- recWT
- dd.pc
- dd.pc.ss
- ppc
- pps
- sortWT
Conclusion and Outlook

This Lecture

- wavelet tree and wavelet matrix
- Huffman-shaped wavelet trees

Linear Time Construction

ST SA WT

LZ LCP BWT
Conclusion and Outlook

This Lecture
- wavelet tree and wavelet matrix
- Huffman-shaped wavelet trees
- select on bit vectors
- practical algorithms for wavelet tree construction

Linear Time Construction
- ST
- SA
- WT
- LZ
- LCP
- BWT
Conclusion and Outlook

This Lecture
- wavelet tree and wavelet matrix
- Huffman-shaped wavelet trees
- select on bit vectors
- practical algorithms for wavelet tree construction

Next Lecture
- FM-index
- r-Index

Linear Time Construction

Diagram:
- ST
- SA
- WT
- LZ
- LCP
- BWT

28/28 2022-12-05 Florian Kurpicz | Text Indexing | 06 Wavelet Trees
Institute for Theoretical Informatics, Algorithm Engineering
Bibliography I

Bibliography II

