Definition: Inverted Index

Given a set of documents and terms that are contained in the documents, an inverted index stores the terms and associated with each term t

- the number of documents f_t that contain t and
- an ordered list $L(t)$ of documents containing t

1. The old night keeper keeps the keep in the town
2. In the big old house in the big old gown
3. The house in the town had the big old keep
4. Where the old night keeper never did sleep
5. The night keeper keeps the keep in the night
6. And keeps in the dark and sleeps in the light
The Inverted Index

Definition: Inverted Index

Given a set of documents and terms that are contained in the documents, an inverted index stores the terms and associated with each term t

- the number of documents f_t that contain t and
- an ordered list $L(t)$ of documents containing t

The old night keeper keeps the keep in the town
2 In the big old house in the big old gown
3 The house in the town had the big old keep
4 Where the old night keeper never did sleep
5 The night keeper keeps the keep in the night
6 And keeps in the dark and sleeps in the light

<table>
<thead>
<tr>
<th>term</th>
<th>f_t</th>
<th>$L(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>big</td>
<td>2</td>
<td>[2,3]</td>
</tr>
<tr>
<td>dark</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>had</td>
<td>1</td>
<td>[3]</td>
</tr>
<tr>
<td>house</td>
<td>2</td>
<td>[2,3]</td>
</tr>
<tr>
<td>in</td>
<td>5</td>
<td>[1,2,3,5,6]</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
The Inverted Index

Definition: Inverted Index

Given a set of documents and terms that are contained in the documents, an inverted index stores the terms and associated with each term t

- the number of documents f_t that contain t and
- an ordered list $L(t)$ of documents containing t

1. The old night keeper keeps the keep *in* the town
2. In the **big** old house *in* the **big** old gown
3. The house *in* the town had the **big** old keep
4. Where the old night keeper never did sleep
5. The night keeper keeps the keep *in* the night
6. And keeps *in* the dark and sleeps *in* the light

<table>
<thead>
<tr>
<th>term</th>
<th>f_t</th>
<th>$L(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>big</td>
<td>2</td>
<td>[2, 3]</td>
</tr>
<tr>
<td>dark</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>had</td>
<td>1</td>
<td>[3]</td>
</tr>
<tr>
<td>house</td>
<td>2</td>
<td>[2, 3]</td>
</tr>
<tr>
<td>in</td>
<td>5</td>
<td>[1, 2, 3, 5, 6]</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
The Inverted Index: Queries

Conjunctive Queries
- Given two lists M and N, return all documents contained in both lists: $M \cap N$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The old night keeper keeps the keep in the town</td>
</tr>
<tr>
<td>2</td>
<td>In the big old house in the big old gown</td>
</tr>
<tr>
<td>3</td>
<td>The house in the town had the big old keep</td>
</tr>
<tr>
<td>4</td>
<td>Where the old night keeper never did sleep</td>
</tr>
<tr>
<td>5</td>
<td>The night keeper keeps the keep in the night</td>
</tr>
<tr>
<td>6</td>
<td>And keeps in the dark and sleeps in the light</td>
</tr>
</tbody>
</table>
The Inverted Index: Queries

Conjunctive Queries
- Given two lists M and N, return all documents contained in both lists: $M \cap N$

Disjunctive Queries
- Given two lists M and N, return all documents contained in either list: $M \cup N$

1. The old night keeper keeps the keep in the town
2. In the big old house in the big old gown
3. The house in the town had the big old keep
4. Where the old night keeper never did sleep
5. The night keeper keeps the keep in the night
6. And keeps in the dark and sleeps in the light

<table>
<thead>
<tr>
<th>term</th>
<th>f_t</th>
<th>$L(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>big</td>
<td>2</td>
<td>[2, 3]</td>
</tr>
<tr>
<td>dark</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>had</td>
<td>1</td>
<td>[3]</td>
</tr>
<tr>
<td>house</td>
<td>2</td>
<td>[2, 3]</td>
</tr>
<tr>
<td>in</td>
<td>5</td>
<td>[1, 2, 3, 5, 6]</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
The Inverted Index: Queries

Conjunctive Queries
- Given two lists M and N, return all documents contained in both lists: $M \cap N$

Disjunctive Queries
- Given two lists M and N, return all documents contained in either list: $M \cup N$

Phrase Queries
- Given two terms t_1 and t_2, return all documents containing $t_1 \ t_2$ all previous discussed indices can do so

1. The old night keeper keeps the keep in the town
2. In the big old house in the big old gown
3. The house in the town had the big old keep
4. Where the old night keeper never did sleep
5. The night keeper keeps the keep in the night
6. And keeps in the dark and sleeps in the light

<table>
<thead>
<tr>
<th>term</th>
<th>t_i</th>
<th>$L(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>big</td>
<td>2</td>
<td>[2,3]</td>
</tr>
<tr>
<td>dark</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>had</td>
<td>1</td>
<td>[3]</td>
</tr>
<tr>
<td>house</td>
<td>2</td>
<td>[2,3]</td>
</tr>
<tr>
<td>in</td>
<td>5</td>
<td>[1,2,3,5,6]</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Inverted Index: Representing the Terms (1/2)

- terms can be represented using tries
- in each leaf, store pointer to list for term
- simple representation
- easy to add and remove terms
Inverted Index: Representing the Terms (2/2)

- use multiplicative hash function
- \(h(t[1] \ldots t[\ell]) = ((\sum_{i=1}^{\ell} a_i \cdot t[i]) \mod p) \mod m \)
- for prime \(p < m \) and
- fixed random integers \(a_i \in [1, p] \)

- good worst case guarantee
- \(\text{Prob}[h(x) = h(y)] = O(1/m) \) for \(x \neq y \)
Inverted Index: Document Lists

- document ids are sorted
- if ids are in \([1, U]\), storing them requires \(\lceil \lg U \rceil\) bits per id

Binary Codes

- an integer \(x\) can be represented as binary \((x)_2\)
- for fast access, all binary representations must have the same width

Now

- different ideas on how to better store ids
- not all ideas work with all algorithms
- different space usage and complexity
Difference Encoding

- given a document list \(N = [d_1, \ldots, d_{|N|}] \)
- the document ids are sorted: \(d_1 < \cdots < d_{|N|} \)
- store first id
- represent other ids by difference: \(\delta_i = d_i - d_{i-1} \)

Definition: \(\triangle \)-Encoding

A \(\triangle \)-encoded document list \(N = [d_1, \ldots, d_{|N|}] \) is \(N = [d_1, d_2 - d_1, \ldots, d_{|N|} - d_{|N|-1}] \).
Difference Encoding

- given a document list \(N = [d_1, \ldots, d_{|N|}] \)
- the document ids are sorted: \(d_1 < \cdots < d_{|N|} \)
- store first id
- represent other ids by difference: \(\delta_i = d_i - d_{i-1} \)

Definition: \(\Delta \)-Encoding

A \(\Delta \)-encoded document list \(N = [d_1, \ldots, d_{|N|}] \) is
\[N = [d_1, d_2 - d_1, \ldots, d_{|N|} - d_{|N-1|}] \]

Just ids:
- \(N = [4, 11, 12, 30, 42, 54] \)
\(\Delta \)-encoded
- \(N = [4, 7, 1, 18, 12, 12] \)
Difference Encoding

- given a document list \(N = [d_1, \ldots, d_{|N|}] \)
- the document ids are sorted: \(d_1 < \cdots < d_{|N|} \)
- store first id
- represent other ids by difference: \(\delta_i = d_i - d_{i-1} \)

Definition: \(\Delta \)-Encoding

A \(\Delta \)-encoded document list \(N = [d_1, \ldots, d_{|N|}] \) is

\[
N = [d_1, d_2 - d_1, \ldots, d_{|N|} - d_{|N-1|}]
\]

- can this be compressed further?
- accessing id requires scanning

Just ids:

- \(N = [4, 11, 12, 30, 42, 54] \)

\(\Delta \)-encoded

- \(N = [4, 7, 1, 18, 12, 12] \)
Unary Encoding

Definition: Unary Codes

Given an integer $x > 0$, its unary code $(x)_1$ is $1^{x-1}0$

- $|(x)_1| = x$ bits
- encoded integers can be accessed using rank and select queries
- if 0 has to be encoded, all codes require an additional bit
Unary Encoding

Definition: Unary Codes

Given an integer $x > 0$, its unary code $(x)_1$ is $1^{x-1}0$

- $|(x)_1| = x$ bits
- encoded integers can be accessed using rank and select queries
- if 0 has to be encoded, all codes require an additional bit

Just ids:

- $N = [4, 11, 12, 30, 42, 54]$
 - Δ-encoded
 - $N = [4, 7, 1, 18, 12, 12]$

Unary Codes:

- $N = [110111111001^{17}01^{11}0111111111110]$
Ternary Encoding

Definition: Ternary Codes

Given an integer \(x > 0 \), represent \(x - 1 \) in ternary using

- 00 to represent 0
- 01 to represent 1
- 10 to represent 2

and append 11 to each code to obtain its ternary code \((x)_3\)

\[
|(x)_3| = 2\lceil \log_3(x - 1) \rceil + 2
\]
Definition: Ternary Codes

Given an integer \(x > 0 \), represent \(x - 1 \) in ternary using
- 00 to represent 0
- 01 to represent 1
- 10 to represent 2
and append 11 to each code to obtain its ternary code \((x)_3\)

\[
|(x)_3| = 2\lfloor \lg_3(x - 1) \rfloor + 2
\]

Just ids:
- \(N = [4, 11, 12, 30, 42, 54] \)

\(\Delta \)-encoded
- \(N = [4, 7, 1, 18, 12, 12] \)

Unary Codes:
- \(N = [11101111110011701^{11}01111111111110] \)

Ternary Codes:
- \(N = [0100111000110001100011101011001011010110101011] \)
Fibonacci Encoding

Lemma: Zeckendorf’s Theorem

Let f_i be the i-th Fibonacci number, then each integer $x > 0$ can be represented as

$$n = \sum_{i=2}^{k} c_i f_i$$

with $c_i \in \{0, 1\}$ and $c_i + c_{i+1} < 2$

Definition: Fibonacci Code

Given an integer $x > 0$ use the sequence of c_i’s followed by a 1 as its Fibonacci code $(x)_\phi$
Fibonacci Encoding

Lemma: Zeckendorf’s Theorem

Let \(f_i \) be the \(i \)-th Fibonacci number, then each integer \(x > 0 \) can be represented as

\[
n = \sum_{i=2}^{k} c_i f_i
\]

with \(c_i \in \{0,1\} \) and \(c_i + c_{i+1} < 2 \)

- 11 does not occur in any sequence
- to compute find largest Fibonacci number \(f_i \leq x \) and repeat process for \(x - f_i \)
- Fibonacci codes are smaller than ternary codes for smaller integers

Definition: Fibonacci Code

Given an integer \(x > 0 \) use the sequence of \(c_i \)'s followed by a 1 as its Fibonacci code \((x)_{\phi}\)
Lemma: Zeckendorf’s Theorem

Let f_i be the i-th Fibonacci number, then each integer $x > 0$ can be represented as

$$n = \sum_{i=2}^{k} c_i f_i$$

with $c_i \in \{0, 1\}$ and $c_i + c_{i+1} < 2$

Definition: Fibonacci Code

Given an integer $x > 0$ use the sequence of c_i’s followed by a 1 as its Fibonacci code $(x)_\phi$

- 11 does not occur in any sequence
- to compute find largest Fibonacci number $f_i \leq x$ and repeat process for $x - f_i$
- Fibonacci codes are smaller than ternary codes for smaller integers

$\begin{align*}
\text{f}_2 &= 1, \text{f}_3 = 2, \text{f}_4 = 3, \text{f}_5 = 5, \text{f}_6 = 8, \text{f}_7 = 13 \\
4: \text{f}_2 + \text{f}_4 &= 1011 \\
7: \text{f}_3 + \text{f}_5 &= 01011 \\
1: \text{f}_2 &= 11 \\
18: \text{f}_5 + \text{f}_7 &= 0001011 \\
12: \text{f}_2 + \text{f}_4 + \text{f}_6 &= 101011
\end{align*}$
Definition: Elias-γ-Code

Given an integer $x > 0$, its Elias-\textit{gamma}-code $(x)_\gamma$ is

$$(x)_\gamma = 0^{\lfloor \lg x \rfloor} (x)_2$$

- $| (x)_\gamma | = 2 \lfloor \lg x \rfloor + 1$ bit
- first part gives length of binary representation
- first bit of $(x)_2$ is one bit
Elias-γ-Encoding [Eli75]

Definition: Elias-γ-Code
Given an integer $x > 0$, its Elias-gamma-code $(x)_γ$ is

$$(x)_γ = 0^{|\lfloor \lg x \rfloor|} (x)_2$$

- $|{(x)_γ}| = 2^{|\lfloor \lg x \rfloor|} + 1$ bit
- first part gives length of binary representation
- first bit of $(x)_2$ is one bit

4: 00 100
7: 00 111
1: 1
18: 0000 10010
12: 000 1000
Elias-δ-Encoding [Eli75]

Definition: Elias-δ-Code

Given an integer $x > 0$, its Elias-δ-code $(x)_\delta$ is

$$(x)_\delta = (\lfloor \lg x \rfloor + 1)\gamma(x)[2..(x)]$$

- **encode length of binary representation using Elias-γ code**
- **first bit of binary representation not required anymore**
- **$|{(x)}_\delta| = 2(\lfloor \lg((\lfloor \lg x \rfloor + 1)) + 1 + \lfloor \lg x \rfloor$ bits**
Definition: Elias-\(\delta\)-Code

Given an integer \(x > 0\), its Elias-\(\delta\)-code \((x)_{\delta}\) is

\[
(x)_{\delta} = ([\lg x] + 1)_{\gamma}(x)_{2}[2..|(x)_{2}]
\]

- encode length of binary representation using Elias-\(\gamma\) code
- first bit of binary representation not required anymore
- \(|(x)_{\delta}| = 2[[\lg ([\lg x] + 1)] + 1 + [\lg x] \text{ bits}"

Elias-\(\gamma\)

- 4: 00 100
- 7: 00 111
- 1: 1
- 18: 0000 10010
- 12: 00 1000

Elias-\(\delta\)

- 4: 01 100
- 7: 01 111
- 1: 1
- 18: 00 101 0010
- 12: 00 100 100
Definition: Elias-\(\delta\)-Code

Given an integer \(x > 0\), its Elias-\(\delta\)-code \((x)_\delta\) is

\[
(x)_\delta = (\lfloor \log_2 x \rfloor + 1)_{\gamma}(x)_2[2..|(x)_2|]
\]

Definition: Elias-\(\gamma\)-Code

Given an integer \(x > 0\), its Elias-\(\gamma\)-code \((x)_\gamma\) is

\[
(x)_\gamma = 0^{\lfloor \log_2 x \rfloor}(x)_2
\]
Hands-on Elias-Encoding

Definition: Elias-δ-Code
Given an integer \(x > 0 \), its Elias-δ-code \((x)_{\delta}\) is
\[
(x)_{\delta} = ([\lg x] + 1)(\gamma(x)_{2}[2..|(x)_{2}|])
\]

Definition: Elias-γ-Code
Given an integer \(x > 0 \), its Elias-gamma-code \((x)_{\gamma}\) is
\[
(x)_{\gamma} = 0^{[\lg x]}(x)_{2}
\]

Exercise 1
Calculate the Elias-γ and Elias-δ encoding of 42.

Exercise 2
Which integer is represented by the following Elias-δ code?

001010111
Definition: Elias-δ-Code
Given an integer \(x > 0 \), its Elias-δ-code \((x)_\delta\) is
\[
(x)_\delta = (\lfloor \log_2 x \rfloor + 1) \gamma (x)_2 [2..|(x)_2|]
\]

Definition: Elias-γ-Code
Given an integer \(x > 0 \), its Elias-gamma-code \((x)_\gamma\) is
\[
(x)_\gamma = 0^{\lfloor \log_2 x \rfloor} (x)_2
\]

Exercise 1
Calculate the Elias-γ and Elias-δ encoding of 42.
- 00000 101010
- 00 110 01010

Exercise 2
Which integer is represented by the following Elias-δ code?
001010111
Definition: Elias-δ-Code

Given an integer \(x > 0 \), its Elias-\(\delta \)-code \((x)_{\delta}\) is

\[
(x)_{\delta} = (\lceil \lg x \rceil + 1)_{\gamma}(x)_{2}[2..|(x)_{2}|
\]

Definition: Elias-γ-Code

Given an integer \(x > 0 \), its Elias-gamma-code \((x)_{\gamma}\) is

\[
(x)_{\gamma} = 0^{\lceil \lg x \rceil}(x)_{2}
\]

Exercise 1

Calculate the Elias-\(\gamma \) and Elias-\(\delta \) encoding of 42.
- 00000 101010
- 00 110 01010

Exercise 2

Which integer is represented by the following Elias-\(\delta \) code?

\[001010111 \rightarrow 23\]
Golomb Encoding [Gol66]

Definition: Golomb Code

Given an integer $x > 0$ and a constant $b > 0$, the Golomb code consists of

- $q = \lfloor \frac{x}{b} \rfloor$
- $r = x - qb = x \% b$
- $c = \lceil \lg b \rceil$

with

$$(x)_{\text{Gol}(b)} = (q)_1(r)_2$$

where $(r)_2$ depends on its size

- $r < 2^{\lfloor \lg b \rfloor - 1}$: r requires $\lfloor \lg b \rfloor$ bits and starts with a 0
- $r \geq 2^{\lfloor \lg b \rfloor - 1}$: r requires $\lceil \lg b \rceil$ bits and starts with a 1 and it encodes $r - 2^{\lfloor \lg b \rfloor - 1}$
Definition: Golomb Code

Given an integer $x > 0$ and a constant $b > 0$, the Golomb code consists of

- $q = \left\lfloor \frac{x}{b} \right\rfloor$
- $r = x - qb = x \% b$
- $c = \lceil \log b \rceil$

with

$$(x)_{\text{Gol}(b)} = (q)_1(r)_2$$

where $(r)_2$ depends on its size

- $r < 2^{\lceil \log b \rceil - 1}$: r requires $\lceil \log b \rceil$ bits and starts with a 0
- $r \geq 2^{\lceil \log b \rceil - 1}$: r requires $\lceil \log b \rceil$ bits and starts with a 1 and it encodes $r - 2^{\lceil \log b \rceil - 1}$

- b has to be fixed for all codes
- still variable length
Golomb Encoding [Gol66]

Definition: Golomb Code

Given an integer \(x > 0 \) and a constant \(b > 0 \), the Golomb code consists of

- \(q = \lfloor \frac{x}{b} \rfloor \)
- \(r = x - qb = x \% b \)
- \(c = \lceil \log_2 b \rceil \)

with

\[
(x)_{\text{Gol}}(b) = (q)_1 (r)_2
\]

where \((r)_2\) depends on its size

- \(r < 2^{\lceil \log_2 b \rceil - 1} \): \(r \) requires \(\lceil \log_2 b \rceil \) bits and starts with a 0
- \(r \geq 2^{\lceil \log_2 b \rceil - 1} \): \(r \) requires \(\lceil \log_2 b \rceil \) bits and starts with a 1 and it encodes \(r - 2^{\lceil \log_2 b \rceil - 1} \)

- \(b \) has to be fixed for all codes
- still variable length

- for \(b = 5 \), there are 4 remainders: 00, 01, 100, 101, and 110
- \(2^{\lceil \log_5 5 \rceil - 1} = 2 \)
- 0, 1 < 2: 00 and 01 require 2 bits
- 2, 3, 4 \(\geq 2 \): require 3 bits and encode 0, 1, 2 starting with 1
Comparison of Codes (1/2)
Comparison of Codes (2/2)

![Graph comparing various encoding methods: unary, ternary, Fibonacci, Elias-γ, Elias-δ, Golomb (b = 5), and Golomb (b = 10^6).]
Back to Queries: Conjunctive Queries

Task
- given terms t_1, \ldots, t_k
- intersect $L(t_1) \cap L(t_2) \cap \cdots \cap L(t_k)$

- pairwise intersection usually works best
- intersection of two lists is of interest
- start with two shortest and continue like that
Task
- given terms t_1, \ldots, t_k
- intersect $L(t_1) \cap L(t_2) \cap \cdots \cap L(t_k)$

Setting
- two lists M and N with
- $|M| = m$ and $|N| = n$ and
- $m \leq n$

- pairwise intersection usually works best
- intersection of two lists is of interest
- start with two shortest and continue like that

- different algorithms to intersect lists
- assuming lists are Δ encoded
Naive Scanning

Zipper
- scan both lists as in binary merging
Zipper
- scan both lists as in binary merging

Lemma: Running Time Zipper
Intersecting two sorted lists of sizes m and n using zipper requires $O(m + n)$ time.
Naive Scanning

Zipper
- scan both lists as in binary merging

Lemma: Running Time Zipper
Intersecting two sorted lists of sizes m and n using zipper requires $O(m + n)$ time.

Proof (Sketch)
- compare entries until one list is empty
- if $\max\{id : id \in N\} < \text{some element in } M$, then all elements in N are compared
- resulting in $O(n + m)$ time
Naive Scanning

Zipper
- scan both lists as in binary merging

Lemma: Running Time Zipper
Intersecting two sorted lists of sizes m and n using zipper requires $O(m + n)$ time.

Proof (Sketch)
- compare entries until one list is empty
- if $\max\{id: id \in N\} < $ some element in M, then all elements in N are compared
- resulting in $O(n + m)$ time

- works well with Δ-encoding
- in real implementations zipping is good until $n > 20m$ [BS05]
Naive Scanning

Zipper
- scan both lists as in binary merging

Lemma: Running Time Zipper
Intersecting two sorted lists of sizes m and n using zipper requires $O(m + n)$ time.

Proof (Sketch)
- compare entries until one list is empty
- if $\max\{id : id \in N\} < \text{some element in } M$, then all elements in N are compared
- resulting in $O(n + m)$ time

- works well with Δ-encoding
- in real implementations zipping is good until $n > 20m$ [BS05]
- example on the board

Institute for Theoretical Informatics, Algorithm Engineering
Simple Binary Search

- search each document in M in N using binary search
Binary Search (1/2)

Simple Binary Search
- search each document in M in N using binary search

Lemma: Running Time Simple Binary Search
Intersecting two sorted lists of sizes m and n using a simple binary search requires $O(m \lg n)$ time.
Simple Binary Search

- search each document in M in N using binary search

Lemma: Running Time Simple Binary Search

Intersecting two sorted lists of sizes m and n using a simple binary search requires $O(m \lg n)$ time.

Proof (Sketch)

- binary search on N because $n \geq m$
- for each id in N binary search in $O(\lg n)$ time
- resulting in $O(m \lg n)$ total time
Simple Binary Search
- search each document in M in N using binary search

Lemma: Running Time Simple Binary Search
Intersecting two sorted lists of sizes m and n using a simple binary search requires $O(m \lg n)$ time.

Proof (Sketch)
- binary search on N because $n \geq m$
- for each id in N binary search in $O(\lg n)$ time
- resulting in $O(m \lg n)$ total time
Simple Binary Search
- search each document in M in N using binary search

Lemma: Running Time Simple Binary Search
Intersecting two sorted lists of sizes m and n using a simple binary search requires $O(m \lg n)$ time.

Proof (Sketch)
- binary search on N because $n \geq m$
- for each id in N binary search in $O(\lg n)$ time
- resulting in $O(m \lg n)$ total time

example on the board
binary search not work with Δ-encoding
Double Binary Search

- let \(p_m = \lfloor \frac{m}{2} \rfloor \)
- search for \(M[p_m] \) in \(N \) using binary search
- let result be position \(p_n \)
- if \(M[p_m] = N[p_n] \) add \(M[p_m] \) to result
- continue recursively by intersecting
 - \(M[1, p_m] \cap N[1, p_n] \) and
 - \(M[1 + p_m, |M|] \cap N[1 + p_n, |N|] \)
Binary Search (2/2)

Double Binary Search

- let \(p_m = \lfloor \frac{m}{2} \rfloor \)
- search for \(M[p_m] \) in \(N \) using binary search
- let result be position \(p_n \)
- if \(M[p_m] = N[p_n] \) add \(M[p_m] \) to result
- continue recursively by intersecting
 - \(M[1, p_m] \cap N[1, p_n] \) and
 - \(M[1 + p_m, |M|] \cap N[1 + p_n, |N|] \)

Lemma: Running Time Double Binary Search

Intersecting two sorted lists of sizes \(m \) and \(n \) using a double binary search requires \(O(m \lg \frac{n}{m}) \) time.
Let $p_m = \lfloor \frac{m}{2} \rfloor$.

Search for $M[p_m]$ in N using binary search.

Let result be position p_n.

If $M[p_m] = N[p_n]$ add $M[p_m]$ to result.

Continue recursively by intersecting $M[1, p_m] \cap N[1, p_n]$ and $M[1 + p_m, |M|] \cap N[1 + p_n, |N|]$.

Proof (Sketch)*

- Look at running time of binary search at each recursion depth.
 - Depth 0: $\lg n$
 - Depth 1: $2 \cdot \frac{n}{2}$
 - Depth 2: $4 \cdot \frac{n}{4}$
 - Depth m: $m \cdot \frac{n}{m}$

Depth of recursion is at most $\lg m$, therefore:

$$\sum_{i=0}^{\lg m} \frac{m}{2^i} \left(\lg \frac{n}{m} + i \right) = m \left(\lg \frac{n}{m} \sum_{i=0}^{\lg m} \frac{1}{2^i} + \sum_{i=0}^{\lg m} \frac{1}{2^i} \right)$$

Total: $O(m \lg \frac{n}{m})$
Binary Search (2/2)

Double Binary Search

- let $p_m = \lfloor \frac{m}{2} \rfloor$
- search for $M[p_m]$ in N using binary search
- let result be position p_n
- if $M[p_m] = N[p_n]$ add $M[p_m]$ to result
- continue recursively by intersecting
 - $M[1, p_m] \cap N[1, p_n]$ and
 - $M[1 + p_m, |M|] \cap N[1 + p_n, |N|]$

Proof (Sketch)

- look at running time of binary search at each recursion depth
- depth 0: $\lg n$
- depth 1: $2 \lg \frac{n}{2}$
- depth 2: $4 \lg \frac{n}{4}$
- depth m: $m \lg \frac{n}{m}$

Depth of recursion is at most $\lg m$, therefore

$$\sum_{i=0}^{\lfloor \frac{m}{2^i} \rfloor} (\lg \frac{n}{m} + i) = m (\lg \frac{n}{m} \sum_{i=0}^{\lfloor \frac{m}{2^i} \rfloor} \frac{1}{2^i} + \sum_{i=0}^{\lfloor \frac{m}{2^i} \rfloor} \frac{1}{2^i})$$

- total: $O(m \lg \frac{n}{m})$

Lemma: Running Time Double Binary Search

Intersecting two sorted lists of sizes m and n using a double binary search requires $O(m \lg \frac{n}{m})$ time.

Example on board
Exponential Search

- assume that $M[1..i]$ have been processed and
- $M[i]$ is closest to $N[j]$ for some j
- now find $M[i+1]$ in N by comparing it to $N[j], N[j+1], N[j+2], N[j+4], \ldots$ until
- $N[j + 2^k] \geq M[i+1]$ if $N[j + 2^k] = M[i+1]$, we are done with this iteration
- binary search for $M[i+1]$ in $N[j + 2^{k-1}.j + 2^k]$
Exponential Search

Exponential Search

- assume that $M[1..i]$ have been processed and
- $M[i]$ is closest to $N[j]$ for some j
- now find $M[i + 1]$ in N by comparing it to
- $N[j + 2^k] \geq M[i + 1]$ if $N[j + 2^k] = M[i + 1]$
 we are done with this iteration
- binary search for $M[i + 1]$ in $N[j + 2^{k-1}..j + 2^k]$

Lemma: Running Time Exponential Search

Intersecting two sorted lists of sizes m and n using a exponential search requires $O(m \lg \frac{n}{m})$ time.
Exponential Search

- assume that $M[1..i]$ have been processed and
- $M[i]$ is closest to $N[j]$ for some j
- now find $M[i + 1]$ in N by comparing it to
 $N[j], N[j + 1], N[j + 2], N[j + 4], \ldots$ until
- $N[j + 2^k] \geq M[i + 1]$ if $N[j + 2^k] = M[i + 1]$, we are done with this iteration
- binary search for $M[i + 1]$ in $N[j + 2^{k-1}.j + 2^k]$

Proof

- searching for each element $M[i]$ requires $O(\lg d_i)$ time
- d_i is distance between $M[i - 1]$ and $M[i]$ in N
- $O(\sum_i^m \lg d_i)$, which is maximal if $d_i = \frac{n}{m}$
- total: $O(m \lg \frac{n}{m})$

Lemma: Running Time Exponential Search

Intersecting two sorted lists of sizes m and n using a exponential search requires $O(m \lg \frac{n}{m})$ time.
Exponential Search

Exponential Search
- assume that $M[1..i]$ have been processed and
- $M[i]$ is closest to $N[j]$ for some j
- now find $M[i + 1]$ in N by comparing it to
- $N[j + 2^k] \geq M[i + 1]$ if $N[j + 2^k] = M[i + 1]$, we are done with this iteration
- binary search for $M[i + 1]$ in $N[j + 2^{k-1}.j + 2^k]$

Proof
- searching for each element $M[i]$ requires $O(\lg d_i)$ time
- d_i is distance between $M[i - 1]$ and $M[i]$ in N
- $O(\sum_i^m \lg d_i)$, which is maximal if $d_i = \frac{n}{m}$
- total: $O(m \lg \frac{n}{m})$

Lemma: Running Time Exponential Search
Intersecting two sorted lists of sizes m and n using a exponential search requires $O(m \lg \frac{n}{m})$ time.
Exponential Search

- Assume that $M[1..i]$ have been processed and $M[i]$ is closest to $N[j]$ for some j
- Now find $M[i + 1]$ in N by comparing it to $N[j], N[j + 1], N[j + 2], N[j + 4], \ldots$ until $N[j + 2^k] \geq M[i + 1]$ if $N[j + 2^k] = M[i + 1]$
- Binary search for $M[i + 1]$ in $N[j + 2^{k-1}.j + 2^k]$

Proof

- Searching for each element $M[i]$ requires $O(\lg d_i)$ time
- d_i is distance between $M[i - 1]$ and $M[i]$ in N
- $O(\sum_i^m \lg d_i)$, which is maximal if $d_i = \frac{n}{m}$
- Total: $O(m \lg \frac{n}{m})$

Lemma: Running Time Exponential Search

Intersecting two sorted lists of sizes m and n using an exponential search requires $O(m \lg \frac{n}{m})$ time.

Example on board

Worked well if lists do not fit into main memory
Still not working with Δ-encoding
Engineered Representations

Two-Level Representation

- store every B-th element of the list in top-level
- in addition to Δ-encoded ids
- store original id for each sampled value in id-list
Engineered Representations

Two-Level Representation
- store every B-th element of the list in top-level
- in addition to Δ-encoded ids
- store original id for each sampled value in id-list

Binary Search
- binary search on top-level
- scan on list in relevant interval

example on board 📚
Engineered Representations

<table>
<thead>
<tr>
<th>Two-Level Representation</th>
<th>Skipper [MZ96]</th>
</tr>
</thead>
<tbody>
<tr>
<td>- store every B-th element of the list in top-level</td>
<td>- scan top-level and</td>
</tr>
<tr>
<td>- in addition to Δ-encoded ids</td>
<td>- go down in Δ-encoded list as soon as possible</td>
</tr>
<tr>
<td>- store original id for each sampled value in id-list</td>
<td>- avoids complex binary search control structure</td>
</tr>
</tbody>
</table>

Binary Search

- binary search on top-level
- scan on list in relevant interval

Example on Board

- example on board

Example on Board: Skipping through the list.
Intersection with Randomized Inverted Indices [ST07]

- Assume ids are in $[0, U)$ with $U = 2^{2u}$
- Ids have to be random; more details in paper
- Choose tuning parameter B; determine average bucket size
- Given a list $N = [d_1, \ldots, d_n]$ and $k_N = \lceil \lg \frac{UB}{n} \rceil$
- Per list, represent ids in
 - Buckets b^N_i containing
 - Partial ids $\{d_j \bmod 2^{k_N} : d_j / 2^{k_N} = i\}$
- Due to randomization, average bucket size is between $B/2$ and B
- Elements in buckets can be Δ-encoded
Intersection with Randomized Inverted Indices [ST07]

- Assume ids are in \([0, U)\) with \(U = 2^{2u}\)
- Ids have to be random \(\triangleright\) more details in paper
- Choose tuning parameter \(B\) \(\triangleright\) determine average bucket size
- Given a list \(N = [d_1, \ldots, d_n]\) and \(k_N = \lceil \lg \frac{UB}{n} \rceil\)
- Per list, represent ids in
 - Buckets \(b_i^N\) containing
 - Partial ids \(\{d_j \mod 2^{k_N} : d_j/2^{k_N} = i\}\)
- Due to randomization, average bucket size is between \(B/2\) and \(B\)
- Elements in buckets can be \(\Delta\)-encoded

Example on board 🎨
Intersection with Randomized Inverted Indices [ST07]

- Assume ids are in $[0, U)$ with $U = 2^{2^u}$
- Ids have to be random \(\textcircled{1} \) more details in paper
- Choose tuning parameter $B \textcircled{2}$ determine average bucket size
- Given a list $N = [d_1, \ldots, d_n]$ and $k_N = \lceil \lg \frac{UB}{n} \rceil$
- Per list, represent ids in
 - Buckets b^N_i containing
 - Partial ids $\{d_j \mod 2^{k_N} : d_j/2^{k_N} = i\}$
- Due to randomization, average bucket size is between $B/2$ and B
- Elements in buckets can be Δ-encoded

Intersection

- For each element $M[i]$ find bucket of N
- Can be same bucket as for $M[i-1]$, if so, continue at position of $M[i-1]$ in bucket \(\textcircled{3} \) continuing is important
- Scan bucket until element $\geq M[i]$ is found
- If equal, output $M[i]$

Example on board

23/24 2023-01-30 Tim Niklas Uhl | Text Indexing | 10 Inverted Index Institute for Theoretical Informatics, Algorithm Engineering
Intersection with Randomized Inverted Indices [ST07]

- Assume ids are in \([0, U)\) with \(U = 2^{2u}\)
- Ids have to be random \(\circ\) more details in paper
- Choose tuning parameter \(B \circ\) determine average bucket size
- Given a list \(N = \[d_1, \ldots, d_n\]\) and \(k_N = \lceil \lg \frac{UB}{n} \rceil\)
- Per list, represent ids in
 - Buckets \(b^N_i\) containing partial ids \(\{d_j \mod 2^{k_N} : d_j / 2^{k_N} = i\}\)
- Due to randomization, average bucket size is between \(B/2\) and \(B\)
- Elements in buckets can be \(\Delta\)-encoded

Intersection

- For each element \(M[i]\) find bucket of \(N\)
- Can be same bucket as for \(M[i - 1]\), if so, continue at position of \(M[i - 1]\) in bucket \(\circ\) continuing is important
- Scan bucket until element \(\geq M[i]\) is found
- If equal, output \(M[i]\)

Lemma: Running Time

Intersecting two sorted lists of sizes \(m\) and \(n\) using a randomized inverted indices requires \(O(m + \min\{n, Bm\})\) time.
Conclusion and Outlook

This Lecture
- inverted index
- space efficient encodings of document lists
- efficient intersection algorithms

Linear Time Construction

- ST
- SA
- WT
- LZ
- LCP
- BWT
- FM-Index
- r-Index
Conclusion and Outlook

This Lecture
- inverted index
- space efficient encodings of document lists
- efficient intersection algorithms

Next Lecture
- longest common extension queries
Bibliography I

