Practical Kernelization Techniques for the Maximum Cut Problem

Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich, Christian Schulz, Darren Strash | February 18, 2019
Max-Cut: Definition and Example

- Given $G = (V, E)$, find $S \subseteq V$ such that $|E(S, V \setminus S)|$ is maximum.
- Notation: $mc(G) := \max_{S \subseteq V} |E(S, V \setminus S)|$.
Max-Cut: Definition and Example

- Given $G = (V, E)$, find $S \subseteq V$ such that $|E(S, V \setminus S)|$ is maximum
- Notation: $mc(G) := \max_{S \subseteq V} |E(S, V \setminus S)|$

$$S = \{v_3, v_4, v_6, v_7\} \quad \rightarrow \quad |E(S, V \setminus S)| = 8$$
Max-Cut: Importance of Studying it

- Member of Karp’s 21 **NP-complete** problems
- Used in...

- Circuit design
- Statistical physics
- Social networks
Kernelization: Definition and Example

Kernelization: Compress graph while preserving optimality

\[G_0 = G : \]

- [Graph diagram]
Kernelization: Definition and Example

- Kernelization: Compress graph while preserving optimality

\[G_0 = G : \]

\begin{tikzpicture}[node distance=2cm]
 \node (v1) [shape=circle,draw] {v1};
 \node (v2) [shape=circle,draw, right of=v1] {v2};
 \node (v3) [shape=circle,draw, above of=v2] {v3};
 \node (v4) [shape=circle,draw, left of=v2] {v4};
 \node (v5) [shape=circle,draw, below of=v4] {v5};
 \node (v6) [shape=circle,draw, below of=v3] {v6};
 \node (v7) [shape=circle,draw, below of=v5] {v7};

 \draw (v1) -- (v2);
 \draw (v3) -- (v2);
 \draw (v3) -- (v4);
 \draw (v4) -- (v5);
 \draw (v5) -- (v2);
 \draw (v6) -- (v1);
 \draw (v6) -- (v7);
 \draw (v7) -- (v5);
\end{tikzpicture}
Kernelization: Definition and Example

- Kernelization: Compress graph while preserving optimality

\[G_1 : \]

\[mc(G_0) = mc(G_1) + 2 \]
Kernelization: Definition and Example

Kernelization: Compress graph while preserving optimality

$$G_1 : \text{mc}(G_0) = \text{mc}(G_1) + 2$$
$$\text{mc}(G_1) = 6$$
Kernelization: Definition and Example

- Kernelization: Compress graph while preserving optimality

\[G_0 = G : \]

\[mc(G_0) = 6 + 2 = 8 \]
theory: Kernelization Rule 8 in [EM18]
Theory: Kernelization Rule 8 in [EM18]
Theory: Kernelization Rule 8 in [EM18]

1. \(N_G(x) \cap S = N_G(X) \cap S \)
2. \(|X| > \frac{|K| + |N_G(X) \cap S|}{2} \geq 1\)
Theory: Kernelization Rule 8 in [EM18]

K_4

K_3

K_1

K_5

S

1. $N_G(x) \cap S = N_G(X) \cap S$ ✓

2. $|X| > \frac{|K| + |N_G(X) \cap S|}{2} \geq 1$ ✓
Theory: Kernelization Rule 8 in [EM18]

1. \(N_G(x) \cap S = N_G(X) \cap S \)
2. \(|X| > \frac{|K| + |N_G(X) \cap S|}{2} \geq 1 \)
Theory \rightarrow Practice

Weak-points in practice:

- Reliance on clique-forest
- Parameter k large in practice
 - Kernel size $O(k)$ too large
 - $O(k \cdot |E(G)|)$ time too slow
Our Contributions

- Implemented rules from [EM18]
- Generalized existing kernelization rules
 - Rules not dependent on a subgraph anymore
- New kernelization rules
- Efficient implementation
- Benchmark over a variety of instances
Rule Generalization: R8
– “Sharing Adjacencies”

\[K_4 \]

\[K_3 \]

\[K_1 \]

\[S \]

\[K_5 \]
Rule Generalization: R8
– “Sharing Adjacencies”

\[S \subset G[X] \cup X = G[X] \cup \{x\} \]
\[|X| > \max\{|G[X]|, 1\} \]
Rule Generalization: R8
– “Sharing Adjacencies”

1. $N_G(X) \cup X = N_G(x) \cup \{x\}$
2. $|X| > \max\{|N_G(X)|, 1\}$
Rule Generalization: R8
– “Sharing Adjacencies”

1. $N_G(X) \cup X = N_G(x) \cup \{x\}$ ✓
2. $|X| > \max\{|N_G(X)|, 1\}$ ✓
Techniques Used for Performance

- Avoid time-intensive checks
 - Vertex \(v \) internal in clique: \(\forall w \in N_G(v) : \text{Deg}(v) \leq \text{Deg}(w) \)

- Speed up finding applications of generalized rule 8 using Trie

- Avoid checking the same vertex twice
 - Keep timestamp \(T \) for each rule: All vertices \(\leq T \) processed
 - Update vertex on change
 - \(\rightarrow \) Heap

\[
\begin{align*}
&T - 4 \\
&v_3 \\
&T - 1 \\
&v_1 \\
&T + 3 \\
&v_2
\end{align*}
\]
Experiments on Random Graphs

- Random graphs by KaGen, 150 per graph type. $|V| = 2048$
- **Total running time: 16 sec.** (68 min. with rules from [EM18]!)

Kernelization efficiency for KaGen graph instances; metric: $e(G) = 1 - \frac{|V(G_{ker})|}{|V(G)|}$

![Graph density vs. kernelization efficiency plot](image)
Experiments on Random Graphs

- Improvement over [EM18]. \(|V| = 2048\)
- Discrepancy between theory and practice

Absolute difference in efficiency: \(e_{\text{absDiff}} = e(G_{\text{new}}) - e(G_{\text{old}})\)

Graph density: \(|E| / |V|\)

- BA
- GNM
- RGG2D
- RGG3D
- RHG

Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich, Christian Schulz, Darren Strash

– Kernelization for Max-Cut

February 18, 2019
LocalSolver: Exact solutions

| Name | $|V(G)|$ | deg_{avg} | $e(G)$ | $T_{LS}(G)$ | $T_{LS}(G_{\text{ker}})$ |
|------------------|-------|--------------------------|--------|-------------|---------------------------|
| ca-CSphd | 1882 | 0.92 | 0.99 | 24.07 | 0.32 [75.40] |
| ego-facebook | 2888 | 1.03 | 1.00 | 20.09 | 0.09 [228.91] |
| ENZYMES.g295 | 123 | 1.13 | 0.86 | 1.22 | 0.33 [3.70] |
| road-euroroad | 1174 | 1.21 | 0.79 | - | - |
| bio-yeast | 1458 | 1.34 | 0.81 | - | - |
| rt-twitter-copen | 761 | 1.35 | 0.85 | - | 834.71 [∞] |
| bio-diseasome | 516 | 2.30 | 0.93 | - | 4.91 [∞] |
| ca-netscience | 379 | 2.41 | 0.77 | - | 956.03 [∞] |
| soc-firm-hi-tech | 33 | 2.76 | 0.36 | 4.67 | 1.61 [2.90] |
| imgseg_271031 | 900 | 1.14 | 0.99 | 12.33 | 0.22 [56.96] |
| imgseg_105019 | 3548 | 1.22 | 0.93 | - | 17.67 [∞] |
| imgseg_35058 | 1274 | 1.42 | 0.37 | 180.92 | 30.68 [5.90] |
| imgseg_374020 | 5735 | 1.52 | 0.82 | 1614.23 | 638.70 [2.53] |
| imgseg_106025 | 1565 | 1.68 | 0.68 | 25.97 | - [∞] |
| g000302 | 317 | 1.50 | 0.21 | 0.63 | 0.54 [1.18] |
| g001918 | 777 | 1.59 | 0.12 | 1.72 | 1.42 [1.21] |
| g000981 | 110 | 1.71 | 0.28 | 10.73 | 4.73 [2.27] |
| g001207 | 84 | 1.77 | 0.19 | 1.23 | 0.14 [8.70] |
| g000292 | 212 | 1.80 | 0.03 | 0.39 | 0.43 [0.92] |
Future Work

- Parallelism?
- Weighted kernelization?
- New kernelization rules?
- Hybrid approach: Use solver for kernelization?

Summary

- Previous work: Good in theory, not so good in practice
- Sparse graphs highly reducible
- Fast implementation possible
- Significant benefits for Solvers

Michael Etscheid and Matthias Mnich. “Linear kernels and linear-time algorithms for finding large cuts”. In: *Algorithmica* 80.9 (2018), pp. 2574–2615.