1 Sparse Bitmaps

Our final task is to prove the sparse bitmap theorem: represent a bit-vector $B[0,n-1]$ containing u 1’s in $O(u \cdot \log(n/u)) + o(n)$ bits such that rank, select and access to any $B[i]$ can be answered in $O(1)$ time. Note that the space is $o(n)$ if $u = o(n)$. Our strategy is to compress B such that arbitrary $C = O(\log n)$ consecutive bits $B[i \ldots i + C - 1]$ can be accessed in $O(1)$ time. Then we can re-use the rank and select data structures from the previous section: whenever they need to make a table lookup on a block of size $\frac{\log n}{2}$, we load those bits in $O(1)$ time. Accessing $B[i]$ works similar: extract the bit from its corresponding $\log n$-sized chunk using bit-operations on words.

Again, we divide B into blocks of size $s = \frac{\log n}{2}$. Each block B_i will be represented individually by two values, where i is the block index:

1. u_i: the number of 1’s in the block.
2. o_i: an index in an enumeration of all $\binom{s}{u_i}$ bit-vectors of length s containing u_i 1’s.

To recover the original block contents from a (u_i, o_i)-pair, we store a universal lookup table $BlkContents$, where $BlkContents[u_i][o_i]$ contains the original s bits of a block that is encoded by (u_i, o_i). We now show how to store and recover the (u_i, o_i)-pair efficiently.

The u_i’s are stored in an array $U[0,n]$ containing numbers of size $\log s$ bits, and the o_i’s are stored in a bit stream O of variable-length numbers. In order to recover the o_i-values from O, we use again a 2-level storage scheme: group s consecutive blocks into superblocks of size $s' = s^2$ and store in $SBlk[iSBlk]$ the beginning of o_i’s in O, where $0 \leq iSBlk \leq \left\lceil \frac{n}{s^2} \right\rceil - 1$. In a second table $Blk[i]$, we store the beginning of the description of o_i in O, but this time only relative to the beginning of the corresponding superblock. Those two tables allow to recover the o_i’s for any block $iBlk$.
1.1 Space analysis

\[|U| = \frac{n}{s} \cdot \log s = O\left(\frac{n \cdot \log \log n}{\log n} \right) \]

\[|SBlk| = \frac{n}{s} \cdot \log n = O\left(\frac{n}{\log n} \right) \]

\[|Blk| = \frac{n}{s} \cdot \log s' = O\left(\frac{n \cdot \log \log n}{\log n} \right) \]

\[|BlkContents| = \sum_{u=0}^{\frac{n}{s}} \binom{s}{u} \cdot s \]

\[\leq s \cdot 2^s \cdot s = O(\sqrt{n} \log^2 n) \]

\[|O| = \sum_{i=0}^{\frac{n}{s}} \left\lfloor \log \binom{s}{u} \right\rfloor \]

\[\leq \sum_{i=0}^{\frac{n}{s}} \log \binom{s}{u} + \frac{n}{s} \]

\[\leq \log \binom{n}{u} + \frac{n}{s} \]

\[= \log \frac{n!}{u! \cdot (n-u)!} + \frac{n}{s} \]

\[\leq \log \frac{n^{u} \cdot e^{u}}{u^{u} \cdot (n-u)^{u}} + \frac{n}{s} \]

\[\leq \log \frac{n^{u} \cdot e^{u}}{u^{u}} + \frac{n}{s} \]

\[= O(u \log \frac{n}{u}) + O\left(\frac{n}{\log n} \right) \]

1.2 Example of bit vector compression

With the data structures below, accessing a bit in \(B \), for example \(B[18] \), could be achieved as follows:

- Determine block \(i = \frac{18}{s} = 4 \) and superblock \(i_{SBlk} = \frac{18}{s} = 1 \).
- We now want to recover \(o_4 \). The value in \(SBlk \) is an index into the array \(O \), so we then read \(O[SBlk[i_{SBlk}]] = 10 \). Furthermore, we need \(Blk[i] = 0 \). The index into \(O \) for retrieving \(o_4 \) is thus \(10 + 0 = 10 \), as \(Blk[i] \) is relative to the beginning of the superblock. Therefore, \(o_4 = 10 \).
- Together with \(u_4 = 1 \), which can be retrieved from array \(U \), we read \(BlkContents[1][10] = 0010 \).
Figure 1: Bitmap B, with $s = 4$ and $s' = 16$.

Figure 2: Array U, containing the number of 1’s for each block in B.

Figure 3: Array O, containing the o_i’s.

Figure 4: Array $SBlk$, the values are indices into the O array.

Figure 5: Array Blk, the values are arrays into the O array again, but this time relative to the superblock.

<table>
<thead>
<tr>
<th>o_i</th>
<th>block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>1 1 0 0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>0 1 1</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>1 0 0</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>1 0 1</td>
<td>0 0 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>o_i</th>
<th>block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>0 1</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>1 0</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>1 1</td>
<td>0 0 0 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>o_i</th>
<th>block</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
</tr>
</tbody>
</table>

Table 1: $BlkContents[u_i][o_i]$
2 Distance Oracles in Graphs

In this chapter we show how to preprocess a graph $G = (V, E)$ with $|V| = n$ nodes and $|E| = m$ vertices such that subsequent approximate distance-queries in G can be answered efficiently.

2.1 Basic Definitions

Let $G = (V, E)$ be a weighted undirected graph with nonnegative edge weights $\omega(e)$ for $e \in E$. The distance $\delta(u, v)$ between two arbitrary nodes is the weighted path-length of the shortest path between u and v, in symbols:

$$
\delta(u, v) = \min \left\{ \sum_{e \in \Pi} \omega(e) : \Pi \text{ is } u\text{-to-}v \text{ path} \right\}
$$

Let $\hat{\delta}$ be an estimate to $\delta(u, v)$. We say that $\hat{\delta}(u, v)$ is of stretch t iff

$$
\delta(u, v) \leq \hat{\delta}(u, v) \leq t \cdot \delta(u, v)
$$

The aim of this chapter is to show the following theorem:

Theorem 1. For any parameter $k \geq 1$, a graph G can be preprocessed in expected $O(kn^{1/k}(n \lg n + m))$ time, producing a data structure of $O(kn^{1+1/k})$ size, such that subsequent approximate distance queries can be answered in $O(k)$ time, with stretch $t \leq 2k - 1$.

Note that the theorem only considers pure distance queries. However, it is also possible to return a corresponding path in constant time per edge.

2.2 Approximate Distance Oracles for Metric Spaces

Let us first assume that we are given an $(n \times n)$ distance matrix representing a finite metric δ on V. For example, we can assume that δ is the shortest path metric induced by the graph G. An example of a graph is shown in Figure 6, with its corresponding distance matrix in Table 2.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Example of distance matrix, representing δ of G.

2.2.1 Preprocessing

The preprocessing algorithm starts by constructing a non-decreasing sequence of sets

\[V = A_0 \supseteq A_1 \supseteq \cdots \supseteq A_{k-1} \supseteq A_k = \emptyset \]

in a randomized manner. The rule is that each element of \(A_{i-1} \) is placed in \(A_i \) independently, with probability \(n^{-1/k} \). We assume that \(A_{k-1} \neq \emptyset \) (otherwise the construction has to be restarted). The expected size \(\text{Exp}[|A_i|] \) of \(A_i \), for \(0 \leq i \leq k \), is

\[
\text{Exp}[|A_i|] = |V| \times \prod_{1 \leq j \leq i} \left(n^{-1/k} \right)^{j} = n^{1-i/k}
\]

For each vertex \(v \in V \) and every index \(i = 0, \ldots, k-1 \), we compute and store \(\delta(A_i, v) \), the smallest distance from \(v \) to a vertex in \(A_i \). The algorithm also computes and stores an element \(p_i(v) \), the witness, that is nearest to \(A_i \). That is, \(\delta(p_i(v), v) = \delta(A_i, v) \). We define \(\delta(A_k, v) = \infty \) for all \(v \in V \) and leave \(p_k(v) \) undefined.

Example 1. Let \(A_1 = \{B, E, F, G\} \), \(A_2 = \{E, F\} \), \(A_3 = \{E\} \) and \(A_4 = \emptyset \). Then \(\delta(A_i, v) \) and \(p_i(v) \) have the values as shown in Table 3.

The size of this table is \(O(k \times n) \).

2.2.2 Bunches

For each vertex \(v \in V \), the algorithm also computes a bunch \(B(v) \subseteq V \) as follows. Informally, a vertex \(w \) is put into the bunch of \(v \) if \(w \) is in \(A_i \), but not in \(A_{i+1} \), and it is closer to \(v \) than \(v \) is to \(A_{i+1} \). In symbols,
Table 3: $\delta(A_i,v)$ and $p_i(v)$ of graph shown in Figure 6.

\[
\begin{array}{|c|cccc|c|cccc|}
\hline
v & i = 0 & 1 & 2 & 3 & 4 & i = 0 & 1 & 2 & 3 & 4 \\
\hline
A & 0 & 1 & 3 & 4 & \infty & A & B & F & E & \perp \\
B & 0 & 0 & 3 & 5 & \infty & B & B & F & E & \perp \\
C & 0 & 1 & 1 & 3 & \infty & C & F & F & E & \perp \\
D & 0 & 2 & 2 & 4 & \infty & D & F & F & E & \perp \\
E & 0 & 0 & 0 & 0 & \infty & E & E & E & E & \perp \\
F & 0 & 0 & 0 & 2 & \infty & F & F & F & E & \perp \\
G & 0 & 0 & 4 & 4 & \infty & G & G & E & E & \perp \\
H & 0 & 2 & 4 & 6 & \infty & H & G & F & E & \perp \\
\hline
\end{array}
\]

A schematic view of bunches, assuming Euclidian distances, is shown in Figure 7. The arrows point to the elements which belong to $B(v)$. Note that since $\delta(A_k,v) = \infty$, we get that $A_{k-1} \subseteq B(v)$ for every $v \in V$. This is shown in Figure 7, where all elements of A_2 are included in $B(v)$.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{Schematic view of bunches}
\end{figure}

Example 2. $B(A)$ is the bunch of A, using the values of Table 3.

\[
B(A) = \begin{cases}
A \quad , \\
B \quad , \\
F \quad , \\
E \quad , \\
0 = \delta(A,A) < \delta(A_1,A) = 1 \\
1 = \delta(A,B) < \delta(A_2,A) = 3 \\
3 = \delta(A,F) < \delta(A_3,A) = 4 \\
4 = \delta(A,E) < \delta(A_4,A) = \infty
\end{cases}
\]

The bunch $B(v)$ is stored in a perfect hash table of size $O(|B(v)|)$, such that for an arbitrary $w \in V$ it is possible in $O(1)$ time to tell if $w \in B(v)$. If $w \in B(v)$, we also store the distance $\delta(v,w)$.

We now bound the expected sizes of the bunches.

Lemma 2. The expected size of $B(v)$ is $k * n^{1/k}$.
Proof. We show that in any iteration of the preprocessing algorithm, the bunch grows only by $n^{1/k}$ elements in expectation, in symbols:

$$\text{Exp}[|B(v) \cap (A_i \setminus A_{i+1})|] = n^{1/k} \forall 0 \leq i \leq k - 1$$

For $i = k - 1$ the claim is trivial, as all elements from A_{k-1} are in the bunch and $\text{Exp}[|A_{k-1}|] = n^{1-k^{-1}} = n^{1/k}$. For $i < k - 1$, let w_1, \ldots, w_x be the elements of A_i arranged in nondecreasing order of distance from v. Figure 8 shows a schematic view of those nodes, again assuming Euclidian distances.

![Figure 8: Sketch showing w_1, \ldots, w_x](image)

If $w_j \in B(v)$, then $\delta(w_j, v) < \delta(A_{i+1}, v)$, and thus $w_1, \ldots, w_j \not\in A_{i+1}$. So $\text{Prob}[w_j \in B(v)] \leq (1 - p)^j$ for p being the probability that an element from A_i is placed into A_{i+1}, as all w_1, \ldots, w_j must not be in A_{i+1}. So the expected size of $B(v) \cap (A_i \setminus A_{i+1})$ is at most

$$\sum_{j=1}^x \text{Prob}[w_j \in B(v)] \leq \sum_{j=1}^x (1 - p)^j \leq \sum_{j=0}^{\infty} (1 - p)^j < p^{-1}$$

(by definition of A_{i+1})

Using this lemma, the total size of all hash tables is $\sum_{v \in V} |B(v)| = n^{1+1/k}$ in expectation. As usual by rerunning the algorithm until the data structure is small enough this is the space in the worst case; the expected number of trials to achieve this space is constant by Markov’s inequality. The overall running time is $O(n^2)$.

\[\square\]
2.3 Answering Distance Queries

The idea of the query algorithm is to iterate through the preprocessed layers until the bunches intersect, as illustrated in Figure 9. Note that $\delta(p_3(u), v)$ is stored in the hash table of $B(v)$, and $\delta(u, p_3(u))$ is stored in the global table of Section 2.2.1.

The complete algorithm is best shown by means of pseudo-code, which is shown in Algorithm 1. Note that the algorithm always terminates, as if $i = k - 1$, $w \in A_{k-1}$ and $A_{k-1} \subseteq B(v)$ for every $v \in V$.

Algorithm 1: Computing $dist_k(u, v)$

```
w ← u;
i ← 0;
while $w \notin B(v)$ do
  i ← i + i;
w ← $p_i(v)$;
(u, v) ← (v, u);
end
return $\delta(w, u) + \delta(w, v)$;
```

We finally show that the stretch produced by $dist_k(u, v)$ is at most $(2k - 1)$.

Lemma 3. $dist_k(u, v) \leq (2k - 1) * \delta(u, v)$

Proof. Let $\Delta = \delta(u, v)$. We show that each iteration increases $\delta(w, u)$ by at most Δ. This proves our claim, since in the beginning $\delta(w, u) = 0$ and there are at most $k - 1$ iterations, we will end up with $\delta(w, u) \leq (k - 1) * \Delta$. Now,
\[
\delta(w, v) \leq \delta(w, u) + \delta(u, v) \quad \text{(triangle inequality)}
\]
\[
\leq (k - 1) \cdot \Delta + \Delta = k \cdot \Delta
\]

so \(\text{dist}_k(u, v) = \delta(u, w) + \delta(w, v) \leq (2k - 1) \cdot \Delta\).

Let \(u_i, v_i, w_i\) be the values of the variables \(u, v, w\) assigned with a given value of \(i\) \((u_0 = u, v_0 = v\) and \(w_0 = u\)), so \(\delta(w_0, u_0) = 0\). We want to show \(\delta(w_i, u_i) \leq \delta(w_{i-1}, u_{i-1}) + \Delta\) if the \(i^{th}\) iteration passes the test of the while loop. Then \(w_{i-1} \not\in B(v_{i-1})\), so

\[
\delta(w_{i-1}, v_{i-1}) \geq \delta(A_i, v_{i-1}) = \delta(p_i(v_{i-1}), v_{i-1}) = \delta(w_i, u_i)
\]

So by using the triangle inequality, we get

\[
\delta(w_i, u_i) \leq \delta(w_{i-1}, v_{i-1}) \leq \delta(w_{i-1}, u_{i-1}) + \delta(u_{i-1}, v_{i-1}) = \delta(w_{i-1}, u_{i-1}) + \Delta
\]

\[
\boxdot
\]

2.4 Example Distance Query

For the example distance query \(\text{dist}_k(H, A)\), we use the same graph and sets \(A_i\) as in the previous subsections.
\[A_0 = \{A, B, C, D, E, F, G, H\} \]
\[A_1 = \{B, E, F, G\} \]
\[A_2 = \{E, F\} \]
\[A_3 = \{E\} \]
\[A_4 = \emptyset \]

Given those definitions, the following bunches \(B(A) \) and \(B(H) \) result:

\[B(A) = \{A, B, F, E\} \]
\[B(H) = \{H, G, F, E\} \]

The following shows the query \(dist_k(H, A) \). Note that \(\delta(F, A) \) is stored with the bunch of \(\delta(F, A) \), as \(F \in B(A) \), whereas \(\delta(F, H) = \delta(A_2, H) \) is stored with \(p_2(H) \). Also note that there exists a shorter path from \(A \rightarrow C \rightarrow D \rightarrow H \) with \(\delta(A, H) = 6 \).

\[dist_k(H, A) \]
\[i = 0 : \; w = H \notin B(A) \]
\[\Rightarrow i \leftarrow i + 1 \]
\[\Rightarrow w \leftarrow p_1(A) = B \]

\[i = 1 : \; w = B \notin B(H) \]
\[\Rightarrow i \leftarrow i + 1 \]
\[\Rightarrow w \leftarrow p_2(H) = F \]

\[i = 2 : \; w = F \in B(A) \]
\Rightarrow \text{return } \delta(F,H) + \delta(F,A)

References