Lecture 10: Lowest Common Ancestors

Johannes Fischer
Lowest Common Ancestors
Some Initial Thoughts

• store only tree:
 \[\Rightarrow O(n) \text{ w.c. query time} \]

• store all \(\Theta(n^2) \) answers:
 \[\Rightarrow O(1) \text{ query time} \]

• difficulty:

 ▶ \(O(1) \text{ query time with } O(n) \text{ space} \)

 ▶ lecture "Text Indexing" (SS'12 & SS'13)

 ▶ here: distributed data structure
Distributed Data Structures

• no access to \textbf{global} data structures
 \rightarrow minimize \textit{communication overhead}

• \textbf{labeling scheme}:
 \begin{itemize}
 \item assign label $l(v)$ to each node v
 \item compute $l(\text{LCA}(x,y))$ from $l(x)$ and $l(y)$
 \end{itemize}

• \textbf{goal}:
 \begin{itemize}
 \item short labels
 \item fast query time
Simple Tree Labelings: $\text{parent}(x,y)$

parent(x,y) iff
first $\lg n$ bits of $l(x)$
= 2nd $\lg n$ bits of $l(y)$
Simple Tree Labelings:

\[LCA(x, y) \]

\[l(v) = l(parent(v)) \cdot DFS(v) \]

\[l(LCA(x, y)) \approx LCP(l(x), l(y)) \]
Simple LCA-Labeling

• longest label length:
 ▶ between $O(\lg^2 n)$ and $O(n \lg n)$ bits
 \Rightarrow cannot even compute LCP in $O(1)$ time

• in the following:
 ▶ label length $O(\lg n)$ bits
 ▶ $O(1)$ query time
Definitions

• **node** v:
 - $p(v) =$ parent of v
 - $c(v) =$ set of v's children
 - $size(v)$ = #nodes in v's subtree T_v

• **heavy** nodes:
 - having largest subtree among its siblings
 - u heavy if $size(u) = \max\{size(w) : w \in c(p(u))\}$
 - take arbitrary child if max not unique

• **all other nodes**: **light** (incl. root)
Heavy Paths

• heavy nodes divide T into **heavy paths**:
 ▶ from light node follow heavy nodes
 ▶ continue recursively
 ▶ heavy path decomposition

• $\langle v_1, v_2, ..., v_k \rangle$ heavy path
 ▶ $v_1 = a(v_i)$ is the **apex** of v_i for all i

• **light size** of v:
 • $lsize(v) = size(v) - size(w)$ if w is v's heavy child
Labels

• **heavy label** $hl(v)$
 ▶ to any node v
 ▶ different for two nodes on one heavy path
 ▶ can determine if $i < j$ from v_i, v_j on $\langle v_1, v_2, ..., v_k \rangle$

• **light label** $ll(v)$:
 ▶ only to light nodes v
 ▶ different for nodes with same parent

• **label** $l(v) = l(p(a(v))) \cdot ll(a(v)) \cdot hl(v)$
Answering LCA\((x,y)\)

- compute LCP of \(l(x)\) and \(l(y)\)
- 2 cases
 - depending on whether \textit{mismatch} occurs in \(hl\) or \(ll\)
 - need \textit{helper label} \(0 \triangleq hl, 1 \triangleq ll\)
- see blackboard
Analysis: Idea

• $hl(v)$ repeated in all nodes below v apart from those below heavy child
 $\Rightarrow hl(v)$ occurs $lsize(v)$ times

 \leadsto use shorter heavy labels for large lsizes

• $ll(v)$ occurs in all nodes below v
 $\Rightarrow ll(v)$ occurs $size(v)$ times

 \leadsto use shorter light labels for large subtrees
Precise Analysis

• see blackboard