Algorithm Engineering for Large Graphs

Fast Route Planning

Veit Batz, Robert Geisberger, Dennis Luxen, Peter Sanders, Christian Vetter

Universität Karlsruhe (TH)

Zuerich, September 2, 2008
Route Planning

Goals:

- **exact** shortest (i.e. fastest) paths in large road networks
- fast queries (point-to-point, many-to-many)
- fast preprocessing
- low space consumption
- fast update operations

Applications:

- route planning systems in the internet, car navigation systems,
- ride sharing, traffic simulation, logistics optimisation
order nodes by “importance”, $V = \{1, 2, \ldots, n\}$

contract nodes in this order, node v is contracted by

foreach pair (u, v) and (v, w) of edges do
 if $\langle u, v, w \rangle$ is a unique shortest path then
 add shortcut (u, w) with weight $w(\langle u, v, w \rangle)$

query relaxes only edges to more “important” nodes
 \Rightarrow valid due to shortcuts
Contraction Hierarchies

- foundation for our other methods
- conceptually very simple
- handles dynamic scenarios

Static scenario:
- 7.5 min preprocessing
- 0.21 ms to determine the path length
- 0.56 ms to determine a complete path description
- little space consumption (23 bytes/node)
Transit-Node Routing

[DIMACS Challenge 06, ALENEX 07, Science 07]

joint work with H. Bast, S. Funke, D. Matijevic

- very fast queries
 (down to $1.7 \mu s$, 3 000 000 times faster than DIJKSTRA)

- winner of the 9th DIMACS Implementation Challenge

- more preprocessing time (2:37 h) and space (263 bytes/node) needed
Mobile Contraction Hierarchies

- preprocess data on a personal computer
- highly compressed blocked graph representation 8 bytes/node
- compact route reconstruction data structure + 8 bytes/node

Experiments on a Nokia N800 at 400 MHz
- cold query with empty block cache 56 ms
- compute complete path 73 ms
- recomputation, e.g. if driver took the wrong exit 14 ms
Many-to-Many Shortest Paths

joint work with S. Knopp, F. Schulz, D. Wagner

[ALENEX 07]

- efficient many-to-many variant of hierarchical bidirectional algorithms
- $10,000 \times 10,000$ table in 10s
Ride Sharing

Current approaches:
- match only ride offers with identical start/destination (perfect fit)
- sometimes radial search around start/destination

Our approach:
- driver picks passenger up and gives him a ride to his destination
- find the driver with the minimal detour (reasonable fit)

Efficient algorithm:
- adaption of the many-to-many algorithm
Dynamic Scenarios

☐ change entire cost function
 (e.g., use different speed profile)

☐ change a few edge weights
 (e.g., due to a traffic jam)
static routing in road networks is easy

⇝ applications that require massive amount or routing

⇝ instantaneous mobile routing

⇝ techniques for advanced models

⇝ updating a few edge weights is OK
Current / Future Work

- Time-dependent edge weights
 challenge: *backward* search impossible (?)

- Multiple objective functions and restrictions (bridge height, …)

- Multicriteria optimization (cost, time, …)

- Integrate individual and public transportation

- Other objectives for time-dependent travel

- Routing driven traffic simulation