1 Compressed Suffix Arrays

We will show in this section that $O(n \log \sigma)$ bits suffice also for representing A. The price of this compressed suffix array is that the time for retrieving an entry from A is not constant any more, but rises from $O(1)$ to $O(\log \varepsilon n)$, for some arbitrarily small constant $0 < \epsilon \leq 1$.

1.1 Recommended Reading

1.2 The ψ-Function

The most important component of the compressed suffix array (abbreviated as CSA henceforth) is a function ψ that allows us to “jump one character forward” in the suffix array.

Definition 1. Define $\psi: [1,n] \to [1,n]$ such that $\psi(i) = j \iff A[j] = A[i] + 1$, where position $n + 1$ is interpreted as the first position in T (read text circularly!).

Example 1.

$$
\begin{align*}
&1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15 \ 16 \\
&T = C \ A \ C \ A \ T \ A \ C \ A \ T \ A \ T \ A \ C \ $ \\
&A = 16 \ 4 \ 14 \ 2 \ 7 \ 12 \ 5 \ 9 \ 15 \ 3 \ 1 \ 8 \ 13 \ 6 \ 11 \ 10 \\
&\psi = 11 \ 7 \ 9 \ 10 \ 12 \ 13 \ 14 \ 16 \ 1 \ 2 \ 4 \ 8 \ 3 \ 5 \ 6 \ 15
\end{align*}
$$

Note the similarity of the ψ-function to suffix links in suffix trees: both “cut off” the first character of the corresponding substring.

Function ψ is increasing in areas where the corresponding suffixes start with the same character. For instance, in Ex. 1 we have that all suffixes from $A[2, 9]$ start with letter A; and indeed, $\psi[2, 9] = [7, 9, 10, 12, 13, 14, 16]$ is increasing. This is summarized in the following lemma.

Lemma 1. If $i < j$ and $T_{A[i]} = T_{A[j]}$, then $\psi(i) < \psi(j)$.

This lemma will be used in Sect. 1.6 to store ψ in a space-efficient form.
1.3 The Idea of the Compressed Suffix Array

We now present the general approach to store A in a space-efficient form. Instead of storing every entry in A, in a new bit-vector $B_0[1,n]$ we mark the positions in A where the corresponding entry in A is even:

$$B_0[i] = 1 \iff A[i] \equiv 0 \pmod{2}.$$

Bit-vector B_0 is prepared for $O(1)$ \textsc{rank}-queries. We further store the ψ-values at positions i with $B_0[i] = 0$ in a new array $\psi_0[1, \lceil \frac{n}{2} \rceil]$. Finally, we store the even values of A in a new array $A_1[1, \lfloor \frac{n}{2} \rfloor]$, and divide all values in A_1 by 2.

Example 2.

\begin{align*}
T &= \text{C A C A A T A C A T T A T A C }$
A &= 16 4 14 2 7 12 5 9 15 3 1 8 13 6 11 10
B_0 &= 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1
\psi_0 &= 12 14 16 1 2 4 3 6 8 2 7 1 6 4 3 5
A_1 &= 8 2 7 1 6 4 3 5
\end{align*}

Now, the three arrays, B_0, ψ_0 and A_1, completely substitute A: to retrieve value $A[i]$, we first check if $B_0[i] = 1$. If so, we know that $A[i]/2$ is stored in A_1, and that the exact position in A_1 is given by the number of 1-bits in B_0 up to position i. Hence, $A[i] = 2A_1[\text{rank}_1(B_0, i)]$.

If, on the other hand, $B_0[i] = 0$, we follow $\psi(i)$ in order to get to the position of the $(A[i]+1)$st suffix, which must be even (and is hence stored in A_1). The value $\psi(i)$ is stored in ψ_0, and its position therein is equal to the number of 0-bits in B_0 up to position i. Hence, $A[i] = A[\psi_0(\text{rank}_0(B_0, i))] - 1$, which can be calculated be the mechanism of the previous paragraph.

As we shall see later, ψ_0 can be stored very efficiently (basically using $O(n \log \sigma)$ bits). Hence, we have almost halved the space with this approach (from $n \log n$ bits for A to $\frac{n}{2} \log \frac{n}{2}$ for A_1).

1.4 Hierarchical Decomposition

We can use the idea from the previous section recursively in order to gain more space: instead of representing A_1 plainly, we replace it with bit-vector B_1, array ψ_1 and A_2. Array A_2 can in turn be replaced by B_2, ψ_2, and A_3, and so on. In general, array $A_k[1,n_k]$, with $n_k = \frac{n}{2^k}$, implicitly represents T’s suffixes that are a multiple of 2^k, in the order as they appear in the original array $A_0 := A$.

Example 3.

\[T = C A C A A T A C A T A C \]
\[A = 16 4 14 2 7 12 5 9 15 3 1 8 13 6 11 10 \]
\[\psi_0 = \begin{bmatrix} 12 & 14 & 16 & 1 & 2 & 4 & 3 & 6 \end{bmatrix} \]
\[B_0 = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \]
\[A_1 = 8 2 7 1 6 4 3 5 \]
\[\psi_1 = \begin{bmatrix} 1 & 2 & 6 & 5 \end{bmatrix} \]
\[B_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} \]
\[A_2 = 4 1 3 2 \]
\[\vdots \quad \text{etc.} \]

\[A_k \] can be seen as a suffix array of a new string \(T^k \), where the \(i \)'th character of \(T^k \) is the concatenation of \(2^k \) characters \(T_{i2^k \ldots (i+1)2^k-1} \) (we assume that \(T \) is padded with sufficiently enough \$\)-characters). This means that the alphabet for \(T^k \) is \(\Sigma^{2^k} \), i.e., all \(2^k \)-tuples from \(\Sigma \).

Example 4. \(A_2 = [4, 1, 3, 2] \) can be regarded as the suffix array of

\[T^2 = (AATA) (CATT) (ATAC) (\\ldots) \]

This way, on level \(k \) we only store \(B_k \) and \(\psi_k \). Only on the last level \(h \) we store \(A_h \). We choose \(h = \lceil \log \log \frac{n}{\log n} \rceil \) such that the space for storing \(A_h \) is

\[O(n_h \log n_h) = O(n_h \log n) = O \left(\frac{n \log \sigma}{\log \frac{n}{\log n}} \log n \right) = O(n \log \sigma) \text{ bits}. \]

However, storing \(B_k \) and \(\psi_k \) on all \(h \) levels would take too much space. Instead, we use only a constant number of \(1 + \frac{1}{\epsilon} \) levels, namely 0, \(h \epsilon, 2 h \epsilon, \ldots, h \) (constant \(0 < \epsilon \leq 1 \)).
Example 5.

\[T = \text{CACACAATACTATAC} \]
\[A_0 = 16 \ 4 \ 14 \ 2 \ 7 \ 12 \ 5 \ 9 \ 15 \ 3 \ 8 \ 13 \ 6 \ 11 \ 10 \]
\[n = 16 \]
\[h = 4 \]
\[\epsilon = \frac{1}{2} \]

\[\psi_0 = 9 \ 10 \ 12 \ 14 \ 16 \ 1 \ 2 \ 4 \ 3 \ 5 \ 6 \ 15 \]
\[B_0 = 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \]
\[A_2 = 4 \ 1 \ 3 \ 2 \]
\[\psi_2 = 4 \ 1 \ 3 \]
\[B_2 = 1 \ 0 \ 0 \ 0 \]
\[A_4 = 1 \]

Hence, bit-vector \(B_k \) has a '1' at position \(i \) iff \(A_k[i] \) is a multiple of \(2^{h\epsilon + k} \).

Given all this, we have the following algorithm to compute \(A[i] \), to be invoked with \(\text{lookup}(i, 0) \).

Algorithm 1: function \text{lookup}(i, k)

```
if \( k = h \) then
  return \( A_h[i] \);
end
if \( k = \omega_k \) then
  return \( n_k \);
end
if \( B_k[i] = 1 \) then
  return \( 2^{h\epsilon} \text{lookup} \left( \text{RANK}_1(B_k, i), k + h\epsilon \right) \);
else
  return \( \text{lookup} \left( \psi_k(\text{RANK}_0(B_k, i), k) \right) - 1 \);
end
```

Here, \(\omega_k \) stores the position of the last suffix, i.e., \(A_k[\omega_k] = n_k \). Checking if \(i = \omega_k \) is necessary in order to avoid following \(\psi_k \) from the last suffixes to the first, because this would give incorrect results.

Example 6. \(A[15] = \text{lookup}(15, 0) = \text{lookup}(\psi_0(11), 0) - 1 = \text{lookup}(6, 0) - 1 = 2^2 \text{lookup}(3, 2) - 1 = 2^2(\text{lookup}(\psi_2(2), 2) - 1) - 1 = 2^2(\text{lookup}(1, 2) - 1) - 1 = 2^2(4 - 1) - 1 = 11 \)

To analyze the running time of the \text{lookup}-procedure, we first note that on every level \(k \), we need to follow \(\psi_k \) at most \(2^{h\epsilon} \) times until we hit a position \(i \) with \(B_k[i] = 1 \) (second case of the last if-statement). Because the number of “implemented” levels, \(1 + \frac{1}{\epsilon} \), is constant (remember \(\epsilon \) is constant!), the total time of the \text{lookup}-procedure is

\[
O \left(2^{h\epsilon} \right) = O \left(\left(2^{\log_{\log_\sigma n} n} \right)^{\epsilon} \right) = O \left(\log^\epsilon n \right)
\]

which is sub-logarithmic for \(\epsilon < 1 \).
1.5 Elias-Codes

For coding the ψ-values in a space efficient form, we will use Elias-γ and Elias-δ codes, which we present in this section. Let us write $(x)_2$ for the binary representation of integer $x \geq 1$. Also $(x)_1$ denotes the unary representation of x, which consists of $x - 1$ 0’s, followed by a single 1. For example, $(5)_2 = 101$ and $(5)_1 = 00001$.

The Elias-γ code of a number x, denoted by $(x)_\gamma$, is defined as follows: first, write the length of the binary representation of x in unary, i.e., write bits $(|x|_2)_1$. Then append the bits from $(x)_2$, with the first (leftmost) '1' being omitted. For example, the first five γ-codes (representing the numbers 1, 2, ..., 5) are 1, 010, 011, 00100 and 00101.

The δ-code is obtained in a similar manner, but instead of encoding $|x|_2$ in unary, we encode it with the γ-code. That is, we first write $(|x|_2)_\gamma$, and then append $(x)_2$, again with the trailing '1' being omitted. Examples of δ-codes are shown in the following table.

<table>
<thead>
<tr>
<th>x</th>
<th>$(x)_\delta$</th>
<th>x</th>
<th>$(x)_\delta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00100000</td>
<td>9</td>
<td>00100001</td>
</tr>
<tr>
<td>2</td>
<td>00100010</td>
<td>10</td>
<td>00100011</td>
</tr>
<tr>
<td>3</td>
<td>00100100</td>
<td>11</td>
<td>00100100</td>
</tr>
<tr>
<td>4</td>
<td>00100101</td>
<td>12</td>
<td>00100110</td>
</tr>
<tr>
<td>5</td>
<td>00100110</td>
<td>13</td>
<td>00100111</td>
</tr>
<tr>
<td>6</td>
<td>001010000</td>
<td>14</td>
<td>00101010</td>
</tr>
<tr>
<td>7</td>
<td>001010000</td>
<td>15</td>
<td>00101010</td>
</tr>
<tr>
<td>8</td>
<td>001010000</td>
<td>16</td>
<td>001010000</td>
</tr>
</tbody>
</table>

The size of the δ-code is

$$|(x)_\delta| = |(\log x + 1)_\gamma| + |\log x|$$

$$= (\lfloor \log (\lceil \log x \rceil + 1) \rfloor + 1) + \lfloor \log (\lceil \log x \rceil + 1) \rfloor + |\log x|$$

$$= |\log x| + 2\lfloor \log (\lceil \log x \rceil + 1) \rfloor + 1 \text{ bits.}$$

1.6 Storing ψ

Let us first concentrate on level 0, i.e., on storing ψ_0. From Lemma 1, we know that ψ is piecewise increasing in areas $A[l, r]$ where the suffixes start with the same character (i.e., where $T_A[i] = T_A[j]$ for all $i, j \in [l, r]$). Let $[l, r]$ be one such area. Instead of storing $\psi_0[i, r]$ plainly, we first compute the differences $\Delta_0[i] = \psi_0[i] - \psi_0[i - 1]$ for $l < i \leq r$. This produces a list of positive integers from the range $[1, n]$, which will be encoded space-efficiently in a subsequent step. In general, we define

$$\Delta_0[i] = \begin{cases} \psi_0[i] - \psi_0[i - 1] & \text{if } T_A_0[i] = T_A_0[i - 1]; \\ \psi_0[i] & \text{otherwise.} \end{cases}$$
Example 8.

\[\Delta_0 = 9 \ 1 \ 2 \ 2 \ 2 \ 1 \ 1 \ 2 \ 3 \ 2 \ 1 \ 9 \]

These \(\Delta \)-values are now encoded with Elias \(\delta \)-code; the resulting bit stream is called \(S_0 \).

Example 9.

\[\Delta_0 = 9 \ 1 \ 2 \ 2 \ 2 \ 1 \ 1 \ 2 \ 3 \ 2 \ 1 \ 9 \]

\[S_0 = 00100001 \ 1 \ 0100 \ 0100 \ 0100 \ 1 \ 1 \ 0100 \ 0101 \ 0100 \ 1 \ 0010001 \]

In general, because \(A_k \) can be regarded as the suffix array of a text \(T^k \), we can compress \(\psi_k \) on levels \(k > 0 \) by the same mechanism, i.e., by using Elias \(\delta \)-codes on the list of differences of consecutive \(\psi_k \)-values. We therefore define

\[
\Delta_k[i] = \begin{cases}
\psi_k[i] - \psi_k[i-1] & \text{if } T^k_{A_k[i]} = T^k_{A_k[i-1]}, \\
\psi_k[i] & \text{otherwise.}
\end{cases}
\]

How can we decompress the \(\psi_k \)-values from the stream \(S_k \) of \(\delta \)-encoded \(\Delta_k \)-values? For this purpose we store \(\psi_k[i] \) explicitly if either position \(i \) marks the beginning of a new character in \(T^k \) (second case in the definition of \(\Delta_k \)), or if the length of the encoded bit-stream since the last sampled \(\psi_k \)-value exceeds \(s = \log \frac{n}{2} \) bits. To implement this, we introduce three new arrays:

1. \(D_k \) is a bit vector such that \(D_k[i] = 1 \) iff \(\psi_k[i] \) is sampled. \(D_k \) is enhanced with data structures for constant-time \(\text{rank} \) and \(\text{select} \) queries.

2. \(R_k \) is an array that stores the sampled values of \(\psi_k \). All \(\psi_k \)-values stored in \(R_k \) are removed from the bit-stream \(S_k \) (they need not to be stored twice!).

3. \(P_k \) is a bit stream of the same size as \(S_k \) and marks those positions in \(S_k \) with a ’1’ where a \(\delta \)-encoded \(\Delta_k \)-value starts. \(P_k \) is prepared for \(O(1) \) \(\text{select} \)-queries. Then \(\text{select}_1(P_k, i) \) points to the \(i \)'th \(\Delta_k \)-value \(S_k[i] \).

Example 10. Assuming \(s = 5 \), we have the following structures:

\[
\begin{align*}
\psi_0 &= 9 \ 10 \ 12 \ 14 \ 16 \ 1 \ 2 \ 4 \ 3 \ 5 \ 6 \ 15 \\
\Delta_0 &= 9 \ 1 \ 2 \ 2 \ 2 \ 1 \ 1 \ 2 \ 3 \ 2 \ 1 \ 9 \\
D_0 &= 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 1 \\
R_0 &= 9 \ 14 \ 1 \ 3 \ 15 \\
P_0 &= \begin{array}{cccccc}
11000 & 1000 & 11000 & 10001 & 00100001 \\
\end{array} \\
S_0 &= (00100001 \ 10100 \ 0100 \ 0100 \ 1 \ 10100 \ 01001 \ 00100001 \ 00100001)
\end{align*}
\]

We can decode \(\psi_k[i] \) as follows. First compute the number of sampled \(\Delta_k \)-values up to position \(i \) by \(y = \text{rank}_1(D_k, i) \). Then check if \(\Delta_k[i] \) is represented explicitly \((D_k[i] = 1) \), and return \(R_k[y] \) in this case. Otherwise \((D_k[i] = 0) \), compute the greatest index \(j \) such that \(\psi_k \) is sampled by \(j = \text{select}_1(D_k, y) \). The result is then \(R_k[y] (= \Delta_k[j]) \), plus the sum of the \((i - j) \) values \(\Delta_k[j+1], \ldots, \Delta_k[i] \) that follow \(\Delta_k[j] \) in \(S_k \). Note that \(D_k[j+1] = 0 \), and that the 0’s in \(D_k \) corresponds to the 1’s in \(P_k \). As \(\Delta_k[j+1] \) is the \(z \)'th encoded \(\Delta_k \)-value in \(S_k \), with \(z = \text{rank}_0(D_k, j+ \)
1) $j + 1 - \text{RANK}_1(D_k, j + 1) = j + 1 - y$, we thus go to position \text{SELECT}_1(P_k, z) in S_k, from where we decode the values $\Delta_k[j+1], \ldots, \Delta_k[i]$, and return $R_k[y] + \sum_{i=j+1}^{i} \Delta_k[i]$ as the result $\psi_k[i]$. This decoding is possible because the δ-code is prefix-free (no codeword is a prefix of a different codeword).

To compute this sum in $O(1)$ time, we use again the Four-Russians-Trick: in a global lookup-table G, for all bit-vectors V of length s and all positions $i \in [1, s]$, $G[V][i]$ stores the answer to $\sum_{j=1}^{i} y_j$, if we interpret V as a sequence of δ-encoded values y_1, y_2, \ldots. Note that some values in G are undefined, because not at all positions $i \in [1, s]$ there ends a δ-encoded value in V, and not all bit-vectors V represent a correct sequence of δ-codes, but these values will never be accessed by the algorithm.

Example 11.

<table>
<thead>
<tr>
<th>V</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>10100</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>11111</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

1.7 Space Analysis

We now analyze the space requirement of the compressed suffix array. Recall that on level $k < h$, we store bit-vectors B_k, D_k, S_k, and P_k (plus some data structures for \text{RANK} and \text{SELECT}), and array R_k. On level h, we only store A_h, which needs $O(n \log \sigma)$ bits. Thus it remains to be shown that an level $k < h$ the space is $O(n \log \sigma)$ bits. Then the total space on all $1 + \frac{1}{\epsilon}$ levels is $O\left(\frac{1}{\epsilon} n \log \sigma\right)$ bits.

The bit-vectors B_k and D_k are certainly of size $O(n)$ bits each, as they are never longer than n, the length of the text. Actually, the total size of all B_k’s can be bounded by $2n$ bits, because the length of the B_k-vectors is at least halved from one level to the next:

$$\sum_{k=0}^{h-1} |B_k| = \sum_{k=0}^{h-1} n_k = \sum_{k=0}^{h-1} n \frac{1}{2^k} = n \sum_{k=0}^{\infty} \frac{1}{2^k} \leq n \sum_{k=0}^{\infty} \frac{1}{2^k} = 2n.$$

The total size of the D_k’s is even smaller. Together with the data structures for constant-time \text{RANK}- and \text{SELECT}-queries, the space for all B_k’s and D_k’s can be upper bounded by $4n + o(n)$ bits in total.

Let us now analyze the space for the bit-stream S_k on a fixed level $k < h$. For simplicity, we assume that S_k stores all Δ_k-values, also those that are stored explicitly in R_k and thus deleted from S_k. Let n_k^c denote the number of positions in ψ_k corresponding to suffixes that start with the same character $c \in \Sigma^k$, and let $\Delta_k^c[1, n_k^c]$ denote the corresponding sub-array in Δ_k. Thus,
by Lemma 1, S_k stores at most σ^{2^k} increasing sequences from the range $[1, n_k]$, each encoded by δ-codes of the differences Δ_k. Therefore, the space is

$$|S_k| = \sum_{c \in \Sigma^{2^k}} \sum_{i=1}^{n_k^c} (\lfloor \log \Delta^c_k[i] \rfloor + 2 \lfloor \log (\lfloor \log \Delta^c_k[i] \rfloor + 1) \rfloor + 1)$$

$$= \sum_{c \in \Sigma^{2^k}} \sum_{i=1}^{n_k^c} (\lfloor \log \Delta^c_k[i] \rfloor + 2 \log \log \Delta^c_k[i]) + O(n_k)$$

$$\leq \sum_{c \in \Sigma^{2^k}} \sum_{i=1}^{n_k^c} \left(\log \frac{n_k}{n_k^c} + 2 \log \log \frac{n_k}{n_k^c} \right) + O(n_k)$$

$$= \sum_{c \in \Sigma^{2^k}} n_k^c \left(\log \frac{n_k}{n_k^c} + 2 \log \log \sigma^{2^k} \right) + O(n_k)$$

$$\leq \sum_{c \in \Sigma^{2^k}} n_k^c \left(\log \sigma^{2^k} + 2 \log \log \sigma^{2^k} \right) + O(n_k)$$

$$= \left(\log \sigma^{2^k} + 2 \log \log \sigma^{2^k} \right) \sum_{c \in \Sigma^{2^k}} n_k^c + O(n_k)$$

$$= \left(2^k \log \sigma + 2 \log 2^k \log \sigma \right) n_k + O(n_k)$$

$$= \left(2^k \log \sigma + 2 \log 2^k \log \sigma \right) \frac{n}{2^k} + O(n_k)$$

$$= n \log \sigma + O(n \log \log \sigma) \text{ bits.}$$

Here, both inequalities follow from the fact that the sum of logarithms is largest when the values are spread evenly over the interval: if $\sum_{i=1}^{m} x_i \leq x$ for a sequence of m real numbers with $x_i \geq 1$ for all i, then $\sum_{i=1}^{m} \log x_i \leq \sum_{i=1}^{m} \log \frac{x}{m}$.

Because P_k is of the same size as S_k, we can upper bound the space for P_k (including the data-structure for SELECT) by $O(n \log \sigma)$ bits.

Finally, the array R_k of sampled values consist of

$$|R_k| = \left(\frac{\sum_{i=1}^{m} x_i}{\log n} \right) \times \frac{|S_k|}{\text{value from } \lfloor 1, n_k \rfloor} \times \log n_k$$

$$= \left(\sigma^{2^k} + \frac{n \log \sigma}{\log n} \right) \log n_k$$

$$\leq O \left(\left(\sigma^{2^k} + \frac{n \log \sigma}{\log n} \right) \log n \right)$$

$$= O \left(\left(\frac{n}{\log n} + \frac{n \log \sigma}{\log n} \right) \log n \right)$$

$$= O(n \log \sigma) \text{ bits.}$$
We summarize this section in a final theorem:

Theorem 2. The suffix array A of a text of length n over an alphabet of size σ can be stored in $O\left(\frac{1}{\epsilon} n \log \sigma\right)$ bits such that retrieving an arbitrary entry $A[i]$ from the suffix array with $1 \leq i \leq n$ takes $O(\log^\epsilon n)$ time.