2) Multi-Criteria
1) Contraction Hierarchies
3) for Ride Sharing

Robert Geisberger

Bad Herrenalb, 4th and 5th December 2008
Contraction Hierarchies (CH)
Motivation

- exact shortest paths calculation in large road networks
- minimize:
 - query time
 - preprocessing time
 - space consumption
- + simplicity
find the hierarchy
the more hierarchy is available the more you can find
exploit it to speed up your algorithm
Main Idea

Contraction Hierarchies (CH)

- contract only one node at a time
 ⇒ local and cache-efficient operation

in more detail:

- order nodes by “importance”, $V = \{1, 2, \ldots, n\}$
- contract nodes in this order, node v is contracted by

 \[
 \text{foreach pair } (u, v) \text{ and } (v, w) \text{ of edges do}
 \]

 \[
 \begin{aligned}
 &\text{if } \langle u, v, w \rangle \text{ is a unique shortest path then} \\
 &\quad \text{add shortcut } (u, w) \text{ with weight } w(\langle u, v, w \rangle)
 \end{aligned}
 \]

- query relaxes only edges to more “important” nodes
 ⇒ valid due to shortcuts
Example: Construction
Example: Construction
Example: Construction
Example: Construction

Contraction Hierarchies
Multi-Criteria Contraction Hierarchies
Preprocessing
Experiments
Robert Geisberger
Contraction Hierarchies
Example: Construction
Example: Construction
Construction

to identify necessary shortcuts
 - **local searches** from all nodes \(u \) with incoming edge \((u, v)\)
 - ignore node \(v \) at search
 - add shortcut \((u, w)\) iff found distance
 \[d(u, w) > w(u, v) + w(v, w) \]
Construction

to identify necessary shortcuts

- **local searches** from all nodes *u* with incoming edge \((u, v)\)
- ignore node *v* at search
- add shortcut \((u, w)\) iff found distance
 \[
 d(u, w) > w(u, v) + w(v, w)
 \]
use **priority queue** of nodes, node \(v \) is weighted with a linear combination of:

- **edge difference** \(\# \)shortcuts – \#edges incident to \(v \)
- **uniformity** e.g. \#deleted neighbors
- …

integrated construction and ordering:

1. remove node \(v \) on top of the priority queue
2. contract node \(v \)
3. **update weights** of remaining nodes
modified bidirectional Dijkstra algorithm

upward graph \(G^{↑} := (V, E^{↑}) \) with \(E^{↑} := \{(u, v) \in E : u < v\} \)

downward graph \(G^{↓} := (V, E^{↓}) \) with \(E^{↓} := \{(u, v) \in E : u > v\} \)

forward search in \(G^{↑} \) and backward search in \(G^{↓} \)
modified bidirectional Dijkstra algorithm

- upward graph $G^\uparrow := (V, E^\uparrow)$ with $E^\uparrow := \{(u, v) \in E : u < v\}$
- downward graph $G^\downarrow := (V, E^\downarrow)$ with $E^\downarrow := \{(u, v) \in E : u > v\}$

forward search in G^\uparrow and backward search in G^\downarrow
modified bidirectional Dijkstra algorithm

upward graph $G^\uparrow := (V, E^\uparrow)$ with $E^\uparrow := \{(u, v) \in E : u < v\}$

downward graph $G^\downarrow := (V, E^\downarrow)$ with $E^\downarrow := \{(u, v) \in E : u > v\}$

forward search in G^\uparrow and backward search in G^\downarrow
Query

- modified bidirectional Dijkstra algorithm

- upward graph $G^\uparrow := (V, E^\uparrow)$ with $E^\uparrow := \{(u, v) \in E : u < v\}$

- downward graph $G^\downarrow := (V, E^\downarrow)$ with $E^\downarrow := \{(u, v) \in E : u > v\}$

- forward search in G^\uparrow and backward search in G^\downarrow
Outputting Paths

- for a shortcut \((u, w)\) of a path \(\langle u, v, w \rangle\), store middle node \(v\) with the edge
- expand path by recursively replacing a shortcut with its originating edges
Stall-on-Demand

- v can be “stalled” by u \[(\text{if } d(u) + w(u, v) < d(v)) \]
- stalling can propagate to adjacent nodes
- search is not continued from stalled nodes

- does not invalidate correctness (only suboptimal paths are stalled)
Experiments

environment
- AMD Opteron Processor 270 at 2.0 GHz
- 8 GB main memory
- GNU C++ compiler 4.2.1

test instance
- road network of Western Europe (PTV)
- 18,029,721 nodes
- 42,199,587 directed edges
Performance

```
edge difference
deleted neighbors
limit search space on weight calculation
search space size
(digits) hop limits for testing shortcuts
Voronoi region size
upper bound on edges in search path
original edges term
```

HNR: 594 s / 802 µs
Worst Case Costs

% of searches

settled nodes

10^{-12} 10^{-10} 10^{-8} 10^{-6} 10^{-4} 10^{-2}

\begin{itemize}
 \item CH aggr.
 \item CH eco.
 \item HNR
\end{itemize}

maximum \rightarrow 847 1322 2148

settled nodes
Many-to-Many Shortest Paths [KSSSW07]

<table>
<thead>
<tr>
<th>method</th>
<th>query [µs]</th>
<th>settled nodes</th>
<th>non-stalled nodes</th>
<th>10 000 × 10 000 table</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVSQL</td>
<td>159</td>
<td>368</td>
<td>209</td>
<td>10.2 s</td>
</tr>
<tr>
<td>EVOSQL</td>
<td>152</td>
<td>356</td>
<td>207</td>
<td>11.0 s</td>
</tr>
</tbody>
</table>

Transit Node Routing [BFSS07]

preprocessing time with method EDOSQ1235
query time still at 3.3 µs
Summary

- Contraction Hierarchies are **simple** and **fast**
- **7.5 min** preprocessing results in **0.21 ms** queries
- **foundation** for other methods
- definition of “**best**” hierarchy selection depends on application
Part II

Multi-Criteria Contraction Hierarchies
Feasibility Study of Young Scientist (FYS)

- Do you have a very good master-/diploma-/phd-thesis?
- Is there an interesting question left?
- Then they may give you money.
Goals

- **multiple** optimization criterias
e.g.: distance, time, costs

- **flexibility** at route calculation time
e.g.: individual vehicle speeds

- **diversity** of results
e.g.: calculate Pareto-optimal results

- **roundtrips** with scenic value
e.g.: for tourists
Every optimization criterion has a specific influence on the hierarchy of a road network.

- Finding the fastest route contains more hierarchy than finding the shortest route.

Challenge: Multiple criteria interfere with hierarchy, but the algorithm should work fast on large graphs.

- Motorways drop in the hierarchy because of road tolls.

New insight: Combinations and weightings of optimization criteria that preserve hierarchy (and which not).
Algorithmic Ideas

- modify the contraction so the query stays simple
- add all necessary shortcuts during contraction
- do this by modifying the local search
 - linear combination of two: $x + ay$ with $a \in [l, u]$
 label is now a function of x (see timedependent CH)
 - linear combination of more: $a_1 x_1 + \cdots + a_n x_n$ with $a_i \in [l_i, u_i]$
 - Pareto-optimal (may add too many shortcuts)
- let us see what works best ;-)
Part III

Fahrtenfinder
Ride Sharing

Current approaches:
- match only ride offers with identical start/destination (perfect fit)
- sometimes radial search around start/destination

Our approach:
- driver picks passenger up and gives him a ride to his destination
- find the driver with the minimal detour (reasonable fit)

Efficient algorithm:
- adaption of the many-to-many algorithm
Efficient Algorithm

- store forward search space from each start node s_i in a bucket
- request from s to t needs to calculate all distances $d(s_i, s)$
- scan buckets of all reached nodes
- analogously for distances $d(t, t_i)$
Experiments

- matching a request is really fast \(\approx 25 \text{ ms} \)
- it can sort by detour and output e.g. the best ten offers
- departure windows as selection criterion
- online adding/removal of offers supported \(\approx 0.2 / 2 \text{ ms} \)