Text Indexing

Lecture 05: Text-Compression

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (e)()(2): www.creativecommons.org/licenses/by-sa/4.0 | commit 0cd47f0 compiled at 2023-11-20-09:09

https://pingo.scc.kit.edu/651997

Recap: Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]

Given a text T of length n, the suffix array (SA) is a permutation of [1..n], such that for $i \leq j \in[1 . . n]$

$$
T[S A[i] . . n] \leq T[S A[j] . . n]
$$

Definition: Longest Common Prefix Array

Given a text T of length n and its SA, the LCP-array is defined as

$$
L C P[i]= \begin{cases}0 & i=1 \\ \max \{\ell: T[S A[i] . . S A[i]+\ell)= & \\ T[S A[i-1] . . S A[i-1]+\ell)\} & i \neq 1\end{cases}
$$

Why Compression

Types of Compression

- lossy compression
(i) audio, video, pictures,
- lossless compression
(i) audio, text,
- only interested in lossless compression
- faster data transfer
- cheaper storage costs
- "compress once, decompress often"

Types of Text-Compression

- entropy coding (i) compress characters
- dictionary compression © compress substings
- . . .

This Lecture

- measure compressibility
- different compression algorithms

© both types

- space/time requirements of compression algorithms
- make use of known concepts

k-th Order Empirical Entropy [KM99] (1/2)

Definition: Histogram

Given a text T of length n over an alphabet of size σ, a histogram Hist[1.. σ] is defined as

$$
\operatorname{Hist}[i]=|\{j \in[1, n]: T[j]=i\}|
$$

Definition: 0-th Order Empirical Entropy

Given a text T of length n over an alphabet $\Sigma=[1, \sigma]$ and its histogram Hist, then

- $T=$ abbaaacaaba\$
- $n=12$
- Hist[a] $=7$
- Hist $[\mathrm{b}]=3$
- $\operatorname{Hist}[\mathrm{c}]=1$
- $\operatorname{Hist}[\$]=1$
- $H_{0}(T)=(1 / 12)(7 \lg (12 / 7)+3 \lg (12 / 3)+$ $1 \lg (12 / 1)+1 \lg (12 / 1)) \approx 1.55$

$$
H_{0}(T)=(1 / n) \sum_{i=1}^{\sigma} \operatorname{Hist}[i] \lg (n / \operatorname{Hist}[i])
$$

k-th Order Empirical Entropy (2/2)

Given a text T over an alphabet Σ and a string $S \in \Sigma^{k}, T_{S}$ the concatenation of all characters that occur in T after S in text order

- $T=$ abcdabceabcd
- $S=\mathrm{abc}$
- $T_{S}=\mathrm{ded}$

Definition: k-th Order Empirical Entropy

Given a text T of length n over an alphabet $\Sigma=[1, \sigma]$ and its histogram Hist, then

$$
H_{k}=(1 / n) \sum_{S \in \Sigma^{k}}\left|T_{S}\right| \cdot H_{0}\left(T_{S}\right)
$$

Example for k-th Order Empirical Entropy [Kur20]

Name	σ	n	H_{0}	H_{1}	H_{2}	H_{3}
Commoncrawl	243	$196,885,192,752$	6.19	4.49	2.52	2.08
DNA	4	$218,281,833,486$	1.99	1.97	1.96	1.95
Proteins	26	$50,143,206,617$	4.21	4.20	4.19	4.17
Wikipedia	213	$246,327,201,088$	5.38	4.15	3.05	2.33
SuffixArrayCC	n	$137,438,953,472$	$37(=\lg n)$	0	0	0
RussianWordBased	29263	$9,232,978,762$	10.93	-	-	-

- does not measure repetitions well
- there are other measures

Huffman Coding [Huf52]

- idea is to create a binary tree
- each character α is a leaf and has weight Hist $[\alpha]$
- create node for two nodes without parent with smallest weight
- give new node total weight of children
- repeat until only one node without parent remains

$T=$ cbcacaa

- codes are variable length and prefix-free
- tree/dictionary needed for decoding
- path to children gives code for character

Canonical Huffman Coding

- start with Huffman codes, code word 0 , and length 1
- to get canonical code for current length, then add 1 to code word
- to update length add 1 and append required amount of zeros to code word
- all codes of same length are increasing
- required for Huffman-shaped wavelet trees (i) will be discussed in a later lecture

PINGO what are some advantages of canonical Huffman codes?

Continue From Last Slide

- length 1: c
- length 2: a, b
- start with $0 \rightarrow$ code for c
- add 1 and append 0
- $10 \rightarrow$ code for a
- add 1
- $11 \rightarrow$ code for b
- still variable length and prefix-free
- instead of tree only require lengths' of codes and corresponding characters \square

Shannon-Fano Coding [Fan49; Sha48]

- given a text T of length n over an alphabet Σ and its histogram hist
- each character $\alpha \in \Sigma$ receives a code of length $\ell_{\alpha}=\left\lceil\lg \frac{n}{\operatorname{Hist}[\alpha]}\right\rceil$
- show that there always exists such a code
- assume a complete binary tree of depth $\ell_{\text {max }}=\max _{\alpha \in \Sigma} \ell_{\alpha}$ with all free nodes
- left edges labeled 0, right edges labeled 1
- characters ordered by frequency

$$
\left(\ell_{1} \geq \ell_{2} \geq \cdots \geq \ell_{\sigma}\right)
$$

- assign characters the leftmost free node
- mark all nodes above and below as non-free

Proof there are enough free nodes (Sketch)

- a code ℓ_{α} marks $2^{\ell_{\text {max }}-\ell_{\alpha}}$ nodes
- total number of marked leafs is

$$
\begin{aligned}
\sum_{\alpha \in \Sigma} 2^{\ell_{\max }-\ell_{\alpha}} & =2^{\ell_{\max }} \sum_{\alpha \in \Sigma} 2^{-\ell_{\alpha}} \\
& =2^{\ell_{\max }} \sum_{\alpha \in \Sigma} 2^{-\left\lceil\lg \frac{n}{H \operatorname{sis}(\alpha]\rceil}\right.} \\
& \leq 2^{\ell_{\max }} \sum_{\alpha \in \Sigma} 2^{-\lg \frac{n}{H \operatorname{list}[\alpha]}} \\
& =2^{\ell_{\max }} \sum_{\alpha \in \Sigma} \frac{\operatorname{Hist}[\alpha]}{n} \\
& =2^{\ell_{\max }}
\end{aligned}
$$

Optimality of Both

- H_{0} gives average number of bits needed to encode character
- $n H_{0}(T)$ is lower bound for compression without context
- one can show that no fixed-letter code can be better than Huffman (i) not in this lecture
- Shannon-Fano codes can be slightly longer than Huffman
- even Shannon-Fano achieves H_{0}-compression

Proof (Sketch)

- let T be a text of length n over an alphabet Σ with histogram Hist
- let T_{SF} be the Shannon-Fano encoded text
- average length of encoded character is

$$
\begin{aligned}
(1 / n)\left|T_{\mathrm{SF}}\right| & =(1 / n) \sum_{\alpha \in \Sigma} \operatorname{Hist}[\alpha]\left\lceil\lg \frac{n}{\operatorname{Hist}[\alpha]}\right\rceil \\
& \leq \sum_{\alpha \in \Sigma} \frac{\operatorname{Hist}[\alpha]}{n}\left(\lg \frac{n}{\operatorname{Hist}[\alpha]}+1\right) \\
& =\sum_{\alpha \in \Sigma} \frac{\operatorname{Hist}[\alpha]}{n} \lg \frac{n}{\operatorname{Hist}[\alpha]}+\sum_{\alpha \in \Sigma} \frac{\operatorname{Hist}[\alpha]}{n} \\
& =H_{0}(T)+1
\end{aligned}
$$

Problem with the Previous Approaches

Abstract

aaa aaa

- does not work well with repetitions
- better encode $605 \times$ a

Lempel-Ziv 77 [ZL77]

Definition: LZ77 Factorization

Given a text T of length n over an alphabet Σ, the LZ77 factorization is

- a set of z factors $f_{1}, f_{2}, \ldots, f_{z} \in \Sigma^{+}$, such that
- $T=f_{1} f_{2} \ldots f_{z}$ and for all $i \in[1, z] f_{i}$ is
- single character not occurring in $f_{1} \ldots f_{i-1}$ or
- longest substring occurring ≥ 2 times in $f_{1} \ldots f_{i}$
$T=$ abababbbbaba\$
- $f_{1}=a$
- $f_{4}=\mathrm{bbb}$
- $f_{2}=\mathrm{b}$
- $f_{5}=\mathrm{aba}$
- $f_{3}=\mathrm{abab}$
- $f_{6}=\$$

$$
T=\underbrace{\text { aaa } \ldots \text { aa }}_{n-1 \text { times }} \$
$$

- $f_{1}=\mathrm{a}$
- $f_{2}=\underbrace{\text { aaa } \ldots \text { aa }}_{n-2 \text { times }}$
$f_{3}=\$$

Representation of Factors

- factors can be represented as tuple

$$
\left(\ell_{i}, p_{i}\right)
$$

- $\ell_{i}=0$
- factor is a single character
- encode character in p_{i}
- $\ell_{i}>0$
- factor is a length ℓ_{i} substring
- $f_{i}=T\left[p_{i} . . p_{i}+\ell_{i}\right)$
$T=$ abababbbbaba\$
- $f_{1}=a=(0, a)$
- $f_{2}=b=(0, b)$
- $f_{3}=\mathrm{abab}=(4,1)$
- $f_{4}=\mathrm{bbb}=(3,6)$
- $f_{5}=\mathrm{aba}=(3,1)=(3,3)$
- $f_{6}=\$=(0, \$)$
- finding the right-most reference is hard

Previous and Next Smaller Values (1/2)

Definition: Previous and Next Smaller Value Arrays

Let $A[1 . . n]$ be an integer array, then

- $\operatorname{PSV}[i]=\max \{j \in[1, i): A[j]<A[i]\}$
- $N S V[i]=\min \{j \in(i, n]: A[j]<A[i]\}$

In the Context of SA

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	a	b	a	b	c	a	b	c	a	b	b	a	$\$$
$S A$	13	12	1	9	6	3	11	2	10	7	4	8	5
$P S V$	0	0	0	3	3	3	6	3	8	8	8	11	11
$N S V$	2	3	∞	5	6	8	8	∞	10	11	∞	13	∞
$L C P$	0	0	1	2	2	5	0	2	1	1	4	0	3

- close to the suffix in SA
- longest possible common prefix
- before the suffix in text order

Previous and Next Smaller Values (2/2)

- both arrays can be computed in linear time
- consider the PSV array
(i) NSV works analogously
- prepend $-\infty$ at index 0

Function ComputePSV(SA with $-\infty$):

```
for \(i=1, \ldots, n\) do
```

for $i=1, \ldots, n$ do
$j=i-1$
$j=i-1$
while $j \geq 1$ and $S A[i]<S A[j]$ do
while $j \geq 1$ and $S A[i]<S A[j]$ do
$j=P S V[j]$
$j=P S V[j]$
$P S V[i]=j$
$P S V[i]=j$
return PSV

```
    return PSV
```

- follow already computed values
- nothing in between can be PSV
- compare each element at most twice
- compute PSV and NSV in $O(n)$ time
- example on the board

NSV, PSV, and RMQ

Recap: Range Minimum Queries

- for a range [$\ell . . r$], return position of smallest entry in an array in that range
- query time: $O(1)$ using $O(n)$ space
- can be used to compute the Icp-value of any two suffixes using the $\angle C P$-array
- use all arrays to find lexicographically closest suffixes
- that occur before current suffix in text order

LZ77 Factorization using SA, ISA, LCP, NSV, PSV, and RMQs

```
Function LZ77(SA, ISA, LCP, RMQ, PSV, NSV):
    \(p o s=1\)
    while pos \(\leq n\) do
    \(p s v=S A[P S V[I S A[p o s]]]\)
    \(n s v=S A[N S V[I S A[p o s]]]\)
    if \(l c p(p o s, p s v+1)>I c p(p o s+1, n s v)\) then
            \(\ell=l c p(p o s, p s v+1)\) and \(p=p s v\)
    else
            \(\ell=I c p(p o s+1, n s v)\) and \(p=n s v\)
    if \(\ell=0\) then \(p=\) pos
    new factor \((\ell, p)\)
    \(p o s=\operatorname{pos}+\max \{\ell, 1\}\)
```

- bring your own example

LZ77: Running Time

Lemma: LZ77 Running Time

The LZ77 factorization of a text of length n can be computed in $O(n)$ time

Proof (Sketch)

- SA, LCP, PSV, NSV, RMQ $Q_{\angle C P}$ can be computed in $O(n)$ time
- for each text position only $O(1)$ time

Lempel-Ziv 78 [ZL78]

Definition: LZ78 Factorization

Given a text T of length n over an alphabet Σ, the LZ78 factorization is

- a set of z factors $f_{1}, f_{2}, \ldots, f_{z} \in \Sigma^{+}$, such that
- $T=f_{1} f_{2} \ldots f_{z}, f_{0}=\epsilon$ and for all $i \in[1, z]$
- if $f_{1} \ldots f_{i-1}=T[1 . . j-1]$, then f_{i} is the longest prefix of $T[j . . n]$, such that

$$
\exists k \in[0, i), \alpha \in \Sigma \cup\{\$\}: f_{k}=f_{i} \alpha
$$

$T=$ abababbbbaba\$

- $f_{1}=a$
- $f_{5}=\mathrm{bb}$
- $f_{2}=\mathrm{b}$
- $f_{3}=a b$
- $f_{6}=\mathrm{aba}$
- $f_{4}=a b b$
- $f_{7}=\$$
- $T=$ abababbbbaba\$

LZ78 Factorization using a Dynamic Trie

- use dynamic trie to hold computed factors
- our fastest easy to use dynamic trie is?
- using arrays of fixed size

$$
T=\text { abababbbbaba\$ }
$$

- $f_{1}=a$
- $f_{5}=\mathrm{bb}$
- $f_{2}=\mathrm{b}$
- $f_{3}=a b$
- $f_{4}=\mathrm{abb}$
- $f_{6}=a b a$
- $f_{7}=\$$

LZ78 Factorization in Linear Time

Lemma:

The LZ78 factorization of a text of length n can be computed in $O(n)$ time

Proof (Sketch)

- search each character of the text at most once (in the trie)
- insert each character of the text at most once (in the trie)

Sliding Window

- memory usage of the LZ78 factorization very high (i) using arrays of fixed size does not help
- consider only a sliding window of the text
- only factors in the window are found
- space/compression rate trade-off
- used in practice

Conclusion and Outlook

This Lecture

- different compression methods for texts
- entropy coding
- dictionary compression
- LZ77 and LZ78 have been generalize, improved, and combined: (i) a lot!
- LZ77
- LZSS, LZB, LZR, LZH, . . .
- LZ78
- LZC, LZY, LZW, LZFG, LZMW, LZJ, . . .

Linear Time Construction

Next Lecture

- easy to compress index

Bibliography I

[Fan49] Robert M. Fano. The Transmission of Information. Massachusetts Institute of Technology, Research Laboratory of Electronics, 1949.
[GBS92] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. "New Indices for Text: Pat Trees and Pat Arrays". In: Information Retrieval: Data Structures \& Algorithms. Prentice-Hall, 1992, pages 66-82.
[Huf52] David A. Huffman. "A Method for the Construction of Minimum-Redundancy Codes". In: Proceedings of the IRE 40.9 (1952), pages 1098-1101. DOI: 10.1109/JRPROC.1952.273898.
[KM99] S. Rao Kosaraju and Giovanni Manzini. "Compression of Low Entropy Strings with Lempel-Ziv Algorithms". In: SIAM J. Comput. 29.3 (1999), pages 893-911. DOI: 10.1137/S0097539797331105.
[Kur20] Florian Kurpicz. "Parallel Text Index Construction". PhD thesis. Technical University of Dortmund, Germany, 2020. DOI: 10.17877/DE290R-21114.

Bibliography II

[MM93] Udi Manber and Eugene W. Myers. "Suffix Arrays: A New Method for On-Line String Searches". In: SIAM J. Comput. 22.5 (1993), pages 935-948. DOI: 10.1137/0222058.
[Sha48] Claude E. Shannon. "A mathematical theory of communication". In: Bell Syst. Tech. J. 27.3 (1948), pages 379-423. DOI: 10.1002/j.1538-7305.1948.tb01338.x.
[ZL77] Jacob Ziv and Abraham Lempel. "A Universal Algorithm for Sequential Data Compression". In: IEEE Trans. Inf. Theory 23.3 (1977), pages 337-343. DOI: 10.1109/TIT.1977.1055714.
[ZL78] Jacob Ziv and Abraham Lempel. "Compression of Individual Sequences via Variable-Rate Coding". In: IEEE Trans. Inf. Theory 24.5 (1978), pages 530-536. DOI: 10.1109/TIT.1978.1055934.

