

Text Indexing

Lecture 12: Optimal r-Index

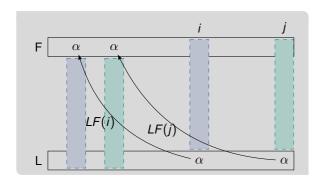
Florian Kurpicz

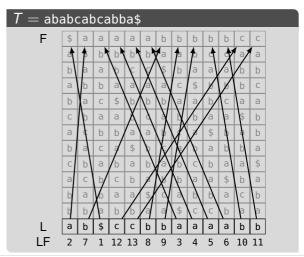
Today: OptBWTR

	Time (locate)	Time (count)	Space (words)
r-index [GNP20]	$O(P \log\log_w(\sigma+n/r)+occ)$ O(P +occ)	$O(P \log\log_w(\sigma+n/r))$ O(P)	$O(r)$ $O(r \log \log(\sigma + n/r))$
OptBWTR [NT21]	$O(P \log\log_w\sigma + occ)$	$O(P \log\log_w\sigma)$	<i>O</i> (<i>r</i>)

Recap: Burrows-Wheeler Transform

- characters (w.r.t. text) preserve order in *L* and *F*
- LF-mapping returns previous character in text






```
Function BackwardsSearch(P[1..n], C, rank):

1 | s = 1, e = n

2 | for i = m, ..., 1 do

3 | s = C[P[i]] + rank_{P[i]}(s-1) + 1

4 | e = C[P[i]] + rank_{P[i]}(e)

5 | if s > e then

6 | return \emptyset

7 | return [s, e]
```

- no access to text or SA required
- no binary search
- existential queries are easy
- counting queries are easy
- reporting queries require additional information
- example on the board <a>П

Recap: The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its BWT, the r-index of this text consists of the following data structures

Array I

I[i] stores position of i-th run in BWT

Array L'

- L'[i] stores character of i-th run in BWT
- build wavelet tree for L'

Array R

- lengths of BWT runs stably sorted by runs' characters
- accumulate for each character by performing exclusive prefix sum over run lengths'

Array C'

• $C'[\alpha]$ stores the start of the run lengths in R for each character $\alpha \in \Sigma$ starting at 0

Bit Vector B

 compressed bit vector of length n containing ones at positions where BWT runs start and rank-support

$rank_{\alpha}(BWT, i)$ with r-Index

Florian Kurpicz | Text Indexing | 12 Optimal r-Index

- compute number j of run $(j = rank_1(B, i))$
- compute position k in R ($k = C'[\alpha]$)
- compute number ℓ of α runs before the j-th run $(\ell = rank_{\alpha}(L', j-1))$
- compute number k of α s before the j-th run $(k = R[k + \ell])$
- compute character β of run ($\beta = L'[j]$)
- if $\alpha \neq \beta$ return $k \oplus i$ is not in the run
- else return k + i I[j] + 1 i is in the run

Recap: The r-Index (3/3)

Lemma: Space Requirements *r*-Index

Given a text T of length n over an alphabet of size σ that has *r BWT* runs, then its *r*-index requires

$$O(r \lg n)$$
 bits

and can answer *rank*-queries on the *BWT* in $O(\lg \sigma)$. Given a pattern of length m, the r-index can answer pattern matching queries in time

$$O(m \log \sigma)$$

7/17

RLBWT

- partition BWT into r substrings
- \blacksquare BWT = $L_1L_2...L_r$
- L_i is maximal repetition of same character
- $\ell_1 = 1$ and $\ell_i = \ell_{i-1} + |L_{i-1}|$
- $RLBWT = (L_1[1], \ell_1)(L_2[1], \ell_2) \dots (L_r[1], \ell_r)$
- let δ be permutation of [1, r] such that

$$LF(\ell_{\delta[1]}) < LF(\ell_{\delta[2]}) < \cdots < LF(\ell_{\delta[r]})$$

Florian Kurpicz | Text Indexing | 12 Optimal r-Index

Lemma: LF and RLBWT

■ Let $\ell_x < i < \ell_{x+1}$ for some $i \in [1, n]$, then

$$LF(i) = LF(\ell_x) + (i - \ell_x)$$

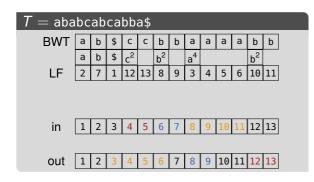
• $LF(\ell_{\delta[1]}) = 1$ and $LF(\ell_{\delta[i]}) = LF(\ell_{\delta[i-1]}) + |L_{\delta[i-1]}|$

T = ababcabcabba\$

BWT a b \$ c c b b a a a a b b

a b \$ c^2 b^2 a^4 b^2

LF 2 7 1 12 13 8 9 3 4 5 6 10 1



Florian Kurpicz | Text Indexing | 12 Optimal r-Index

- there are r intervals
- represent domain of LF by intervals
- solve LF without predecessor queries (1) we did not use predecessor queries
- predecessor queries are bottleneck

Disjoint Interval Sequence & Move Query

Definition: Disjoint Interval Sequence

Let $I = (p_1, q_1), (p_2, q_2), \dots, (p_k, q_k)$ be a sequence of k pairs of integers. We introduce a permutation π of [1, k] and sequence d_1, d_2, \ldots, d_k for I. π satisfies $q_{\pi[1]} \leq q_{\pi[2]} \leq \cdots \leq q_{\pi[k]}$, and $d_i = p_{i+1} - p_i$ for $i \in [1, k]$, where $p_{k+1} = n + 1$. We call the sequence I a disjoint interval sequence if it satisfies the following three conditions:

$$p_1 = 1 < p_2 < \cdots < p_k \le n$$

$$q_{\pi[1]} = 1$$
,

$$q_{\pi[i]} = q_{\pi[i-1]} + d_{\pi[i-1]}$$
 for each $i \in [2, k]$.

Move Query

$$move(i, x) = (i', x')$$

- i position in input interval
- x input interval
- i' position in output interval
- x' input interval covering i'

Answering Move Query

- lacksquare $D_{pair} = (p_i, q_i)$ for every interval
- lacktriangledown $D_{index}[i]$ index of input interval containing q_i

example on the board 💷

Lemma: LF and RLBWT

• Let $\ell_x < i < \ell_{x+1}$ for some $i \in [1, n]$, then

$$LF(i) = LF(\ell_x) + (i - \ell_x)$$

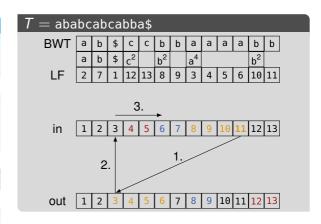
• $LF(\ell_{\delta[1]}) = 1$ and $LF(\ell_{\delta[i]}) = LF(\ell_{\delta[i-1]}) + |L_{\delta[i-1]}|$

- Move(i, x) = (i', x')
 - i position in input sequence
 - x index of interval containing i
- $\bullet i' = q_x + (i p_x)$
- x' initially $D_{index}[x]$
- scan D_{pair} from x' until $p'_x \geq l'$
- x' index satisfying condition

Moving for LF

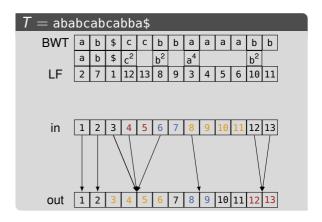
LF Query

- input: interval containing an integer i
- output: interval containing LF(i)
- 1. move to corresponding output interval
- 2. move to input interval containing position j
- 3. linear search on at most four intervals
- worst-case intervals
- balance intervals



Definition: Permutation Graph

- each interval in the input and output sequence is a node
- each input interval $[p_i, p_i + d_i 1]$ has a single outgoing edge pointing to output interval that contains p_i
- resulting graph G(I) has k edges
- G(I) is out-balanced if each output interval has at most three incoming edges



- identify intervals with ≥ 5 incoming edges
- split it "equally"
- each new interval covers at least two input intervals
- number r' of balanced input intervals is k + r

Florian Kurpicz | Text Indexing | 12 Optimal r-Index

- k is number of split operations
- r is number of runs in BWT

Lemma: Size of Out-Balanced Sequence

k < r and r' < 2r

- output contains at least k big intervals, therefore r' > 2k
- r' = r + k, therefore 2k < r + k
- this gives us $k \le r$

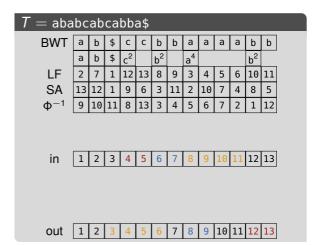
Data Structures for Backwards Search

- r' balanced input & output intervals for LF queries
- rank & select data structure build on the BWT
 - rank in $O(\log \log_w \sigma)$ time
 - select in O(1) time
- O(r') = O(r) space
- $O(|P| \log \log_w \sigma)$ running time
- \blacksquare $F(I_{LF})$: move data structure for LF
- L_{first}: character of each run
- \blacksquare $R(L_{first})$: rank and select support on L_{first}

- current interval is [b, e] for P[i + 1..m]
- look if P[i] occurs in [b, e]
 - $rank(L_{first}, c, j) rank(L_{first}) \ge 1$
- find \hat{b} , \hat{e} marking first/last occurrence of P[i] in [b, e]
 - $\hat{b} = select(L_{first}, c, rank(L_{first}, c, i 1) + 1)$
 - $\hat{e} = select(L_{first}, c, rank(L_{first}, c, j))$
- use move data structure to find new b, e for P[i..m]

Φ and Its Inverse

- use Φ^{-1} to compute *occ*s of SA[b..b+occ-1]
- $\Phi^{-1}(SA[i]) = SA[i+1]$
- SA[b..b + occ 1] = $SA[b], \Phi^{-1}(SA[b]), \Phi^{-1}(\Phi^{-1}(SA[b])),$ $\Phi^{-1}(\Phi^{-1}(\Phi^{-1}(SA[b]))), ...$
- \bullet Φ^{-1} can be represented by r input & output intervals [GNP20]
- use move data structure on balanced intervals
- keep track of SA[b]



Conclusion and Outlook

This Lecture

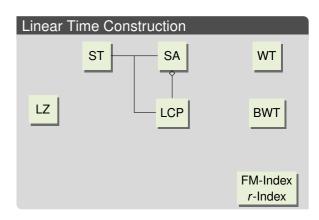
- move data structure
- optimal O(r) space full-text index

Next Lecture

- longest common extension queries
- BIG Recap

Project

- "RESULT" is a string literal in the output
- SA/LCP can be discarded, tests would be appreciated



- [GNP20] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. "Fully Functional Suffix Trees and Optimal Text Searching in BWT-Runs Bounded Space". In: *J. ACM* 67.1 (2020), 2:1–2:54. DOI: 10.1145/3375890.
- [NT21] Takaaki Nishimoto and Yasuo Tabei. "Optimal-Time Queries on BWT-Runs Compressed Indexes". In: *ICALP*. Volume 198. LIPIcs. Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2021, 101:1–101:15. DOI: 10.4230/LIPIcs.ICALP.2021.101.