
Text Indexing

Lecture 12: Optimal r-Index

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit 0cd47f0 compiled at 2024-01-29-11:42

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

Time (locate) Time (count) Space (words)

r-index [GNP20] O(|P| log logw(σ + n/r) + occ) O(|P| log logw(σ + n/r)) O(r)
O(|P|+ occ) O(|P|) O(r log log(σ + n/r))

OptBWTR [NT21] O(|P| log logw σ + occ) O(|P| log logw σ) O(r)

2/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Today: OptBWTR

characters (w.r.t. text) preserve order in L and F

LF -mapping returns previous character in text

α α

α α

i j

LF(i) LF(j)

L

F

T = ababcabcabba$
$ a a a a a b b b b b c c

a $ b b b b a a b c c a a

b a a b c c $ b a a a b b

a b b a a a a c $ b b b c

b a c $ b b b a a b c a a

c b a a b c a b b a a $ b

a c b b a a b c a $ b a b

b a c a $ b c a b a b b a

c b a b a b a b c b a a $

a c b c b a b b a a $ b a

b a b a a $ c a b b a c b

b b a b b a a $ c c b a a

a b $ c c b b a a a a b b

2 7 1 12 13 8 9 3 4 5 6 10 11

F

L
LF

3/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Recap: Burrows-Wheeler Transform

Function BackwardsSearch(P[1..n],C, rank):
1 s = 1, e = n
2 for i = m, . . . , 1 do
3 s = C[P[i]] + rankP[i](s − 1) + 1
4 e = C[P[i]] + rankP[i](e)
5 if s > e then
6 return ∅
7 return [s, e]

no access to text or SA required

no binary search

existential queries are easy

counting queries are easy

reporting queries require additional information

example on the board �

4/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Recap: Backwards Search in the BWT

Given a text T of length n over an alphabet Σ and its
BWT , the r -index of this text consists of the following
data structures �

Array I
I[i] stores position of i-th run in BWT

Array L′

L′[i] stores character of i-th run in BWT

build wavelet tree for L′

Array R
lengths of BWT runs stably sorted by runs’
characters

accumulate for each character by performing
exclusive prefix sum over run lengths’

Array C′

C′[α] stores the start of the run lengths in R for
each character α ∈ Σ starting at 0

Bit Vector B
compressed bit vector of length n containing
ones at positions where BWT runs start and
rank-support

5/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Recap: The r -Index [GNP20] (1/3)

rankα(BWT , i) with r -Index
compute number j of run (j = rank1(B, i))

compute position k in R (k = C′[α])

compute number ℓ of α runs before the j-th run
(ℓ = rankα(L′, j − 1))

compute number k of αs before the j-th run
(k = R[k + ℓ])

compute character β of run (β = L′[j])

if α ̸= β return k ò i is not in the run

else return k + i − I[j] + 1 ò i is in the run

6/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Recap: The r -Index (2/3)

Lemma: Space Requirements r -Index
Given a text T of length n over an alphabet of size σ
that has r BWT runs, then its r -index requires

O(r lg n) bits

and can answer rank -queries on the BWT in O(lg σ).
Given a pattern of length m, the r -index can answer
pattern matching queries in time

O(m lg σ)

7/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Recap: The r -Index (3/3)

partition BWT into r substrings

BWT = L1L2 . . . Lr

Li is maximal repetition of same character

ℓ1 = 1 and ℓi = ℓi−1 + |Li−1|
RLBWT = (L1[1], ℓ1)(L2[1], ℓ2) . . . (Lr [1], ℓr)

let δ be permutation of [1, r] such that

LF(ℓδ[1]) < LF(ℓδ[2]) < · · · < LF(ℓδ[r])

Lemma: LF and RLBWT
Let ℓx < i < ℓx+1 for some i ∈ [1, n], then

LF(i) = LF(ℓx) + (i − ℓx)

LF(ℓδ[1]) = 1 and
LF(ℓδ[i]) = LF(ℓδ[i−1]) + |Lδ[i−1]|

T = ababcabcabba$
a b $ c c b b a a a a b b

a b $ c2 b2 a4 b2

2 7 1 12 13 8 9 3 4 5 6 10 11

BWT

LF

8/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

RLBWT

T = ababcabcabba$
a b $ c c b b a a a a b b

a b $ c2 b2 a4 b2

2 7 1 12 13 8 9 3 4 5 6 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

BWT

LF

in

out

there are r intervals

represent domain of LF by intervals

solve LF without predecessor queries ò we did
not use predecessor queries

predecessor queries are bottleneck

9/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Input and Output Intervals

Definition: Disjoint Interval Sequence
Let I = (p1, q1), (p2, q2), . . . , (pk , qk) be a sequence
of k pairs of integers. We introduce a permutation π
of [1, k] and sequence d1, d2, . . . , dk for I. π satisfies
qπ[1] ≤ qπ[2] ≤ · · · ≤ qπ[k], and di = pi+1 − pi for
i ∈ [1, k], where pk+1 = n + 1. We call the
sequence I a disjoint interval sequence if it satisfies
the following three conditions:

p1 = 1 < p2 < · · · < pk ≤ n

qπ[1] = 1,

qπ[i] = qπ[i−1] + dπ[i−1] for each i ∈ [2, k].

T = ababcabcabba$

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

in

out

Move Query

move(i, x) = (i ′, x ′)

i position in input interval

x input interval

i ′ position in output interval

x ′ input interval covering i ′

10/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Disjoint Interval Sequence & Move Query

Dpair = (pi , qi) for every interval

Dindex [i] index of input interval containing qi

example on the board �

Lemma: LF and RLBWT
Let ℓx < i < ℓx+1 for some i ∈ [1, n], then

LF(i) = LF(ℓx) + (i − ℓx)

LF(ℓδ[1]) = 1 and
LF(ℓδ[i]) = LF(ℓδ[i−1]) + |Lδ[i−1]|

Move(i, x) = (i ′, x ′)

i position in input sequence
x index of interval containing i

i ′ = qx + (i − px)

x ′ initially Dindex [x]

scan Dpair from x ′ until p′
x ≥ I′

x ′ index satisfying condition

11/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Answering Move Query

LF Query
input: interval containing an integer i

output: interval containing LF(i)

1. move to corresponding output interval

2. move to input interval containing position j

3. linear search on at most four intervals

worst-case intervals �

balance intervals

T = ababcabcabba$
a b $ c c b b a a a a b b

a b $ c2 b2 a4 b2

2 7 1 12 13 8 9 3 4 5 6 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

BWT

LF

in

out

1.
2.

3.

12/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Moving for LF

Definition: Permutation Graph
each interval in the input and output sequence
is a node

each input interval [pi , pi + di − 1] has a single
outgoing edge pointing to output interval that
contains pi

resulting graph G(I) has k edges

G(I) is out-balanced if each output interval has
at most three incoming edges

T = ababcabcabba$
a b $ c c b b a a a a b b

a b $ c2 b2 a4 b2

2 7 1 12 13 8 9 3 4 5 6 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

BWT

LF

in

out

13/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Balance the Move Data Structure (1/2)

identify intervals with ≥ 5 incoming edges

split it “equally”

each new interval covers at least two input
intervals

number r ′ of balanced input intervals is k + r

k is number of split operations

r is number of runs in BWT

Lemma: Size of Out-Balanced Sequence
k ≤ r and r ′ ≤ 2r

Proof
output contains at least k big intervals,
therefore r ′ ≥ 2k

r ′ = r + k , therefore 2k ≤ r + k

this gives us k ≤ r

14/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Balance Move Data Structure (2/2)

r ′ balanced input & output intervals for LF
queries
rank & select data structure build on the BWT

rank in O(log logw σ) time
select in O(1) time

O(r ′) = O(r) space

O(|P| log logw σ) running time

F(ILF): move data structure for LF

Lfirst : character of each run

R(Lfirst): rank and select support on Lfirst

current interval is [b, e] for P[i + 1..m]

look if P[i] occurs in [b, e]
rank(Lfirst , c, j)− rank(Lfirst) ≥ 1

find b̂, ê marking first/last occurrence of P[i] in
[b, e]

b̂ = select(Lfirst , c, rank(Lfirst , c, i − 1) + 1)
ê = select(Lfirst , c, rank(Lfirst , c, j))

use move data structure to find new b, e for
P[i..m]

15/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Data Structures for Backwards Search

use Φ−1 to compute occs of SA[b..b + occ − 1]

Φ−1(SA[i]) = SA[i + 1]

SA[b..b + occ − 1] =
SA[b],Φ−1(SA[b]),Φ−1(Φ−1(SA[b])),
Φ−1(Φ−1(Φ−1(SA[b]))), ...

Φ−1 can be represented by r input & output
intervals [GNP20]

use move data structure on balanced intervals

keep track of SA[b]

T = ababcabcabba$
a b $ c c b b a a a a b b

a b $ c2 b2 a4 b2

2 7 1 12 13 8 9 3 4 5 6 10 11

13 12 1 9 6 3 11 2 10 7 4 8 5

9 10 11 8 13 3 4 5 6 7 2 1 12

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

BWT

LF
SA
Φ−1

in

out

16/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Φ and Its Inverse

This Lecture
move data structure

optimal O(r) space full-text index

Next Lecture
longest common extension queries

BIG Recap

Project
“RESULT” is a string literal in the output

SA/LCP can be discarded, tests would be
appreciated

Linear Time Construction

ST SA WT

LCP BWT

FM-Index
r -Index

LZ

17/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

[GNP20] Travis Gagie, Gonzalo Navarro, and Nicola Prezza. “Fully Functional Suffix Trees and Optimal Text
Searching in BWT-Runs Bounded Space”. In: J. ACM 67.1 (2020), 2:1–2:54. DOI: 10.1145/3375890.

[NT21] Takaaki Nishimoto and Yasuo Tabei. “Optimal-Time Queries on BWT-Runs Compressed Indexes”. In:
ICALP. Volume 198. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 101:1–101:15.
DOI: 10.4230/LIPIcs.ICALP.2021.101.

18/17 2024-01-29 Florian Kurpicz | Text Indexing | 12 Optimal r-Index Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1145/3375890
https://doi.org/10.4230/LIPIcs.ICALP.2021.101

	Appendix

