Text Indexing

Lecture 13: Longest Common Extensions

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©(i)(2): www.creativecommons.org/licenses/by-sa/4.0 |commit 0cd47f0 compiled at 2024-02-05-13:07

Recap: Pattern Matching with the LCP-Array (1/3)

- remember how many characters of the pattern and suffix match
- identify how long the prefix of the old and next suffix is
- do so using the LCP-array and
- range minimum queries (i) detailed introduction in Advanced Data Structures

Definition: Range Minimum Queries

Given an array $A[1 . . m)$, a range minimum query for a range $\ell \leq r \in[1, n)$ returns

$$
R M Q_{A}(\ell, r)=\arg \min \{A[k]: k \in[\ell, r]\}
$$

- $\operatorname{lcp}(i, j)=\max \{k: T[i . . i+k)$
- $\operatorname{Icp}(i, j)=T[j . . j+k)\}=\operatorname{LCP}\left[R M Q_{L C P}(i+1, j)\right]$
- RMQs can be answered in $O(1)$ time and
- require $O(n)$ space

Recap: Pattern Matching with the LCP-Array (2/3)

- during binary search matched
- λ characters with left border ℓ and
- ρ characters with right border r
- w.l.o.g. let $\lambda \geq \rho$
- middle position i
- decide if continue in $[\ell, i]$ or $[i, r]$
- let $\xi=\operatorname{Icp}(S A[\ell], S A[i])$ (i) $O(1)$ time with RMQs

Recap: Pattern Matching with the LCP-Array (3/3)

- let $\xi=\operatorname{Icp}(S A[\ell], S A[i])$

$\xi>\lambda$

- $P[\lambda+1]>T[S A[\ell]+\lambda]=T[S A[i]+\lambda]$
- $\ell=i$ without character comparison

$\xi=\lambda$

- compare as before

```
\xi<\lambda
    - }\xi\geq\rho\mathrm{ and }P[\xi+1]<T[SA[i]+\xi
    - r=i and \rho= \xi without character comparison
```


Old Problem, New Name

Definition: Longest Common Extensions

- also denoted as $\operatorname{lcp}(i, j)$ (i) in this lecture

Applications

- (sparse) suffix sorting
- approximate pattern matching

Given a text T of size n over an alphabet of size σ, construct data structure that answers for $i, j \in[1, n]$

$$
\operatorname{lce}_{T}(i, j)=\max \{\ell \geq 0: T[i, i+\ell)=T[j, j+\ell)\}
$$

$$
\operatorname{lce}_{T}(1,14)=012345
$$

Practical Algorithms for Longest Common Extensions [IT09]

Sophisticated Black Box (BB)

- based on ISA, LCP, and RMQ

- $O(1)$ query time, $\approx 9 n$ bytes additional space

Ultra Naive Scan (UNS)

- compare character by character

- $O(n)$ query time, no additional space

Monte Carlo and Las Vegas Algorithms

- setting: randomized algorithms

Monte Carlo Algorithm

- returns wrong result with small probability
- deterministic running time

Las Vegas Algorithm

- returns correct result
- only expected running time
- some Monte Carlo algorithms can be turned into Las Vegas algorithms
- depends on correctness check
- all Monte Carlo algorithms presented today can be turned into Las Vegas algorithms

Randomized String Matching

－compute 氛is of strings
－application not limited to LCEs

Definition：Karp－Rabin Fingerprint［KR87］

Given a text T of length n over an alphabet of size σ and a random prime number $q \in \Theta\left(n^{c}\right)$ ，the Karp－Rabin fingerprint of $T[i . . j]$ is

$$
\text { 冢 }(i, j)=\left(\sum_{k=i}^{j} T[k] \cdot \sigma^{j-k}\right) \bmod q
$$

（i）$(x+y) \bmod z=z \bmod z+y \bmod z(\bmod z)$
－if $T[i . . i+\ell]=T[j . . j+\ell]$ ，then

$$
\text { 冢 }(i, i+\ell)=\text { 芻 }(j, j+\ell)
$$

－if $T[i . . i+\ell] \neq T[j . . j+\ell]$ ，then

$$
\operatorname{Prob}(\text { 冢 }(i, i+\ell)=\text { 冢 }(j, j+\ell)) \in O\left(\frac{\ell \lg \sigma}{n^{c}}\right)
$$

－prime has to be chosen uniformly at random
－how to turn it into Las Vegas algorithm？
－example on the board

Overwriting the Text with Fingerprints (1/2) [Pre18]

- given a text T over an alphabet of size σ
- let w be size of a computer word (i) e.g., 64 bit
- choose $\tau \in \Theta(w / \lg \sigma)$ (i) 8 for byte alphabet
- choose random prime $q \in\left[\frac{1}{2} \sigma^{\tau}, \sigma^{\tau}\right)$
- group the text into size- τ blocks: $\mathrm{B}[1 . . n / \tau]$ with

$$
B[i]=T[(i-1) \tau+1 . . i \tau]
$$

- compute $P^{\prime}[i]=$ 氛 $(i, \tau i)$ for $i \in[1, n / \tau]$
- $P^{\prime}[i]$ can fits in $B[i]$

- overwrite text with fingerprints (in-place)

- all parts of text are restorable
- how?

Overwriting the Text with Fingerprints（2／2）

－choose random prime $q \in\left[\frac{1}{2} \sigma^{\tau}, \sigma^{\tau}\right)$
－$B[i]=T[(i-1) \tau+1 . . i \tau]$
－$\lfloor B[i] / q\rfloor \in\{0,1\}$
－$D[i]=[B[i] / q]$（i）bit vector of size n / τ
－$P^{\prime}[i]=$ 冢 $(i, \tau i)$ and together with D ：
$B[i]=\left(P^{\prime}[i]-\sigma^{\tau} \cdot P^{\prime}[i-1] \bmod q\right)+D[i] \cdot q$
－this gives us access to the text（！）
－q can be chosen such that MSB of $P^{\prime}[i]$ is zero w．h．p．，then

－overwrite text with fingerprints（in－place）
冢 block 冢 block 冢 block
enough to answer LCE queries
－how？

Answering LCE Queries with Fingerprints

LCEs with Fingerprints

- compute LCE of i and j
- exponential search until逃 $\left(i, i+2^{k}\right) \neq$ 曷 $\left(j, j+2^{k}\right)$
- binary search to find correct block m
- recompute $B[m$] and find mismatching character
- requires $O(\lg \ell)$ time for LCEs of size ℓ

- overwrite text with fingerprints (in-place)

String Synchronizing Sets（Simplified，1／2）

Definition：Simplified τ－Synchronizing Sets［KK19］

Given a text T of length n and $0<\tau \leq n / 2$ ，a simplified τ－synchronizing set S of T is

$$
S=\{i \in[1, n-2 \tau+1]: \min \{\text { 芻 }(j, j+\tau-1): j \in[i, i+\tau]\} \in\{\text { 冢 }(i, i+\tau-1), \text { 冢 }(i+\tau, i+2 \tau-1)\}\}
$$

String Synchronizing Sets (Simplified, 2/2)

- $|S|=\Theta(n / \tau)$ in practice (on most data sets)
- more complex definition required to obtain this size

Consistency \& (Simplified) Density Property

- for all $i, j \in[1, n-2 \tau+1]$ we have $T[i, i+2 \tau-1]=T[j, j+2 \tau-1] \Rightarrow i \in S \Leftrightarrow j \in S$
- for any τ consecutive positions there is at least one position in S

Answering LCE Queries with String Synchronizing Sets (1/2)

Text T^{\prime} for Positions in S

Answering LCE Queries with String Synchronizing Sets (2/2)

- in practice, we sort the substrings
- characters of T^{\prime} are the ranks of substrings
- build BB LCE for T^{\prime} w.r.t. length in T

Answering Queries

- compare naively for 3τ characters
- if equal find successors of i and j in S
- compute LCE of successors in T^{\prime}

- in this example: $\operatorname{lce}_{T}(i, j)=s_{1}-i+\operatorname{lce}_{T^{\prime}}(1,|S|-2)$
- in practice: we have a very fast static successor data structure

Practical Evaluation [Din+20]

english.1024MB

cere

\triangle our-rk	$\cdots \mathrm{SSS}_{512}$	$\cdots \cdots \text { SSS }_{512}^{\mathrm{pl}}$	\longrightarrow naive
- prezza-rk	-o ultra_naive	\square sada	\triangle - sct3

Warning

This is just a very succinct overview.
Please refer to the lecture slides for more details.

Tries \& Suffix Trees

Trie Representations

- different trie representations
- space-time trade-off

Suffix Tree (Compact Trie)

Suffix Array

Suffix Array

Given a text T of length n, the suffix array (SA) is a permutation of [1..n], such that for $i \leq j \in[1 . . n]$

$$
T[S A[i] . . n] \leq T[S A[j] . . n]
$$

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	a	b	a	b	c	a	b	c	a	b	b	a	$\$$
$S A$	13	12	1	9	6	3	11	2	10	7	4	8	5
$L C P$	0	0	1	2	2	5	0	2	1	1	4	0	3

SAIS

- linear time suffix array construction
- induced copying and recursion

SA Construction in EM

- Prefix Doubling
- DC3
- classification
- sorting special suffixes
- inducing other suffixes

LCP-Array \& LCE-Queries

- speed up pattern matching in suffix array
- suffix tree construction
- compression

Longest Common Extensions

- Icp-value between any suffix
- scan or RMQ
- Rabin-Karp fingerprints
- string synchronizing sets

Compression

Entropy

Given a text T of length n over an alphabet $\Sigma=[1, \sigma]$ and its histogram Hist, then

$$
H_{k}=(1 / n) \sum_{S \in \Sigma^{k}}\left|T_{S}\right| \cdot H_{0}\left(T_{S}\right)
$$

Huffman Codes

- variable length codes
- more frequent characters get shorter codes
- canonical Huffman-codes
- Shannon-Fano codes can be worse, but
- are still optimal

LZ77

$T=$ abababbbbaba\$

- $f_{1}=\mathrm{a}$
- $f_{4}=\mathrm{bbb}$
- $f_{2}=b$
- $f_{5}=\mathrm{aba}$
- $f_{3}=\mathrm{abab}$
- $f_{6}=\$$

LZ78

$T=$ abababbbbaba\$

- $f_{1}=a$
- $f_{5}=\mathrm{bb}$
- $f_{2}=\mathrm{b}$
- $f_{6}=\mathrm{aba}$
- $f_{3}=a b$
- $f_{7}=\$$

Burrows-Wheeler Transform

Burrows-Wheeler Transform

Given a text T of length n and its suffix array $S A$, for $i \in[1, n]$ the Burrows-Wheeler transform is

$$
B W T[i]= \begin{cases}T[S A[i]-1] & S A[i]>1 \\ \$ & S A[i]=1\end{cases}
$$

	1	2	3	4	5	6	7	8	9	10	11	12	13
T	a	b	a	b	c	a	b	c	a	b	b	a	$\$$
$S A$	13	12	1	9	6	3	11	2	10	7	4	8	5
$B W T$	a	b	$\$$	c	c	b	b	a	a	a	a	b	b

LF-Mapping

Given a $B W T$, its C-array, and its rank-Function, then

$$
L F(i)=C[B W T[i]]+\operatorname{rank}_{B W T[i]}(i)
$$

- transform back to text
- used in backwards search

Compression using BWT

- move-to-front
- run-length compression

Wavelet Tree

Wavelet Tree

$(\epsilon)_{2}$			
$(0)_{2}$		$(1)_{2}$	
$(00)_{2}$	$\left(01_{2}\right)$	$(10)_{2}$	

Wavelet Matrix

$(\epsilon)_{2}$			
$(0)_{2}$		$(1)_{2}$	
$(00)_{2}$	$(10)_{2}$	$\left(01_{2}\right)$	

- generalize rank and select to alphabets of size >2

Compression

- build over text compressed with canonical Huffman codes

Bit Vectors

- rank and select queries on bit vectors in $O(1)$ time and $o(n)$ space

FM-Index \& r-Index

```
Function BackwardsSearch(P[1..n], C, rank):
\(s=1, e=n\)
for \(i=m, \ldots, 1\) do
    \(s=C[P[i]]+\operatorname{rank}_{P[i]}(s-1)+1\)
        \(e=C[P[i]]+\operatorname{rank}_{P[i]}(e)\)
        if \(s>e\) then
            return \(\emptyset\)
return \([s, e]\)
```


FM-Index

- use (compressed wavelet tree for rank)
- compress bit vectors further

r-Index

- store lots of arrays
- containing information for each run
- size proportional to number of runs
- queries become harder

Move Data Structure

- make use of "same" intervals in BWT and first row
- constant time mapping on balanced input/output intervals
- balancing with blowup ≤ 2 achievable

Compressed Indices

Block Tree

- answer rank and select queries
- size proportional to number of LZ-factors

Number of Runs and LZ-Factors

Let T be a text of length n, then

$$
r(T) \in O\left(z(T) \lg ^{2} n\right)
$$

Document Retrieval

Document Listing

- optimal with document array and chain array

	1	2	3	4	5	6	7	8	9	10	11	12	13	1	
T	A	T	A	\#	T	A	A	A	\#	T	A	T	A	\#	\$
SA	15	14	4	9	13	3	8	7	6	11	1	12	2	5	10
DA	0	3	1	2	3	1	2	2	2	3	1	3	1	2	3
CA	0	0	0	0	2	3	4	7	8	5	6			9	

- $P=T A$

Inverted Index

1 The old night keeper keeps the keep in the town 2 In the big old house in the big old gown
3 The house in the town had the big old keep
4 Where the old night keeper never did sleep
5 The night keeper keeps the keep in the night 6 And keeps in the dark and sleeps in the light

term t	f_{t}	$L(t)$
and	1	$[6]$
big	2	$[2,3]$
dark	1	$[6]$
\cdots	\cdots	\cdots
had	1	$[3]$
house	2	$[2,3]$
in	5	$[1,2,3,5,6]$

Encodings

- unary/ternary encoding
- Fibonacci encoding
- Elias- δ / γ encoding
- Golomb encoding

List Interseciong

- binary/exponential search
- two levels

Longest Common Extensions

Sophisticated Black Box（BB）

－based on ISA，LCP，and RMQ
－$O(1)$ query time，$\approx 9 n$ bytes additional space

Ultra Naive Scan（UNS）

－compare character by character
－$O(n)$ query time，no additional space

Definition：Simplified τ－Synchronizing Sets

Given a text T of length n and $0<\tau \leq n / 2$ ，a simplified τ－synchronizing set S of T is

$$
S=\{i \in[1, n-2 \tau+1]: \min \{\text { 冢 }(j, j+\tau-1): j \in[i, i+\tau]\} \in\{\text { 芻 }(i, i+\tau-1), \text { 冢 }(i+\tau, i+2 \tau-1)\}\}
$$

Conclusion and Outlook

This Lecture

- longest common extension queries
- Karp-Rabin fingerprints
- string synchronizing sets
- big recap and Q\&A

Next Week

- project presentation

