
Advanced Data Structures

Lecture 01: Bit Vectors

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-04-16-08:56

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

https://pingo.scc.kit.edu/424928

2/12 2024-04-16 Florian Kurpicz | Advanced Data Structures | 01 Bit Vectors Institute of Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/424928
https://pingo.scc.kit.edu/424928

Succinct Data Structures
represent data structures space efficient

close to their information theoretical minimum

using every bit becomes necessary

Succinct Trees
represent a tree with n nodes using only 2n bits

navigation is possible with additional o(n) bits

storing a bit vector in practice is tricky

11011101 should require only a single byte

3/12 2024-04-16 Florian Kurpicz | Advanced Data Structures | 01 Bit Vectors Institute of Theoretical Informatics, Algorithm Engineering

Bit Vectors

std::vector<char/int/. . . >
easy access

very big: 1, 4, . . . bytes per bit

std::vector<bool>

bit vector in C++ (1 bit per byte)

easy access

layout depending on implementation

std::vector<uint64_t>

requires 8 bytes per bit(?)

store 64 bits in 8 bytes

how to access bits

i/64 is position of 64-bit word

i%64 is position in 64-bit word

0 1 2 3 4 5 6 7 8 9

64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits 64 bits

63 0 1 2 3 4 5 . . . 62 63 0

0 1 1 1 0 1 0 . . . 1 0 0.

4/12 2024-04-16 Florian Kurpicz | Advanced Data Structures | 01 Bit Vectors Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (1/3)

// There is a bit vector

std::vector<uint64_t> bit_vector;

// access i-th bit

uint64_t block = bit_vector[i/64];

bool bit = (block >> (63 - (i % 64))) & 1ULL;

shift bits right # bits logical and 1
0 1 2 3 4 5 . . . 62 63

1 1 1 0 1 0 . . . 1 0

0 1 2 3 4 5 . . . 62 63

0 0 0 0 0 0 . . . 1 0

and 1

>> 60

5/12 2024-04-16 Florian Kurpicz | Advanced Data Structures | 01 Bit Vectors Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (2/3)

(block >> (63-(i%64))) & 1ULL;

fill bit vector from left to right

0 1 2 3 4 5 . . . 62 63

1 1 1 0 1 0 . . . 1 0

0 0 0 0 0 0 . . . 1 0

assembler code: mov ecx, edi
not ecx
shr rsi, cl
mov eax, esi
and eax, 1

(block >> (i%64)) & 1ULL;

fill blocks in bit vector right to left

63 62 . . . 5 4 3 2 1 0

0 1 . . . 0 1 0 1 1 1

0 0 . . . 1 1 0 0 1 0

assembler code: mov ecx, edi
shr rsi, cl
mov eax, esi
and eax, 1

6/12 2024-04-16 Florian Kurpicz | Advanced Data Structures | 01 Bit Vectors Institute of Theoretical Informatics, Algorithm Engineering

Efficient Bit Vectors in Practice (3/3)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5) PINGO-Frage
select1(5)

2

7/12 2024-04-16 Florian Kurpicz | Advanced Data Structures | 01 Bit Vectors Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries on Bit Vectors (1/2)

https://kurpicz.org

for a bit vector of size n

blocks of size s = ⌊ lg n
2 ⌋

super blocks of size s′ = s2 = Θ(lg2 n)

for all ⌊ n
s′ ⌋ super blocks, store number of 0s

from beginning of bit vector to end of
super-block

n/s′ · lg n = O(n
lg n) = o(n) bits of space

for all ⌊ n
s ⌋ blocks, store number of 0s from

beginning of super block to end of block

n/s · lg s′ = O(n lg lg n
lg n) = o(n) bits of space

for all length-s bit vectors, for every position i
store number of 0s up to i

2
lg n

2 · s · lg s = O(
√

n lg n lg lg n) = o(n) bits of
space

query in O(1) time �

rank0(i) = i − rank1(i)

8/12 2024-04-16 Florian Kurpicz | Advanced Data Structures | 01 Bit Vectors Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries on Bit Vectors (2/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5) PINGO-Frage
select1(5)

2

9/12 2024-04-16 Florian Kurpicz | Advanced Data Structures | 01 Bit Vectors Institute of Theoretical Informatics, Algorithm Engineering

Rank Queries on Bit Vectors (1/2)

https://kurpicz.org

select0 in a bit vector of size n that contains k
zeros

PINGO-Frage

naive solutions
scan bit vector: O(n) time and no space
overhead
store k solutions in S[1..k] and
select0(i) = S[i] ò if k ∈ O(n/lgn) this suffice

better: k/b variable-sized super-blocks Bi , such
that super-block contains b = lg2 n zeros

select0(i) =∑⌊i/b⌋−1
j=0 |Bj |+ select0(B⌊i/b⌋, i − (⌊i/b⌋b))

storing all possible results for the (prefix) sum

O((k lg n)/b) = o(n) bits of space

select on block depends on size of block �

|B⌊i/b⌋| ≥ lg4 n: store answers naively

requires O(b lg n) = O(lg3 n) bits of space
there are at most O(n/ lg4 n) such blocks
total O(n/ lg n) = o(n) bits of space

|B⌊i/b⌋| < lg4 n: divide super-block into blocks
same idea: variable-sized blocks containing
b′ =

√
lg n zeros

(prefix) sum O((k lg lg n)/b′) = o(n) bits
if size ≥ lg n store all answers
if size < lg n store lookup table

10/12 2024-04-16 Florian Kurpicz | Advanced Data Structures | 01 Bit Vectors Institute of Theoretical Informatics, Algorithm Engineering

Select in o(n) Space and O(1) Time

https://kurpicz.org

Lemma: Binary Rank- and Select-Queries
Given a bit vector of size n, there exist data
structures that can be computed in time O(n) of size
o(n) bits that can answer rank and select queries on
the bit vector in O(1) time

11/12 2024-04-16 Florian Kurpicz | Advanced Data Structures | 01 Bit Vectors Institute of Theoretical Informatics, Algorithm Engineering

Rank- and Select-Queries on Bit Vectors

This Lecture
bit vectors

rank and select on bit vectors

efficient bit vectors in practice

Next Lecture
succinct trees using bit vectors

navigation in succinct trees

Advanced Data Structures

BV

12/12 2024-04-16 Florian Kurpicz | Advanced Data Structures | 01 Bit Vectors Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

