Advanced Data Structures

Lecture 01: Bit Vectors

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©(i)(0): www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-04-16-08:56

PINGO

https://pingo.scc.kit.edu/424928

Bit Vectors

Succinct Data Structures

- represent data structures space efficient
- close to their information theoretical minimum
- using every bit becomes necessary

Succinct Trees

- represent a tree with n nodes using only $2 n$ bits
- navigation is possible with additional $o(n)$ bits
- storing a bit vector in practice is tricky
- 11011101 should require only a single byte

Efficient Bit Vectors in Practice (1/3)

std: : vector<char/int/...>

- easy access
- very big: $1,4, \ldots$ bytes per bit

std::vector<bool>

- bit vector in C++ (1 bit per byte)
- easy access

std:: vector<uint64_t>

- requires 8 bytes per bit(?)
- store 64 bits in 8 bytes
- how to access bits
- $i / 64$ is position of 64 -bit word
- $i \% 64$ is position in 64 -bit word
- layout depending on implementation

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 64 bits |

63	0	1	2	3	4	5	62	63	0	0
0	1	1	1	0	1	0	1	0	0	0

Efficient Bit Vectors in Practice (2/3)

```
// There is a bit vector
std::vector<uint64_t> bit_vector;
```

```
// access i-th bit
uint64_t block = bit_vector[i/64];
bool bit = (block >> ( 63-(i % 64)) ) & 1ULL;
```


Efficient Bit Vectors in Practice (3/3)

(block >> (63-(i\%64))) \& 1ULL;

- fill bit vector from left to right

| 1 | 1 | 2 | 3 | 4 | 5 | \ldots | 62 | 63 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 1 | 0 | 1 | 0 | \ldots | 1 | 0 |

0	0	0	0	0	0	\ldots	1	0

- assembler code: mov ecx, edi
not ecx
shr rsi, cl
mov eax, esi
and eax, 1

(block >> (i\%64)) \& 1ULL;

- fill blocks in bit vector right to left

63	62	5	4	3	2	1	0
0	1	0	1	0	1	1	1

0	0	\ldots	1	1	0	0	1	0

assembler code: mov ecx, edi
shr rsi, cl
mov eax, esi
and eax, 1

Rank Queries on Bit Vectors (1/2)

rank $_{\alpha}(i)$ \# of α s before i
select $_{\alpha}(j)$ position of j-th α
block
super-block

Rank Queries on Bit Vectors (2/2)

- for a bit vector of size n
- blocks of size $s=\left\lfloor\frac{\lg n}{2}\right\rfloor$
- super blocks of size $s^{\prime}=s^{2}=\Theta\left(\lg ^{2} n\right)$
- for all $\left\lfloor\frac{n}{s^{\prime}}\right\rfloor$ super blocks, store number of Os from beginning of bit vector to end of super-block
- $n / s^{\prime} \cdot \lg n=O\left(\frac{n}{\lg n}\right)=o(n)$ bits of space
- for all $\left\lfloor\frac{n}{s}\right\rfloor$ blocks, store number of 0s from beginning of super block to end of block
- $n / s \cdot \lg s^{\prime}=O\left(\frac{n \lg \lg n}{\lg n}\right)=O(n)$ bits of space
- for all length-s bit vectors, for every position i store number of Os up to i
- $2^{\frac{\lg n}{2}} \cdot s \cdot \lg s=O(\sqrt{n} \lg n \lg \lg n)=o(n)$ bits of space
- query in $O(1)$ time \qquad
- $\operatorname{rank}_{0}(i)=i-\operatorname{rank}_{1}(i)$

Rank Queries on Bit Vectors (1/2)

rank $_{\alpha}(i)$ \# of α s before i
$\operatorname{select}_{\alpha}(j)$ position of j-th α

Select in $O(n)$ Space and $O(1)$ Time

- select t_{0} in a bit vector of size n that contains k zeros

- naive solutions
- scan bit vector: $O(n)$ time and no space overhead
- store k solutions in $S[1 . . k]$ and selecto $_{0}(i)=S[i]$ © if $k \in O(n / \lg n)$ this suffice
- better: k / b variable-sized super-blocks B_{i}, such that super-block contains $b=\lg ^{2} n$ zeros
- selecto $(i)=$
$\sum_{j=0}^{\lfloor i / b\rfloor-1}\left|B_{j}\right|+\operatorname{select}_{0}\left(B_{\lfloor i / b\rfloor}, i-(\lfloor i / b\rfloor b)\right)$
- storing all possible results for the (prefix) sum
- $O((k \lg n) / b)=O(n)$ bits of space
- select on block depends on size of block
- $\left|B_{\lfloor i / b\rfloor}\right| \geq \lg ^{4} n$: store answers naively
- requires $O(b \lg n)=O\left(\lg ^{3} n\right)$ bits of space
- there are at most $O\left(n / \lg ^{4} n\right)$ such blocks
- total $O(n / \lg n)=o(n)$ bits of space
- $\left|B_{\lfloor i / b\rfloor}\right|<\lg ^{4} n$: divide super-block into blocks
- same idea: variable-sized blocks containing $b^{\prime}=\sqrt{\lg n}$ zeros
- (prefix) sum $O\left((k \lg \lg n) / b^{\prime}\right)=o(n)$ bits
- if size $\geq \lg n$ store all answers
- if size $<\lg n$ store lookup table

Rank- and Select-Queries on Bit Vectors

Lemma: Binary Rank- and Select-Queries

Given a bit vector of size n, there exist data structures that can be computed in time $O(n)$ of size $o(n)$ bits that can answer rank and select queries on the bit vector in $O(1)$ time

Conclusion and Outlook

This Lecture

- bit vectors
- rank and select on bit vectors
- efficient bit vectors in practice

Next Lecture

- succinct trees using bit vectors
- navigation in succinct trees

Advanced Data Structures

```
```

BV

```
```

```
```

BV

```
```

\square

