

Advanced Data Structures

Lecture 02: Succinct Trees

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License @⊕@: www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-04-22-13:18

PINGO

https://pingo.scc.kit.edu/306589

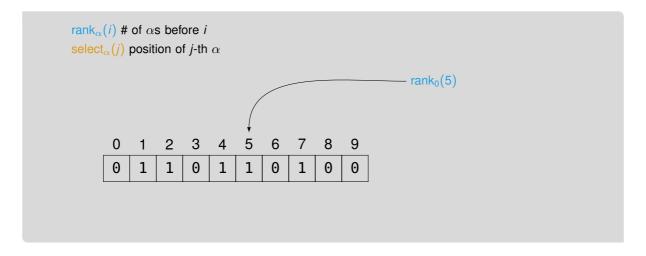

```
\operatorname{rank}_{\alpha}(i) # of \alphas before i select<sub>\alpha</sub>(j) position of j-th \alpha
```

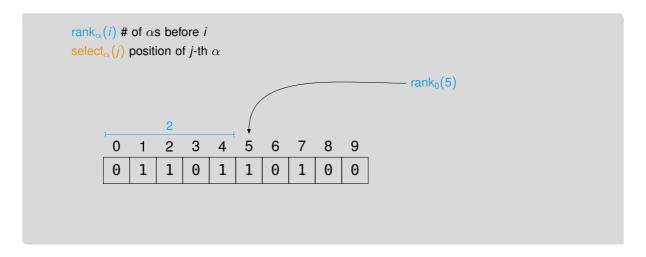


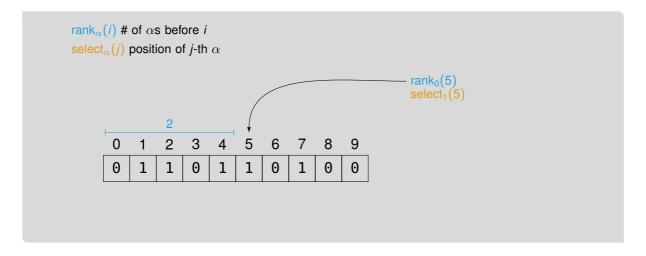
```
\operatorname{rank}_{\alpha}(i) # of \alphas before i
select_{\alpha}(j) position of j-th \alpha
```

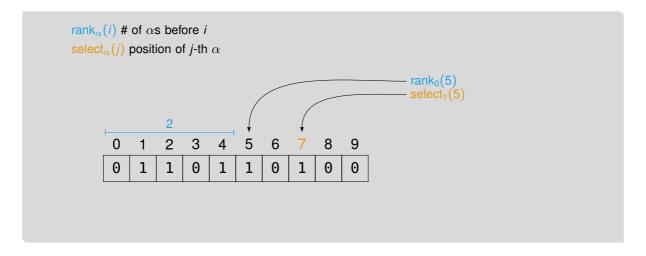
 $rank_0(5)$

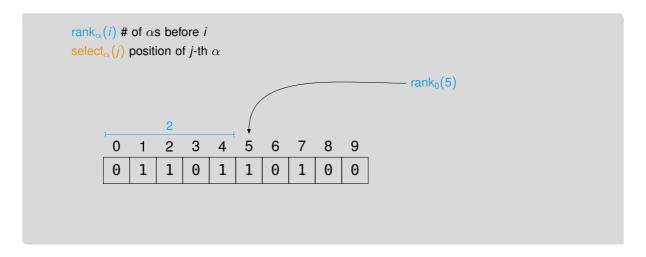
3/21

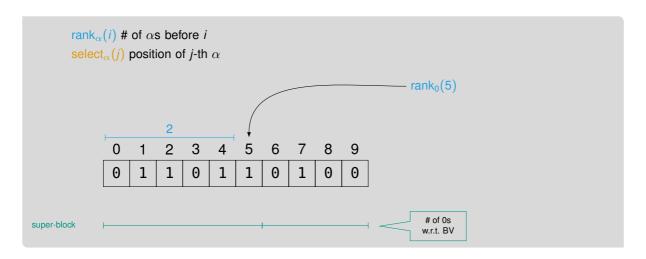


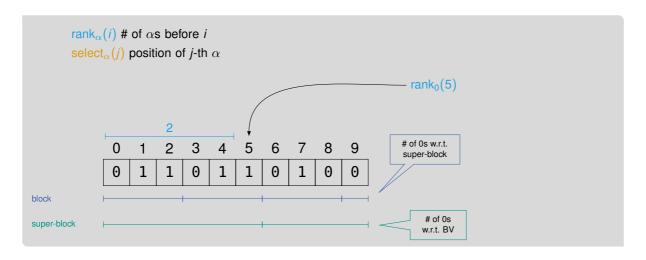


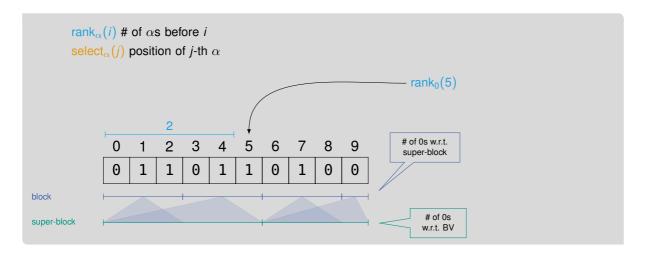












Lemma: Binary Rank- and Select-Queries

Given a bit vector of size n, there exist data structures that can be computed in time O(n) of size o(n) bits that can answer rank and select queries on the bit vector in O(1) time

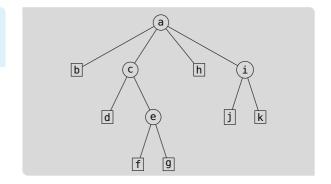
Lemma: Binary Rank- and Select-Queries

Given a bit vector of size n, there exist data structures that can be computed in time O(n) of size o(n) bits that can answer rank and select queries on the bit vector in O(1) time

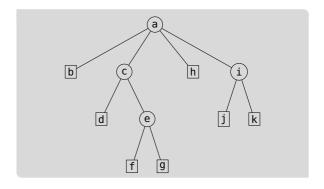
Word RAM

- unlimited memory
- words of size $w \cdot w = \Theta \log n$
- constant time load and store
- constant time bit operations on words

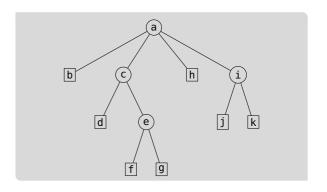
- represent tree with *n* nodes using 2*n* bits
- make succinct tree fully-functional using additional o(n) bits



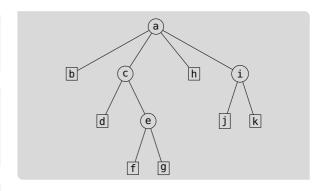
- represent tree with *n* nodes using 2*n* bits
- make succinct tree fully-functional using additional o(n) bits
- trees are important
 - searching for keys
 - maintaining directories
 - representations of parsings
 - ..



- represent tree with n nodes using 2n bits
- make succinct tree fully-functional using additional o(n) bits
- trees are important
 - searching for keys
 - maintaining directories
 - representations of parsings
 - . .
- different representations
- supporting different operations



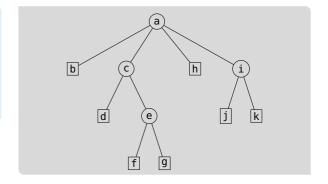
- represent tree with n nodes using 2n bits
- make succinct tree fully-functional using additional o(n) bits
- trees are important
 - searching for keys
 - maintaining directories
 - representations of parsings
- different representations
- supporting different operations



Handout

Preliminaries

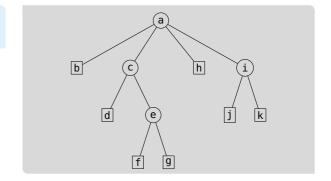
- a tree is an acyclic connected graph G = (V, E) with a root r ∈ V
- lacktriangle degree δ is the number of children
- leaves have degree 0
- depth of a node is the length of the path from the root to that node



Karlsruhe Institute of Technology

Level Ordered Unary Degree Sequence (1/2) [Jac88]

- represent tree level-wise
- use ≤ 2 bits per node



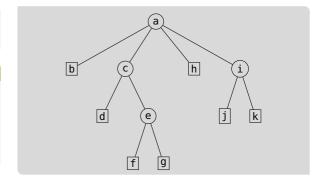
- represent tree level-wise
- use < 2 bits per node

Definition: LOUDS

Starting at the root, all nodes on the same depth

- are visited from left to right and
- for node v, $\delta(v)$ 1's followed by a 0 are

appended to the bit vector that contains an initial 10



Level Ordered Unary Degree Sequence (1/2) [Jac88]

- represent tree level-wise
- use < 2 bits per node

Definition: LOUDS

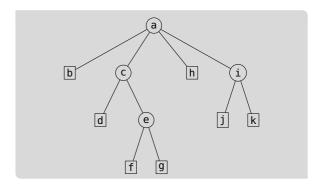
Starting at the root, all nodes on the same depth

- are visited from left to right and
- for node v, $\delta(v)$ 1's followed by a 0 are

appended to the bit vector that contains an initial 10

Lemma: Space Usage of LOUDS

Representing a tree with n nodes requires 2n + 1 bits using LOUDS



Level Ordered Unary Degree Sequence (1/2) [Jac88]

- represent tree level-wise
- use < 2 bits per node

Definition: LOUDS

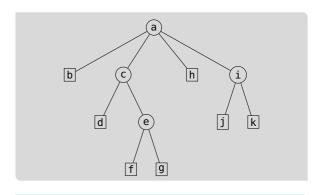
Starting at the root, all nodes on the same depth

- are visited from left to right and
- for node v, $\delta(v)$ 1's followed by a 0 are

appended to the bit vector that contains an initial 10

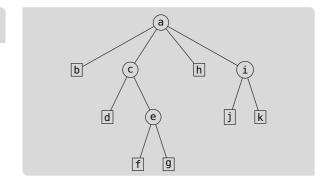
Lemma: Space Usage of LOUDS

Representing a tree with n nodes requires 2n + 1 bits using LOUDS



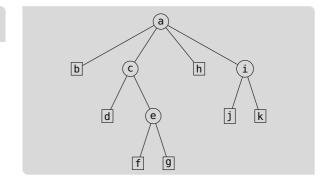
write down the LOUDS representation of this example tree

Level Ordered Unary Degree Sequence (2/2)



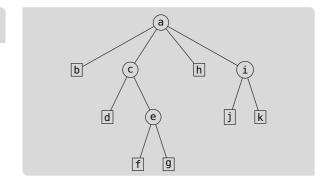
Karlsruhe Institute of Technolog

Level Ordered Unary Degree Sequence (2/2)



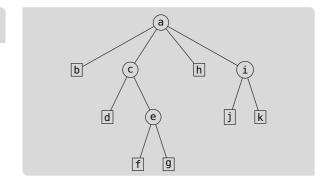
Karlsruhe Institute of Technology

Level Ordered Unary Degree Sequence (2/2)



Karlsruhe Institute of Technology

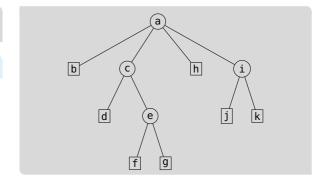
Level Ordered Unary Degree Sequence (2/2)



Level Ordered Unary Degree Sequence (2/2)

ab ch id ejkfg 10111100110011001100000

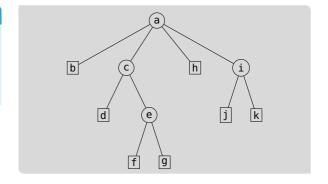
node start at pertinent 0



What is Fully-Functional?

Operations

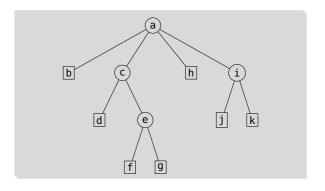
- degree is leaf
- i-th child
- parent
- subtree size



What is Fully-Functional?

Operations

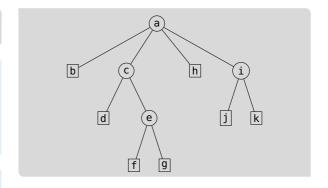
- degree is leaf
- i-th child
- parent
- subtree size
- depth
- lowest common ancestor
- rank (pre- or post-order)



ab ch id ejkfg 10111100110011001100000

• degree of p: $p - select_0(rank_0(p)) - 1$

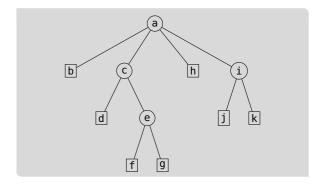
explanation on the board <a>



ab ch id ejkfg 10111100110011001100000

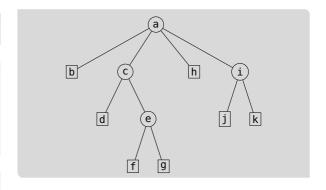
- degree of p: $p select_0(rank_0(p)) 1$
- i-th child of p: select₀(rank₁(select₀(rank₀(p))) + i + 1)

explanation on the board <a>



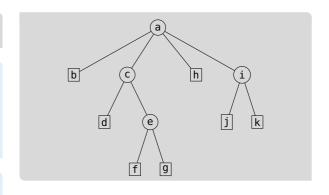
ab ch id ejkfg 10111100110011001100000

- degree of p: $p select_0(rank_0(p)) 1$
- i-th child of p: select₀(rank₁(select₀(rank₀(p))) + i + 1)
- parent of p: select₀(rank₀(select₁(rank₀(p))) + 1)
- explanation on the board <a>



ab ch id ejkfg

- degree of p: $p select_0(rank_0(p)) 1$
- i-th child of p: select₀(rank₁(select₀(rank₀(p))) + i + 1)
- parent of p: select₀(rank₀(select₁(rank₀(p))) + 1)
- explanation on the board <a>=
- subtree size PINGO



- instead of 0 and 1
- use (and)
- requires the same space
- can add relation between parentheses

- instead of 0 and 1
- use (and)
- requires the same space
- can add relation between parentheses

Definition: Balanced String of Parentheses

A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right

- instead of 0 and 1
- use (and)
- requires the same space
- can add relation between parentheses

Definition: Balanced String of Parentheses

A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right

findclose(i): find the right parenthesis matching the left parenthesis at position i

- instead of 0 and 1
- use (and)
- requires the same space
- can add relation between parentheses

Definition: Balanced String of Parentheses

A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right

- findclose(i): find the right parenthesis matching the left parenthesis at position i
- findopen(i): find the left parenthesis matching the right parenthesis at position i

- instead of 0 and 1
- use (and)
- requires the same space
- can add relation between parentheses

Definition: Balanced String of Parentheses

A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right

- findclose(i): find the right parenthesis matching the left parenthesis at position i
- findopen(i): find the left parenthesis matching the right parenthesis at position i
- excess(i): find the difference between the number of left and right parentheses before position i

- instead of 0 and 1
- use (and)
- requires the same space
- can add relation between parentheses

Definition: Balanced String of Parentheses

A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right

- findclose(i): find the right parenthesis matching the left parenthesis at position i
- findopen(i): find the left parenthesis matching the right parenthesis at position i
- excess(i): find the difference between the number of left and right parentheses before position i
- enclose(i): given a parentheses pair with the left parenthesis at position i, return the position of the closest left parenthesis belonging to the parentheses pair enclosing it

- instead of 0 and 1
- use (and)
- requires the same space
- can add relation between parentheses

Definition: Balanced String of Parentheses

A string of parentheses is balanced, if for each left parenthesis there exist unique right parenthesis to its right 🛂

- findclose(i): find the right parenthesis matching the left parenthesis at position i
- findopen(i): find the left parenthesis matching the right parenthesis at position i
- excess(i): find the difference between the number of left and right parentheses before position i
- enclose(i): given a parentheses pair with the left parenthesis at position *i*, return the position of the closest left parenthesis belonging to the parentheses pair enclosing it
- how can we answer excess queries PINGO

- lacktriangle all parentheses operations can be answered in O(1) time using o(n) bits space
- here, a little bit simpler

- **a** all parentheses operations can be answered in O(1) time using o(n) bits space
- here, a little bit simpler
- $excess(i) = rank_{"("}(i+1) rank_{")"}(i+1)$
- $fwd_search(i, d) = min\{j > i : excess(j) excess(i 1) = d\}$
- $bwd_search(i, d) = max\{j < i : excess(i) excess(j 1) = d\}$

- lacktriangle all parentheses operations can be answered in O(1) time using o(n) bits space
- here, a little bit simpler
- $excess(i) = rank_{"("}(i+1) rank_{")"}(i+1)$
- $fwd_search(i, d) = min\{j > i : excess(j) excess(i 1) = d\}$
- $bwd_search(i, d) = max\{j < i : excess(i) excess(j 1) = d\}$
- findclose(i) = fwd_search(i,0)
- findopen(i) = bwd_search(i, 0)
- enclose(i) = bwd_search(i, 2)

- \blacksquare all parentheses operations can be answered in O(1) time using o(n) bits space
- here, a little bit simpler
- $excess(i) = rank_{"("}(i+1) rank_{")"}(i+1)$
- fwd search(i, d) = $\min\{j > i : excess(j) excess(i-1) = d\}$
- $bwd_search(i, d) = max\{j < i : excess(i) excess(j 1) = d\}$
- findclose(i) = fwd_search(i,0)
- findopen(i) = bwd search(i,0)
- enclose(i) = bwd search(i, 2)
- can be answered with a min-max-tree

Definition: Range Min-Max Tree

Given a bit vector *B* of length *n* and a block size *b*, store for each consecutive block (from *s* to *e*) of *BV*

- total excess in block: excess(e) - excess(s - 1)
- minimum left-to-right excess in block: $\min\{excess(p) - excess(s-1) \colon p \in [s,e)\}$

and build a binary tree over these blocks, where each node stores the same total information for blocks in all its leaves example on the board 💷

Range Min-Max Trees (1/2)

Definition: Range Min-Max Tree

Given a bit vector *B* of length *n* and a block size *b*, store for each consecutive block (from *s* to *e*) of *BV*

- total excess in block: excess(e) - excess(s - 1)
- minimum left-to-right excess in block: $\min\{excess(p) excess(s-1) \colon p \in [s,e)\}$

and build a binary tree over these blocks, where each node stores the same total information for blocks in all its leaves example on the board <a>=

Lemma: Range Min-Max Tree Space

A range min-max tree with block size b for a bit vector of size n requires $n + O((n/b) \log n)$ bits of space

- scan block
- if not found traverse tree
- identify block in tree
- scan block

- scan block
- if not found traverse tree
- identify block in tree
- scan block
- process c bits at a time
- first align with next c bits
- requires O(c + b/c) time

- scan block
- if not found traverse tree
- identify block in tree
- scan block
- process c bits at a time
- first align with next c bits
- requires O(c + b/c) time
- going up and down tree in $O(\log(n/b))$ time
- scanning last block requires O(c + b/c) time

- scan block
- if not found traverse tree
- identify block in tree
- scan block
- process c bits at a time
- first align with next c bits
- requires O(c + b/c) time
- going up and down tree in $O(\log(n/b))$ time
- scanning last block requires O(c + b/c) time

- by choosing $b = c \log n$ this requires
- $O(\log n)$ time and $n + O(n/(c \log n)) = n + o(n)$ bits space

Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree

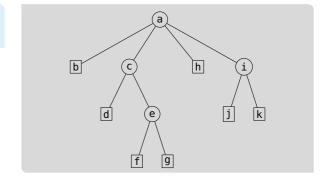
- scan block
- if not found traverse tree
- identify block in tree
- scan block
- process c bits at a time
- first align with next c bits
- requires O(c + b/c) time
- going up and down tree in $O(\log(n/b))$ time
- scanning last block requires O(c + b/c) time

- by choosing $b = c \log n$ this requires
- $O(\log n)$ time and $n + O(n/(c \log n)) = n + o(n)$ bits space

Improvements

- two level approach
- build range min-max trees for chunks of size $\Theta(\log^3 n)$
- $O(\log \log n)$ query time inside a chunk
- can result in total query time of O(log log n)

- represent tree as depth-first traversal
- using balanced parentheses



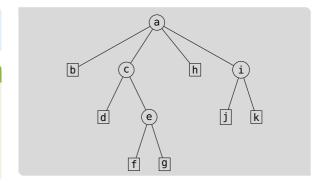
- represent tree as depth-first traversal
- using balanced parentheses

Definition: BP

Starting at the root, traverse the tree in depth-first order and append a

- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time

to the bit vector



- represent tree as depth-first traversal
- using balanced parentheses

Definition: BP

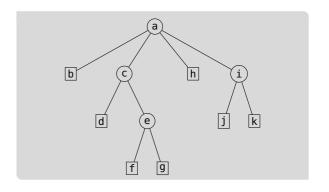
Starting at the root, traverse the tree in depth-first order and append a

- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time

to the bit vector

Lemma: Space Usage of BP

Representing a tree with *n* nodes requires 2*n* bits using BP



- represent tree as depth-first traversal
- using balanced parentheses

Definition: BP

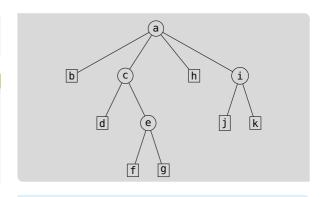
Starting at the root, traverse the tree in depth-first order and append a

- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time

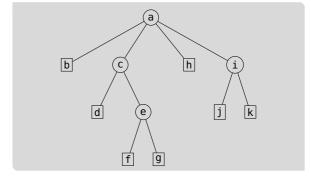
to the bit vector

Lemma: Space Usage of BP

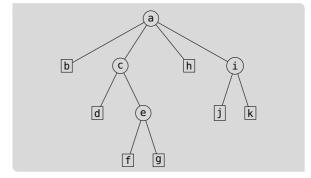
Representing a tree with *n* nodes requires 2*n* bits using BP

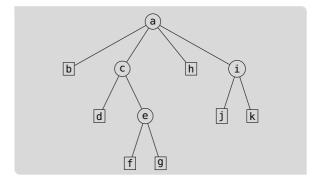


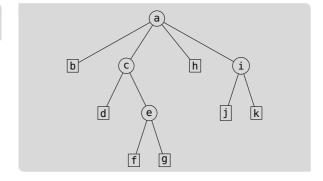
write down the BP representation of this example tree



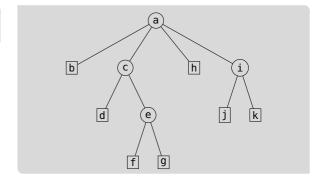
ab (()

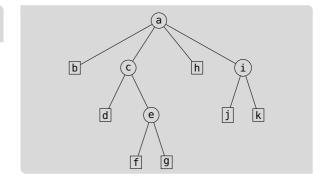






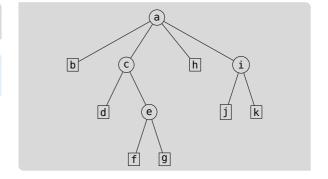
ab cd ef g h (()(()(()()))()





ab cd ef g h ij k (()(()(()()))()(()()))

- node starts at first parenthesis
- subtree structure is encoded in parentheses <a>

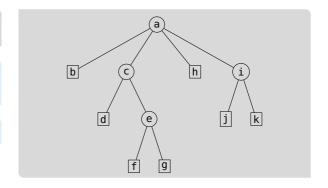


Making BP Fully-Functional

ab cd ef g h ij k (()(()(()()))()(()()))

• subtree size of p: (findclose(p) - p + 1)/2

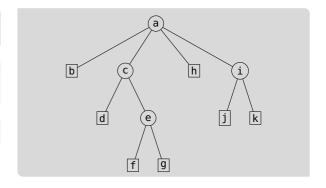
explanation on the board <a>



Making BP Fully-Functional

ab cd ef g h ij k (()(()(()()))()(()()))

- subtree size of p: (findclose(p) p + 1)/2
- parent of p: enclose(p)
- explanation on the board 💷



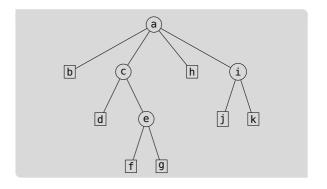
Making BP Fully-Functional

ab cd ef g h ij k (()(()(()())))

- subtree size of p: (findclose(p) p + 1)/2
- parent of p: enclose(p)
- explanation on the board 💷

Complicated Constant Time [NS14]

- degree
- i-th child



Advantages and Disadvantages of Both Approaches

- LOUDS cannot answer subtree size
- BP cannot easily answer *i*-th child and degree
- all other operations can be done easily

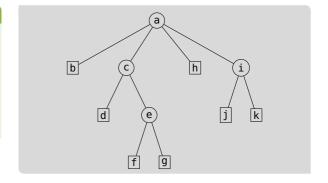
Depth First Unary Degree Sequence (1/2) [Ben+05]

Definition: DFUDS

Starting at the root, traverse tree in depth-first order and append

- for node v, $\delta(v)$ left parentheses and
- a right parenthesis if v is visited the first time

to the bit vector that initially contains a left parenthesis 10 to make them balanced



Karleruhe Institute of Technology

Depth First Unary Degree Sequence (1/2) [Ben+05]

Definition: DFUDS

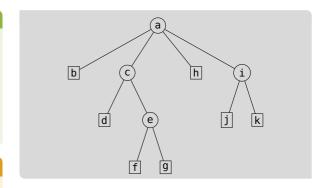
Starting at the root, traverse tree in depth-first order and append

- for node v, $\delta(v)$ left parentheses and
- a right parenthesis if v is visited the first time

to the bit vector that initially contains a left parenthesis • to make them balanced

Lemma: Space Usage of DFUDS

Representing a tree with n nodes requires 2n bits using DFUDS



Definition: DFUDS

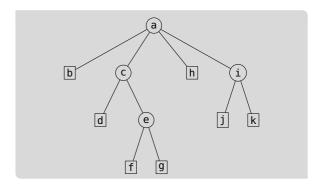
Starting at the root, traverse tree in depth-first order and append

- for node v, $\delta(v)$ left parentheses and
- a right parenthesis if v is visited the first time

to the bit vector that initially contains a left parenthesis • to make them balanced

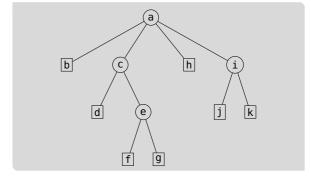
Lemma: Space Usage of DFUDS

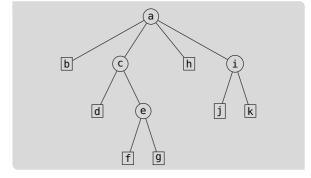
Representing a tree with n nodes requires 2n bits using DFUDS

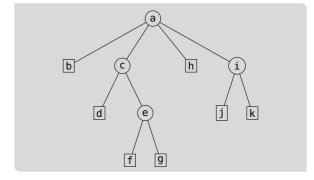


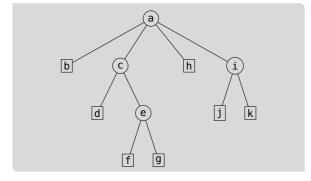
write down the DFUDS representation of this example tree

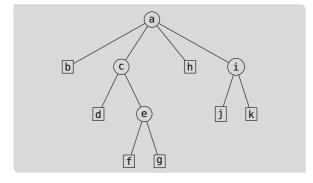
a ((((()

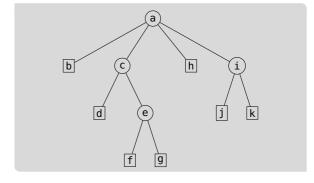


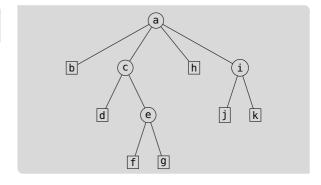




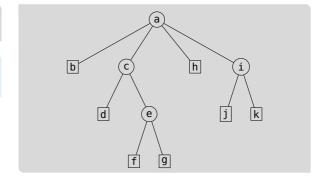




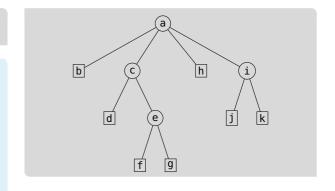




- a bc de fghi jk ((((())(())(())))(()))
 - node starts at first parenthesis
 - subtree structure is encoded <a>

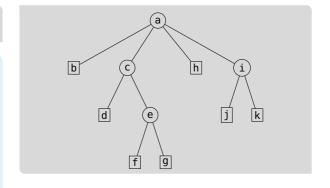


• degree of p: $select_{"}/"(rank_{"})"(p) + 1) - p$



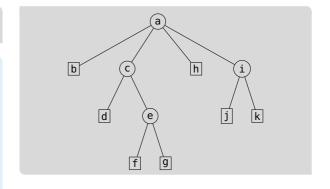
explanation on the board <a>=

- degree of p: $select_{"}/"(rank_{"})"(p) + 1) p$
- *i*-th child of *p*: $findclose(select_{"})"(rank_{"})"(p) + 1) i) + 1$



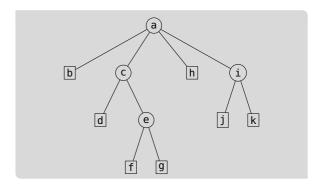
explanation on the board <a>

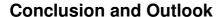
- degree of p: $select_{")"}(rank_{")"}(p) + 1) p$
- *i*-th child of p: $findclose(select_{"})''(rank_{"})''(p) + 1) - i) + 1$
- parent of p: select_{")''}(rank_{")''}(findopen(p - 1))) + 1



explanation on the board <a>=

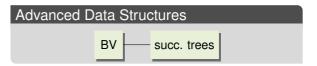
- degree of p: $select_{")''}(rank_{")''}(p) + 1) p$
- *i*-th child of p: $findclose(select_{"})''(rank_{"})''(p) + 1) - i) + 1$
- parent of p: select_{")''}(rank_{")''}(findopen(p - 1))) + 1
- subtree size of p: (findclose(enclose(p)) - p)/2 + 1
- explanation on the board <a>=





This Lecture

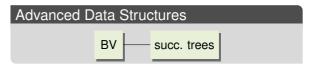
- three succinct tree representations
- different advantages and disadvantages



This Lecture

- three succinct tree representations
- different advantages and disadvantages

min-max-trees

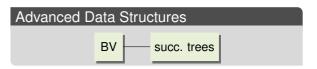


This Lecture

- three succinct tree representations
- different advantages and disadvantages
- min-max-trees

Next Lecture

succinct graphs



- [Ben+05] David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. "Representing Trees of Higher Degree". In: *Algorithmica* 43.4 (2005), pages 275–292. DOI: 10.1007/s00453-004-1146-6.
- [Jac88] Guy Joseph Jacobson. "Succinct Static Data Structures". PhD thesis. Carnegie Mellon University, 1988.
- [MR01] J. Ian Munro and Venkatesh Raman. "Succinct Representation of Balanced Parentheses and Static Trees". In: SIAM J. Comput. 31.3 (2001), pages 762–776. DOI: 10.1137/S0097539799364092.
- [NS14] Gonzalo Navarro and Kunihiko Sadakane. "Fully Functional Static and Dynamic Succinct Trees". In: *ACM Trans. Algorithms* 10.3 (2014), 16:1–16:39. DOI: 10.1145/2601073.