
Advanced Data Structures

Lecture 02: Succinct Trees

Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License cba: www.creativecommons.org/licenses/by-sa/4.0 | commit c70729e compiled at 2024-04-22-13:18

KIT – The Research University in the Helmholtz Association www.kit.edu

https://creativecommons.org/licenses/by-sa/4.0/
https://www.kit.edu

https://pingo.scc.kit.edu/306589

2/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

PINGO

https://pingo.scc.kit.edu/306589
https://pingo.scc.kit.edu/306589

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)
select1(5)

2

3/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Rank Queries on Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

3/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Rank Queries on Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

3/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Rank Queries on Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

3/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Rank Queries on Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)
select1(5)

2

3/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Rank Queries on Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)
select1(5)

2

3/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Rank Queries on Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

3/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Rank Queries on Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

3/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Rank Queries on Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

3/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Rank Queries on Bit Vectors (1/2)

0 1 2 3 4 5 6 7 8 9

0 1 1 0 1 1 0 1 0 0

rankα(i) # of αs before i

selectα(j) position of j-th α

block

of 0s w.r.t.
super-block

super-block # of 0s
w.r.t. BV

rank0(5)

select1(5)

2

3/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Rank Queries on Bit Vectors (1/2)

Lemma: Binary Rank- and Select-Queries
Given a bit vector of size n, there exist data
structures that can be computed in time O(n) of size
o(n) bits that can answer rank and select queries on
the bit vector in O(1) time

Word RAM
unlimited memory

words of size w ò w = Θlog n

constant time load and store

constant time bit operations on words

4/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Rank Queries on Bit Vectors (2/2)

Lemma: Binary Rank- and Select-Queries
Given a bit vector of size n, there exist data
structures that can be computed in time O(n) of size
o(n) bits that can answer rank and select queries on
the bit vector in O(1) time

Word RAM
unlimited memory

words of size w ò w = Θlog n

constant time load and store

constant time bit operations on words

4/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Recap: Rank Queries on Bit Vectors (2/2)

represent tree with n nodes using 2n bits

make succinct tree fully-functional using
additional o(n) bits

trees are important
searching for keys
maintaining directories
representations of parsings
. . .

different representations

supporting different operations

a

i

kj

hc

e

gf

d

b

Handout

5/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Plan for Today

represent tree with n nodes using 2n bits

make succinct tree fully-functional using
additional o(n) bits

trees are important
searching for keys
maintaining directories
representations of parsings
. . .

different representations

supporting different operations

a

i

kj

hc

e

gf

d

b

Handout

5/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Plan for Today

represent tree with n nodes using 2n bits

make succinct tree fully-functional using
additional o(n) bits

trees are important
searching for keys
maintaining directories
representations of parsings
. . .

different representations

supporting different operations

a

i

kj

hc

e

gf

d

b

Handout

5/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Plan for Today

represent tree with n nodes using 2n bits

make succinct tree fully-functional using
additional o(n) bits

trees are important
searching for keys
maintaining directories
representations of parsings
. . .

different representations

supporting different operations

a

i

kj

hc

e

gf

d

b

Handout

5/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Plan for Today

a tree is an acyclic connected graph
G = (V ,E) with a root r ∈ V

degree δ is the number of children

leaves have degree 0

depth of a node is the length of the path from
the root to that node

a

i

kj

hc

e

gf

d

b

6/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Preliminaries

represent tree level-wise

use ≤ 2 bits per node

Definition: LOUDS
Starting at the root, all nodes on the same depth

are visited from left to right and

for node v , δ(v) 1’s followed by a 0 are

appended to the bit vector that contains an initial 10

Lemma: Space Usage of LOUDS
Representing a tree with n nodes requires 2n + 1
bits using LOUDS

a

i

kj

hc

e

gf

d

b

write down the LOUDS representation of this
example tree

7/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Level Ordered Unary Degree Sequence (1/2) [Jac88]

represent tree level-wise

use ≤ 2 bits per node

Definition: LOUDS
Starting at the root, all nodes on the same depth

are visited from left to right and

for node v , δ(v) 1’s followed by a 0 are

appended to the bit vector that contains an initial 10

Lemma: Space Usage of LOUDS
Representing a tree with n nodes requires 2n + 1
bits using LOUDS

a

i

kj

hc

e

gf

d

b

write down the LOUDS representation of this
example tree

7/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Level Ordered Unary Degree Sequence (1/2) [Jac88]

represent tree level-wise

use ≤ 2 bits per node

Definition: LOUDS
Starting at the root, all nodes on the same depth

are visited from left to right and

for node v , δ(v) 1’s followed by a 0 are

appended to the bit vector that contains an initial 10

Lemma: Space Usage of LOUDS
Representing a tree with n nodes requires 2n + 1
bits using LOUDS

a

i

kj

hc

e

gf

d

b

write down the LOUDS representation of this
example tree

7/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Level Ordered Unary Degree Sequence (1/2) [Jac88]

represent tree level-wise

use ≤ 2 bits per node

Definition: LOUDS
Starting at the root, all nodes on the same depth

are visited from left to right and

for node v , δ(v) 1’s followed by a 0 are

appended to the bit vector that contains an initial 10

Lemma: Space Usage of LOUDS
Representing a tree with n nodes requires 2n + 1
bits using LOUDS

a

i

kj

hc

e

gf

d

b

write down the LOUDS representation of this
example tree

7/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Level Ordered Unary Degree Sequence (1/2) [Jac88]

ab ch id ejkfg

1011110

0110011001100000

node start at pertinent 0

a

i

kj

hc

e

gf

d

b

8/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Level Ordered Unary Degree Sequence (2/2)

ab ch id ejkfg

101111001100110

01100000

node start at pertinent 0

a

i

kj

hc

e

gf

d

b

8/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Level Ordered Unary Degree Sequence (2/2)

ab ch id ejkfg

101111001100110011000

00

node start at pertinent 0

a

i

kj

hc

e

gf

d

b

8/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Level Ordered Unary Degree Sequence (2/2)

ab ch id ejkfg

10111100110011001100000

node start at pertinent 0

a

i

kj

hc

e

gf

d

b

8/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Level Ordered Unary Degree Sequence (2/2)

ab ch id ejkfg

10111100110011001100000

node start at pertinent 0

a

i

kj

hc

e

gf

d

b

8/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Level Ordered Unary Degree Sequence (2/2)

Operations
degree ò is leaf

i-th child

parent

subtree size

depth

lowest common ancestor

rank (pre- or post-order)

. . .

a

i

kj

hc

e

gf

d

b

9/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

What is Fully-Functional?

Operations
degree ò is leaf

i-th child

parent

subtree size

depth

lowest common ancestor

rank (pre- or post-order)

. . .

a

i

kj

hc

e

gf

d

b

9/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

What is Fully-Functional?

ab ch id ejkfg

10111100110011001100000

degree of p: p − select0(rank0(p))− 1

i-th child of p:
select0(rank1(select0(rank0(p))) + i + 1)

parent of p:
select0(rank0(select1(rank0(p))) + 1)

explanation on the board �

subtree size PINGO

a

i

kj

hc

e

gf

d

b

10/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Making LOUDS Fully-Functional

https://kurpicz.org

ab ch id ejkfg

10111100110011001100000

degree of p: p − select0(rank0(p))− 1

i-th child of p:
select0(rank1(select0(rank0(p))) + i + 1)

parent of p:
select0(rank0(select1(rank0(p))) + 1)

explanation on the board �

subtree size PINGO

a

i

kj

hc

e

gf

d

b

10/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Making LOUDS Fully-Functional

https://kurpicz.org

ab ch id ejkfg

10111100110011001100000

degree of p: p − select0(rank0(p))− 1

i-th child of p:
select0(rank1(select0(rank0(p))) + i + 1)

parent of p:
select0(rank0(select1(rank0(p))) + 1)

explanation on the board �

subtree size PINGO

a

i

kj

hc

e

gf

d

b

10/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Making LOUDS Fully-Functional

https://kurpicz.org

ab ch id ejkfg

10111100110011001100000

degree of p: p − select0(rank0(p))− 1

i-th child of p:
select0(rank1(select0(rank0(p))) + i + 1)

parent of p:
select0(rank0(select1(rank0(p))) + 1)

explanation on the board �

subtree size PINGO

a

i

kj

hc

e

gf

d

b

10/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Making LOUDS Fully-Functional

https://kurpicz.org

instead of 0 and 1

use (and)

requires the same space

can add relation between parentheses

Definition: Balanced String of Parentheses
A string of parentheses is balanced, if for each left
parenthesis there exist unique right parenthesis to its
right �

findclose(i): find the right parenthesis matching
the left parenthesis at position i

findopen(i): find the left parenthesis matching
the right parenthesis at position i

excess(i): find the difference between the
number of left and right parentheses before
position i

enclose(i): given a parentheses pair with the
left parenthesis at position i , return the position
of the closest left parenthesis belonging to the
parentheses pair enclosing it

how can we answer excess queries PINGO

11/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

From Bit Vectors to Parentheses

https://kurpicz.org

instead of 0 and 1

use (and)

requires the same space

can add relation between parentheses

Definition: Balanced String of Parentheses
A string of parentheses is balanced, if for each left
parenthesis there exist unique right parenthesis to its
right �

findclose(i): find the right parenthesis matching
the left parenthesis at position i

findopen(i): find the left parenthesis matching
the right parenthesis at position i

excess(i): find the difference between the
number of left and right parentheses before
position i

enclose(i): given a parentheses pair with the
left parenthesis at position i , return the position
of the closest left parenthesis belonging to the
parentheses pair enclosing it

how can we answer excess queries PINGO

11/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

From Bit Vectors to Parentheses

https://kurpicz.org

instead of 0 and 1

use (and)

requires the same space

can add relation between parentheses

Definition: Balanced String of Parentheses
A string of parentheses is balanced, if for each left
parenthesis there exist unique right parenthesis to its
right �

findclose(i): find the right parenthesis matching
the left parenthesis at position i

findopen(i): find the left parenthesis matching
the right parenthesis at position i

excess(i): find the difference between the
number of left and right parentheses before
position i

enclose(i): given a parentheses pair with the
left parenthesis at position i , return the position
of the closest left parenthesis belonging to the
parentheses pair enclosing it

how can we answer excess queries PINGO

11/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

From Bit Vectors to Parentheses

https://kurpicz.org

instead of 0 and 1

use (and)

requires the same space

can add relation between parentheses

Definition: Balanced String of Parentheses
A string of parentheses is balanced, if for each left
parenthesis there exist unique right parenthesis to its
right �

findclose(i): find the right parenthesis matching
the left parenthesis at position i

findopen(i): find the left parenthesis matching
the right parenthesis at position i

excess(i): find the difference between the
number of left and right parentheses before
position i

enclose(i): given a parentheses pair with the
left parenthesis at position i , return the position
of the closest left parenthesis belonging to the
parentheses pair enclosing it

how can we answer excess queries PINGO

11/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

From Bit Vectors to Parentheses

https://kurpicz.org

instead of 0 and 1

use (and)

requires the same space

can add relation between parentheses

Definition: Balanced String of Parentheses
A string of parentheses is balanced, if for each left
parenthesis there exist unique right parenthesis to its
right �

findclose(i): find the right parenthesis matching
the left parenthesis at position i

findopen(i): find the left parenthesis matching
the right parenthesis at position i

excess(i): find the difference between the
number of left and right parentheses before
position i

enclose(i): given a parentheses pair with the
left parenthesis at position i , return the position
of the closest left parenthesis belonging to the
parentheses pair enclosing it

how can we answer excess queries PINGO

11/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

From Bit Vectors to Parentheses

https://kurpicz.org

instead of 0 and 1

use (and)

requires the same space

can add relation between parentheses

Definition: Balanced String of Parentheses
A string of parentheses is balanced, if for each left
parenthesis there exist unique right parenthesis to its
right �

findclose(i): find the right parenthesis matching
the left parenthesis at position i

findopen(i): find the left parenthesis matching
the right parenthesis at position i

excess(i): find the difference between the
number of left and right parentheses before
position i

enclose(i): given a parentheses pair with the
left parenthesis at position i , return the position
of the closest left parenthesis belonging to the
parentheses pair enclosing it

how can we answer excess queries PINGO

11/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

From Bit Vectors to Parentheses

https://kurpicz.org

instead of 0 and 1

use (and)

requires the same space

can add relation between parentheses

Definition: Balanced String of Parentheses
A string of parentheses is balanced, if for each left
parenthesis there exist unique right parenthesis to its
right �

findclose(i): find the right parenthesis matching
the left parenthesis at position i

findopen(i): find the left parenthesis matching
the right parenthesis at position i

excess(i): find the difference between the
number of left and right parentheses before
position i

enclose(i): given a parentheses pair with the
left parenthesis at position i , return the position
of the closest left parenthesis belonging to the
parentheses pair enclosing it

how can we answer excess queries PINGO

11/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

From Bit Vectors to Parentheses

https://kurpicz.org

all parentheses operations can be answered in O(1) time using o(n) bits space

here, a little bit simpler

excess(i) = rank“(”(i + 1)− rank“)”(i + 1)

fwd_search(i, d) = min{j > i : excess(j)− excess(i − 1) = d}
bwd_search(i, d) = max{j < i : excess(i)− excess(j − 1) = d}

findclose(i) = fwd_search(i, 0)

findopen(i) = bwd_search(i, 0)

enclose(i) = bwd_search(i, 2)

can be answered with a min-max-tree

12/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

From Bit Vectors to Parentheses

all parentheses operations can be answered in O(1) time using o(n) bits space

here, a little bit simpler

excess(i) = rank“(”(i + 1)− rank“)”(i + 1)

fwd_search(i, d) = min{j > i : excess(j)− excess(i − 1) = d}
bwd_search(i, d) = max{j < i : excess(i)− excess(j − 1) = d}

findclose(i) = fwd_search(i, 0)

findopen(i) = bwd_search(i, 0)

enclose(i) = bwd_search(i, 2)

can be answered with a min-max-tree

12/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

From Bit Vectors to Parentheses

all parentheses operations can be answered in O(1) time using o(n) bits space

here, a little bit simpler

excess(i) = rank“(”(i + 1)− rank“)”(i + 1)

fwd_search(i, d) = min{j > i : excess(j)− excess(i − 1) = d}
bwd_search(i, d) = max{j < i : excess(i)− excess(j − 1) = d}

findclose(i) = fwd_search(i, 0)

findopen(i) = bwd_search(i, 0)

enclose(i) = bwd_search(i, 2)

can be answered with a min-max-tree

12/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

From Bit Vectors to Parentheses

all parentheses operations can be answered in O(1) time using o(n) bits space

here, a little bit simpler

excess(i) = rank“(”(i + 1)− rank“)”(i + 1)

fwd_search(i, d) = min{j > i : excess(j)− excess(i − 1) = d}
bwd_search(i, d) = max{j < i : excess(i)− excess(j − 1) = d}

findclose(i) = fwd_search(i, 0)

findopen(i) = bwd_search(i, 0)

enclose(i) = bwd_search(i, 2)

can be answered with a min-max-tree

12/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

From Bit Vectors to Parentheses

Definition: Range Min-Max Tree
Given a bit vector B of length n and a block size b,
store for each consecutive block (from s to e) of BV

total excess in block:
excess(e)− excess(s − 1)

minimum left-to-right excess in block:
min{excess(p)− excess(s − 1) : p ∈ [s, e)}

and build a binary tree over these blocks, where
each node stores the same total information for
blocks in all its leaves

example on the board �

Lemma: Range Min-Max Tree Space
A range min-max tree with block size b for a bit vector
of size n requires n + O((n/b) log n) bits of space

13/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (1/2)

Definition: Range Min-Max Tree
Given a bit vector B of length n and a block size b,
store for each consecutive block (from s to e) of BV

total excess in block:
excess(e)− excess(s − 1)

minimum left-to-right excess in block:
min{excess(p)− excess(s − 1) : p ∈ [s, e)}

and build a binary tree over these blocks, where
each node stores the same total information for
blocks in all its leaves

example on the board �

Lemma: Range Min-Max Tree Space
A range min-max tree with block size b for a bit vector
of size n requires n + O((n/b) log n) bits of space

13/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (1/2)

fwdsearch in a Range Min-Max Tree
scan block

if not found traverse tree

identify block in tree

scan block

process c bits at a time

first align with next c bits

requires O(c + b/c) time

going up and down tree in O(log(n/b)) time

scanning last block requires O(c + b/c) time

by choosing b = c log n this requires

O(log n) time and
n + O(n/(c log n)) = n + o(n) bits space

Improvements
two level approach

build range min-max trees for chunks of size
Θ(log3 n)

O(log log n) query time inside a chunk

can result in total query time of O(log log n)

14/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree
scan block

if not found traverse tree

identify block in tree

scan block

process c bits at a time

first align with next c bits

requires O(c + b/c) time

going up and down tree in O(log(n/b)) time

scanning last block requires O(c + b/c) time

by choosing b = c log n this requires

O(log n) time and
n + O(n/(c log n)) = n + o(n) bits space

Improvements
two level approach

build range min-max trees for chunks of size
Θ(log3 n)

O(log log n) query time inside a chunk

can result in total query time of O(log log n)

14/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree
scan block

if not found traverse tree

identify block in tree

scan block

process c bits at a time

first align with next c bits

requires O(c + b/c) time

going up and down tree in O(log(n/b)) time

scanning last block requires O(c + b/c) time

by choosing b = c log n this requires

O(log n) time and
n + O(n/(c log n)) = n + o(n) bits space

Improvements
two level approach

build range min-max trees for chunks of size
Θ(log3 n)

O(log log n) query time inside a chunk

can result in total query time of O(log log n)

14/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree
scan block

if not found traverse tree

identify block in tree

scan block

process c bits at a time

first align with next c bits

requires O(c + b/c) time

going up and down tree in O(log(n/b)) time

scanning last block requires O(c + b/c) time

by choosing b = c log n this requires

O(log n) time and
n + O(n/(c log n)) = n + o(n) bits space

Improvements
two level approach

build range min-max trees for chunks of size
Θ(log3 n)

O(log log n) query time inside a chunk

can result in total query time of O(log log n)

14/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree
scan block

if not found traverse tree

identify block in tree

scan block

process c bits at a time

first align with next c bits

requires O(c + b/c) time

going up and down tree in O(log(n/b)) time

scanning last block requires O(c + b/c) time

by choosing b = c log n this requires

O(log n) time and
n + O(n/(c log n)) = n + o(n) bits space

Improvements
two level approach

build range min-max trees for chunks of size
Θ(log3 n)

O(log log n) query time inside a chunk

can result in total query time of O(log log n)

14/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Range Min-Max Trees (2/2)

represent tree as depth-first traversal

using balanced parentheses

Definition: BP
Starting at the root, traverse the tree in depth-first
order and append a

left parenthesis if a node is visited the first time

right parenthesis if a node is visited the last time

to the bit vector

Lemma: Space Usage of BP
Representing a tree with n nodes requires 2n bits
using BP

a

i

kj

hc

e

gf

d

b

write down the BP representation of this
example tree

15/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Balanced Parentheses (1/2) [MR01]

represent tree as depth-first traversal

using balanced parentheses

Definition: BP
Starting at the root, traverse the tree in depth-first
order and append a

left parenthesis if a node is visited the first time

right parenthesis if a node is visited the last time

to the bit vector

Lemma: Space Usage of BP
Representing a tree with n nodes requires 2n bits
using BP

a

i

kj

hc

e

gf

d

b

write down the BP representation of this
example tree

15/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Balanced Parentheses (1/2) [MR01]

represent tree as depth-first traversal

using balanced parentheses

Definition: BP
Starting at the root, traverse the tree in depth-first
order and append a

left parenthesis if a node is visited the first time

right parenthesis if a node is visited the last time

to the bit vector

Lemma: Space Usage of BP
Representing a tree with n nodes requires 2n bits
using BP

a

i

kj

hc

e

gf

d

b

write down the BP representation of this
example tree

15/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Balanced Parentheses (1/2) [MR01]

represent tree as depth-first traversal

using balanced parentheses

Definition: BP
Starting at the root, traverse the tree in depth-first
order and append a

left parenthesis if a node is visited the first time

right parenthesis if a node is visited the last time

to the bit vector

Lemma: Space Usage of BP
Representing a tree with n nodes requires 2n bits
using BP

a

i

kj

hc

e

gf

d

b

write down the BP representation of this
example tree

15/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Balanced Parentheses (1/2) [MR01]

a

b cd ef g h ij k

(

()(()(()()))()(()()))

node starts at first parenthesis

subtree structure is encoded in parentheses �

a

i

kj

hc

e

gf

d

b

16/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Balanced Parentheses (2/2)

ab

cd ef g h ij k

(()

(()(()()))()(()()))

node starts at first parenthesis

subtree structure is encoded in parentheses �

a

i

kj

hc

e

gf

d

b

16/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Balanced Parentheses (2/2)

ab cd

ef g h ij k

(()(()

(()()))()(()()))

node starts at first parenthesis

subtree structure is encoded in parentheses �

a

i

kj

hc

e

gf

d

b

16/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Balanced Parentheses (2/2)

ab cd ef g

h ij k

(()(()(()()))

()(()()))

node starts at first parenthesis

subtree structure is encoded in parentheses �

a

i

kj

hc

e

gf

d

b

16/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Balanced Parentheses (2/2)

ab cd ef g h

ij k

(()(()(()()))()

(()()))

node starts at first parenthesis

subtree structure is encoded in parentheses �

a

i

kj

hc

e

gf

d

b

16/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Balanced Parentheses (2/2)

ab cd ef g h ij k

(()(()(()()))()(()()))

node starts at first parenthesis

subtree structure is encoded in parentheses �

a

i

kj

hc

e

gf

d

b

16/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Balanced Parentheses (2/2)

ab cd ef g h ij k

(()(()(()()))()(()()))

node starts at first parenthesis

subtree structure is encoded in parentheses �

a

i

kj

hc

e

gf

d

b

16/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Balanced Parentheses (2/2)

ab cd ef g h ij k

(()(()(()()))()(()()))

subtree size of p: (findclose(p)− p + 1)/2

parent of p: enclose(p)

explanation on the board �

Complicated Constant Time [NS14]
degree

i-th child

a

i

kj

hc

e

gf

d

b

17/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Making BP Fully-Functional

ab cd ef g h ij k

(()(()(()()))()(()()))

subtree size of p: (findclose(p)− p + 1)/2

parent of p: enclose(p)

explanation on the board �

Complicated Constant Time [NS14]
degree

i-th child

a

i

kj

hc

e

gf

d

b

17/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Making BP Fully-Functional

ab cd ef g h ij k

(()(()(()()))()(()()))

subtree size of p: (findclose(p)− p + 1)/2

parent of p: enclose(p)

explanation on the board �

Complicated Constant Time [NS14]
degree

i-th child

a

i

kj

hc

e

gf

d

b

17/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Making BP Fully-Functional

LOUDS cannot answer subtree size

BP cannot easily answer i-th child and degree

all other operations can be done easily

18/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Advantages and Disadvantages of Both Approaches

Definition: DFUDS
Starting at the root, traverse tree in depth-first order
and append

for node v , δ(v) left parentheses and

a right parenthesis if v is visited the first time

to the bit vector that initially contains a left
parenthesis ò to make them balanced

Lemma: Space Usage of DFUDS
Representing a tree with n nodes requires 2n bits
using DFUDS

a

i

kj

hc

e

gf

d

b

write down the DFUDS representation of this
example tree

19/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Depth First Unary Degree Sequence (1/2) [Ben+05]

Definition: DFUDS
Starting at the root, traverse tree in depth-first order
and append

for node v , δ(v) left parentheses and

a right parenthesis if v is visited the first time

to the bit vector that initially contains a left
parenthesis ò to make them balanced

Lemma: Space Usage of DFUDS
Representing a tree with n nodes requires 2n bits
using DFUDS

a

i

kj

hc

e

gf

d

b

write down the DFUDS representation of this
example tree

19/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Depth First Unary Degree Sequence (1/2) [Ben+05]

Definition: DFUDS
Starting at the root, traverse tree in depth-first order
and append

for node v , δ(v) left parentheses and

a right parenthesis if v is visited the first time

to the bit vector that initially contains a left
parenthesis ò to make them balanced

Lemma: Space Usage of DFUDS
Representing a tree with n nodes requires 2n bits
using DFUDS

a

i

kj

hc

e

gf

d

b

write down the DFUDS representation of this
example tree

19/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Depth First Unary Degree Sequence (1/2) [Ben+05]

a

bc de fghi jk

((((()

)(())(())))(()))

node starts at first parenthesis

subtree structure is encoded �

a

i

kj

hc

e

gf

d

b

20/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Depth First Unary Degree Sequence (2/2)

a b

c de fghi jk

((((())

(())(())))(()))

node starts at first parenthesis

subtree structure is encoded �

a

i

kj

hc

e

gf

d

b

20/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Depth First Unary Degree Sequence (2/2)

a bc

de fghi jk

((((())(()

)(())))(()))

node starts at first parenthesis

subtree structure is encoded �

a

i

kj

hc

e

gf

d

b

20/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Depth First Unary Degree Sequence (2/2)

a bc d

e fghi jk

((((())(())

(())))(()))

node starts at first parenthesis

subtree structure is encoded �

a

i

kj

hc

e

gf

d

b

20/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Depth First Unary Degree Sequence (2/2)

a bc de fg

hi jk

((((())(())(()))

)(()))

node starts at first parenthesis

subtree structure is encoded �

a

i

kj

hc

e

gf

d

b

20/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Depth First Unary Degree Sequence (2/2)

a bc de fgh

i jk

((((())(())(())))

(()))

node starts at first parenthesis

subtree structure is encoded �

a

i

kj

hc

e

gf

d

b

20/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Depth First Unary Degree Sequence (2/2)

a bc de fghi jk

((((())(())(())))(()))

node starts at first parenthesis

subtree structure is encoded �

a

i

kj

hc

e

gf

d

b

20/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Depth First Unary Degree Sequence (2/2)

a bc de fghi jk

((((())(())(())))(()))

node starts at first parenthesis

subtree structure is encoded �

a

i

kj

hc

e

gf

d

b

20/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Depth First Unary Degree Sequence (2/2)

a bc de fghi jk

((((())(())(())))(()))

degree of p: select“)′′(rank“)′′(p) + 1)− p

i-th child of p:
findclose(select“)′′(rank“)′′(p) + 1)− i) + 1

parent of p:
select“)′′(rank“)′′(findopen(p − 1))) + 1

subtree size of p:
(findclose(enclose(p))− p)/2 + 1

explanation on the board �

a

i

kj

hc

e

gf

d

b

21/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Making DFUDS Fully-Functional

a bc de fghi jk

((((())(())(())))(()))

degree of p: select“)′′(rank“)′′(p) + 1)− p

i-th child of p:
findclose(select“)′′(rank“)′′(p) + 1)− i) + 1

parent of p:
select“)′′(rank“)′′(findopen(p − 1))) + 1

subtree size of p:
(findclose(enclose(p))− p)/2 + 1

explanation on the board �

a

i

kj

hc

e

gf

d

b

21/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Making DFUDS Fully-Functional

a bc de fghi jk

((((())(())(())))(()))

degree of p: select“)′′(rank“)′′(p) + 1)− p

i-th child of p:
findclose(select“)′′(rank“)′′(p) + 1)− i) + 1

parent of p:
select“)′′(rank“)′′(findopen(p − 1))) + 1

subtree size of p:
(findclose(enclose(p))− p)/2 + 1

explanation on the board �

a

i

kj

hc

e

gf

d

b

21/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Making DFUDS Fully-Functional

a bc de fghi jk

((((())(())(())))(()))

degree of p: select“)′′(rank“)′′(p) + 1)− p

i-th child of p:
findclose(select“)′′(rank“)′′(p) + 1)− i) + 1

parent of p:
select“)′′(rank“)′′(findopen(p − 1))) + 1

subtree size of p:
(findclose(enclose(p))− p)/2 + 1

explanation on the board �

a

i

kj

hc

e

gf

d

b

21/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Making DFUDS Fully-Functional

This Lecture
three succinct tree representations

different advantages and disadvantages

min-max-trees

Next Lecture
succinct graphs

Advanced Data Structures

BV succ. trees

22/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
three succinct tree representations

different advantages and disadvantages

min-max-trees

Next Lecture
succinct graphs

Advanced Data Structures

BV succ. trees

22/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

This Lecture
three succinct tree representations

different advantages and disadvantages

min-max-trees

Next Lecture
succinct graphs

Advanced Data Structures

BV succ. trees

22/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Conclusion and Outlook

[Ben+05] David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh Raman, and
S. Srinivasa Rao. “Representing Trees of Higher Degree”. In: Algorithmica 43.4 (2005),
pages 275–292. DOI: 10.1007/s00453-004-1146-6.

[Jac88] Guy Joseph Jacobson. “Succinct Static Data Structures”. PhD thesis. Carnegie Mellon University,
1988.

[MR01] J. Ian Munro and Venkatesh Raman. “Succinct Representation of Balanced Parentheses and Static
Trees”. In: SIAM J. Comput. 31.3 (2001), pages 762–776. DOI: 10.1137/S0097539799364092.

[NS14] Gonzalo Navarro and Kunihiko Sadakane. “Fully Functional Static and Dynamic Succinct Trees”. In:
ACM Trans. Algorithms 10.3 (2014), 16:1–16:39. DOI: 10.1145/2601073.

23/21 2024-04-22 Florian Kurpicz | Advanced Data Structures | 02 Succinct Trees Institute of Theoretical Informatics, Algorithm Engineering

Bibliography I

https://doi.org/10.1007/s00453-004-1146-6
https://doi.org/10.1137/S0097539799364092
https://doi.org/10.1145/2601073

	Appendix

