Lecture 9: Lowest Common Ancestors

Johannes Fischer
Lowest Common Ancestors
Some Initial Thoughts

• store only tree:
 \[O(n) \text{ w.c. query time} \]

• store all \(\Theta(n^2) \) answers:
 \[O(1) \text{ query time} \]

• difficulty:
 - \(O(1) \text{ query time with } O(n) \text{ space} \)
 - lecture "Text Indexing" (SS'12)
 - here: \textbf{distributed} data structure
Distributed Data Structures

• no access to **global** data structures
 → minimize **communication overhead**

• labeling scheme:
 ▶ assign label $l(v)$ to each node v
 ▶ compute $l($LCA$(x,y))$ from $l(x)$ and $l(y)$

• goal:
 ▶ short labels
 ▶ fast query time
Simple Tree Labelings: parent(x,y)

parent(x,y) iff first lg n bits of l(x) = 2nd lg n bits of l(y)
Simple Tree Labelings: LCA(x,y)

\[l(LCA(x,y)) \approx LCP(l(x), l(y)) \]

\[l(v) = l(parent(v)) \cdot DFS(v) \]
Simple LCA-Labeling

• longest label length:
 ▶ between $O(\lg^2 n)$ and $O(n \lg n)$ bits
 ➞ cannot even compute LCP in $O(1)$ time

• in the following:
 ▶ label length $O(\lg n)$ bits
 ▶ $O(1)$ query time
Definitions

• node v:
 - $p(v)$ = parent of v
 - $c(v)$ = set of v's children
 - $size(v)$ = #nodes in v's subtree T_v

• heavy nodes:
 - having largest subtree among its siblings
 - u heavy if $size(u) = \max\{size(w) : w \in c(p(u))\}$
 - take arbitrary child if max not unique

• all other nodes: \textbf{light} (incl. root)
Heavy Paths

• heavy nodes divide T into **heavy paths**:
 ▶ from light node follow heavy nodes
 ▶ continue recursively
 ▶ **heavy path decomposition**

• $\langle v_1, v_2, ..., v_k \rangle$ heavy path
 ▶ $v_1 = a(v_i)$ is the **apex** of v_i for all i

• **light size** of v:
 • $lsize(v) = size(v) - size(w)$ if w is v's heavy child
Labels

• **heavy label** \(hl(v) \)
 - to any node \(v \)
 - different for two nodes on one heavy path
 - can determine if \(i < j \) from \(v_i, v_j \) on \(\langle v_1, v_2, ..., v_k \rangle \)

• **light label** \(ll(v) \):
 - only to light nodes \(v \)
 - different for nodes with same parent

• **label** \(l(v) = l(p(a(v))) \cdot ll(a(v)) \cdot hl(v) \)
Answering LCA(x, y)

- compute LCP of $l(x)$ and $l(y)$
- 2 cases
 - depending on whether mismatch occurs in hl or ll
 - need helper label ($0 \triangleq hl, 1 \triangleq ll$)
- see blackboard
Analysis: Idea

• $hl(v)$ repeated in all nodes below v apart from those below heavy child

 $\implies hl(v)$ occurs $lsize(v)$ times

 \sim use **shorter** heavy labels for **large** *lsizes*

• $ll(v)$ occurs in all nodes below v

 $\implies ll(v)$ occurs $size(v)$ times

 \sim use **shorter** light labels for **large** *subtrees*
Precise Analysis

- see blackboard