Lecture 10: Compressed Suffix Trees

Johannes Fischer
What we already have...

- Text + BWT + WT and backwards search
 \[\mathcal{O}(m \lg \sigma) \] counting queries for \(P[1,m] \)
 - space \(\mathcal{O}(n \lg \sigma) \) bits (text size!)
- + sampled suffix array values
 \[\mathcal{O}(k \lg n) \] for enumerating \(k \) occurrences
 - can be improved to \(\mathcal{O}(k \lg^\varepsilon n) \) for \(\varepsilon < 1 \)
Suffix Tree Functionality

• often, more functionality is desired
 ▶ repeat recognition (e.g. $T=\alpha\rho\beta\rho\gamma$)
 ▶ tandem repeats (e.g. $T=\alpha\rho\rho\beta$)
 ▶ longest common substrings
 ▶ matching statistics
 ▶ suffix-prefix matches
 ▶ etc.

• want suffix tree functionality!

compress?
Suffix Tree

$T = aababaa$'

$A = 8,7,6,1,4,2,5,3$
Some real numbers

- **guess**: how much bigger than text is ST?
 - A: <10
 - B: 10-20
 - C: >20

- Suffix Tree
 - 20-40 times text size !!!

- Text+BWT+WT (incl. rank/select):
 - \(\approx 3 \) times text size

- **goal**: drop suffix tree and simulate operations using suffix- and LCP array
<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOT()</td>
<td>return root</td>
</tr>
<tr>
<td>COUNT(v)</td>
<td>count leaves below v</td>
</tr>
<tr>
<td>ISANCESTOR(v,w)</td>
<td>true if v is an ancestor of w</td>
</tr>
<tr>
<td>ISLEAF (v)</td>
<td>true if v is a leaf</td>
</tr>
<tr>
<td>LEAFLABEL(v)</td>
<td>suffix number represented by leaf v</td>
</tr>
<tr>
<td>SDEPTH(v)</td>
<td>string depth of v</td>
</tr>
<tr>
<td>PARENT(v)</td>
<td>parent node of v</td>
</tr>
<tr>
<td>FIRSTCHILD(v)</td>
<td>first (alphabetically smallest) child of v</td>
</tr>
<tr>
<td>NEXTSIBLING(v)</td>
<td>next sibling of v</td>
</tr>
<tr>
<td>EDGELABEL(v,i)</td>
<td>i’th letter on the edge leading to v</td>
</tr>
<tr>
<td>LCA(v,w)</td>
<td>lowest common ancestor of v and w</td>
</tr>
</tbody>
</table>
ROOT()
\textbf{COUNT}(v) = 5
\textsc{IsAncestor}(v, w) = \text{True}
\textsc{IsAncestor}(v,w) = \textsc{False}
ISLEAF(\(v\))

ISLEAF(\(v\)) = TRUE
ISLEAF(v)

ISLEAF(v) = FALSE
\textbf{LEAFLABEL}(v) = 4
$\text{SD}epth(v) = 3$
\textbf{PARENT}(v) = w
\textbf{FIRST\textsc{Child}(v)}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{tree.pdf}
\caption{FIRST\textsc{Child}(v) = w}
\end{figure}
$\text{NextSibling}(v) = w$
\textsc{EdgeLabel}(v,i)

\textsc{EdgeLabel}(v,2)=a
LCA\((v, w)\)

\[\text{EDGELABEL}(v, w) = u \]
Goal

drop suffix tree and simulate operations using suffix- and LCP array
Represent Nodes by Intervals

A = 8, 7, 6, 1, 4, 2, 5, 3

H = -1, 0, 1, 2, 1, 3, 0, 2
Represent Nodes by Intervals

A = 8, 7, 6, 1, 4, 2, 5, 3

H = -1, 0, 1, 2, 1, 3, 0, 2
Intervals $[v_l, v_r]$ in H

1. $H[i] \geq \text{SDPETH}(v)$
 $\forall \ v_l < i \leq v_r$

2. $H[v_l] < \text{SDPETH}(v)$
 $H[v_r + 1] < \text{SDPETH}(v)$

3. $\exists \ v_l < i \leq v_r$ with
 $H[i] = \text{SDPETH}(v)$

$A = 8, 7, 6, 1, 4, 2, 5, 3$

$H = -1, 0, 1, 2, 1, 3, 0, 2$
Consequences

1. \(H[i] \geq S\text{DEPTH}(v) \)
 \[\forall v_l < i \leq v_r \]

2. \(H[v_l] < S\text{DEPTH}(v) \)
 \[H[v_r + 1] < S\text{DEPTH}(v) \]

3. \(\exists v_l < i \leq v_r \) with
 \[H[i] = S\text{DEPTH}(v) \]

(1) given \(v_l \) & \(v_r \): compute \(i \) by \(i \leftarrow \text{RMQ}_H(v_l + 1, v_r) \)

\[A = 8, 7, 6, 1, 4, 2, 5, 3 \]
\[H = -1, 0, 1, 2, 1, 3, 0, 2 \]

\[\text{RMQ} \]
Consequences

1. $H[i] \geq \text{SDPETH}(v)$
 \[\forall v_l < i \leq v_r \]

2. $H[v_l] < \text{SDPETH}(v)$
 $H[v_r+1] < \text{SDPETH}(v)$

3. \(\exists v_l < i \leq v_r \) with
 $H[i] = \text{SDPETH}(v)$

(1) given v_l & v_r: compute i by $i \leftarrow \text{RMQ}_H(v_l+1, v_r)$

(2) given i: compute
 $v_l \leftarrow \text{PSV}_H(i)$
 $v_r \leftarrow \text{NSV}_H(i)-1$

\[A = \{8, 7, 6, 1, 4, 2, 5, 3\} \]
\[H = \{-1, 0, 1, 2, 1, 3, 0, 2\} \]
3 Components of CST

- A: compressed (sampled) suffix array
- H: compressed LCP-array
- Compressed RMQ & PSV/NSV on LCP

CST

Node v represented by interval $[v_l, v_r]$ in H (or A)
IsAncestor(v, w)

IsAncestor(v, w) = True $\iff v_l \leq w_r \leq v_r$

$A = 8, 7, 6, 1, 4, 2, 5, 3$

$H = -1, 0, 1, 2, 1, 3, 0, 2$
\textbf{PARENT}(v):}

larger of $H[v_l] \& H[v_r+1]$ is SDEPTH of parent!

\[A = 8, 7, 6, 1, 4, 2, 5, 3 \]

\[H = -1, 0, 1, 2, 3, 0, 2 \]
<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROOT()</td>
<td>return root</td>
</tr>
<tr>
<td>COUNT(v)</td>
<td>count leaves below v</td>
</tr>
<tr>
<td>ISANCESTOR(v,w)</td>
<td>true if v is an ancestor of w ✓</td>
</tr>
<tr>
<td>ISLEAF(v)</td>
<td>true if v is a leaf</td>
</tr>
<tr>
<td>LEAFLABEL(v)</td>
<td>suffix number represented by leaf v</td>
</tr>
<tr>
<td>SDEPTH(v)</td>
<td>string depth of v</td>
</tr>
<tr>
<td>PARENT(v)</td>
<td>parent node of v</td>
</tr>
<tr>
<td>FIRSTCHILD(v)</td>
<td>first (alphabetically smallest) child of v</td>
</tr>
<tr>
<td>NEXTSIBLING(v)</td>
<td>next sibling of v</td>
</tr>
<tr>
<td>EDGELABEL(v,i)</td>
<td>i’th letter on the edge leading to v</td>
</tr>
<tr>
<td>LCA(v,w)</td>
<td>lowest common ancestor of v and w</td>
</tr>
</tbody>
</table>
Summary

• Represent ST nodes by *intervals*

• Simulate operations by **RMQs** and **PSV**s/**NSV**s on LCP-array

 \Rightarrow suffix and LCP-array **replace** suffix tree

• for a completely compressed ST:
 - compress LCP-array
 - small-space solutions for RMQ/PSV/NSV