New Solution

Definition (Previous Smaller Values)

For array index i in A, let

$$PSV(i) = \arg\max\{k < i : A[k] < A[i]\}$$

be the previous smaller value left of i.
New Solution

Definition (Previous Smaller Values)

For array index \(i \) in \(A \), let

\[
PSV(i) = \arg\max\{k < i : A[k] < A[i]\}
\]

be the **previous smaller value** left of \(i \).

Definition (2d-Min-Heap of array \(A \))

Ordered Tree on nodes \([1, n]\) defined by \(\text{parent}(i) = PSV(i) \).
Lemma

$\text{RMQ}(i, j)$ is given by the child of $LCA(i, j)$ that is on the path to j.
Lemma
RMQ(i, j) is given by the child of LCA(i, j) that is on the path to j.
Lemma

RMQ\((i, j)\) is given by the child of LCA\((i, j)\) that is on the path to \(j\).
Lemma

RMQ\((i, j)\) is given by the child of \(\text{LCA}(i, j)\) that is on the path to \(j\).
Lemma

$\text{RMQ}(i, j)$ is given by the child of $\text{LCA}(i, j)$ that is on the path to j.
Represent heap succinctly by DFUDS:

- list degrees of nodes in pre-order:
 - node of out-degree $k \Rightarrow \binom{k}{1}$
 - space $2n$ bits
 - array-index i corresponds to i'th ‘)’

There is a preprocessing scheme of optimal size $2n + o(n)$ bits for $O(1)$-range minimum queries. Workspace is also $O(n)$ bits.
Represent heap **succinctly** by DFUDS:

- list degrees of nodes in pre-order:
- node of out-degree $k \Rightarrow (^k)$
- space $2n$ bits
- array-index i corresponds to i'th $	ext{''}$

Theorem

There is a preprocessing scheme of optimal size $2n + o(n)$ bits for $O(1)$-range minimum queries. Workspace is also $O(n)$ bits.
Represent heap succinctly by DFUDS:
- list degrees of nodes in pre-order:
- node of out-degree \(k \) \(\Rightarrow \binom{k}{k} \)
 \(\Rightarrow \) space \(2n \) bits
 \(\Rightarrow \) array-index \(i \) corresponds to \(i^{th} \)'')
- \(O\left(\frac{n \log \log n}{\log n}\right) \)-bit index for simulating \(O(1) \)-LCAs (technical!)
- DFUDS can be constructed “in-place”
Represent heap **succinctly** by DFUDS:
- list degrees of nodes in pre-order:
 - node of out-degree \(k \Rightarrow \binom{k}{k} \)
 - space \(2n \) bits
 - array-index \(i \) corresponds to \(i \)’th ‘’

\(O\left(\frac{n \log \log n}{\log n} \right) \)-bit index for simulating
\(O(1) \)-LCAs (technical!)

DFUDS can be constructed “in-place”

Theorem

There is a preprocessing scheme of optimal size \(2n + o(n) \) bits for \(O(1) \)-range minimum queries. Workspace is also \(O(n) \) bits.
More Functionality: PSV

Definition (2d-Min-Heap)

Ordered Tree defined by \(\text{parent}(i) = \text{PSV}(i) \).

\[
\text{PSV}(i) = \max\{ k < i : H[k] < H[i] \}
\]

⇒ PSV simple (move to parent in \(O(1) \) time!)
More Functionality: PSV

Definition (2d-Min-Heap)

Ordered Tree defined by $parent(i) = PSV(i)$.

- $PSV(i) = \max\{k < i : H[k] < H[i]\}$
- $NSV(i) = \min\{k > i : H[k] < H[i]\}$
More Functionality: PSV

Definition (2d-Min-Heap)
Ordered Tree defined by \(\text{parent}(i) = \text{PSV}(i) \).

- \(\text{PSV}(i) = \max\{k < i : H[k] < H[i]\} \)
- \(\text{NSV}(i) = \min\{k > i : H[k] < H[i]\} \)

Can we also do NSV???
More Functionality: NSV

\[
\begin{align*}
\text{NSV} (i_3) &= i_k + |T_{i_k}| \\
\end{align*}
\]
More Functionality: NSV

1. Find leftmost $<$-sibling to the right
More Functionality: NSV

1. Find leftmost $<$-sibling to the right
2. If it does not exist...
More Functionality: NSV

1. Find leftmost \(<\)-sibling to the right
2. If it does not exist...
More Functionality: NSV

1. Find leftmost \(<\)-sibling to the right
2. If it does not exist...
3. \(\ldots NSV(i_3) = i_k + |T_{i_k}| \)
More Functionality: NSV

- Distinguish \equiv- and $<$-siblings?
- Mark $<$-children in additional bit-vector
- Bit-tricks for $\mathcal{O}(1)$-computations

Theorem (Extended 2d-Min-Heap)

$3n + o(n)$ bits suffice to support RMQ, PSV and NSVs in $\mathcal{O}(1)$ time.
More Functionality: NSV

- Distinguish \equiv- and $<$-siblings?
- Mark $<$-children in additional bit-vector
- Bit-tricks for $\mathcal{O}(1)$-computations

Theorem (Extended 2d-Min-Heap)

$3n + o(n)$ bits suffice to support RMQ, PSV and NSVs in $\mathcal{O}(1)$ time.

- Not necessarily optimal...
- $\ldots \leq 2.54 \ldots n$ possible (Schröder Tree!)