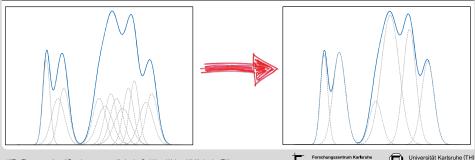


Clustering-based Gaussian Mixture Reduction

Dennis Schieferdecker - 09.06.09



KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH)

in der Helmholtz-Gemeinschaft

Gaussian Mixtures

Gaussian Mixture Density

weighted sum of Gaussians

 $f(x;\underline{\eta}) = \sum_{i=1}^{N} \omega_i \cdot \mathcal{N}(x;\mu_i,\sigma_i^2)$

- universal function approximator
- possible applications
 - target tracking,
 - density estimation,
 - ...

Problems in Application

- recursive multiplication of Gaussian mixtures
- number of components grows rapidely (exponential growth)

KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH)

Universität Karlsruhe (TH

orschungszentrum Karlsruh-

Hambeltz Ge

Gaussian Mixtures

Gaussian Mixture Density

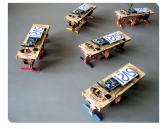
weighted sum of Gaussians

 $f(x;\underline{\eta}) = \sum_{i=1}^{n} \omega_i \cdot \mathcal{N}(x;\mu_i,\sigma_i^2)$

- universal function approximator
- possible applications
 - target tracking,density estimation

...

2



Problems in Application

- recursive multiplication of Gaussian mixtures
- number of components grows rapidely (exponential growth)

Gaussian Mixtures

Gaussian Mixture Density

weighted sum of Gaussians

 $f(x;\underline{\eta}) = \sum_{i=1}^{N} \omega_i \cdot \mathcal{N}(x;\mu_i,\sigma_i^2)$

- universal function approximator
- possible applications
 - target tracking,
 - density estimation,
 - • •

Problems in Application

- recursive multiplication of Gaussian mixtures
- number of components grows rapidely (exponential growth)

Universität Karlsruhe (TH

orschungszentrum Karlsruh

Gaussian Mixtures

Gaussian Mixture Density

weighted sum of Gaussians

 $f(x;\underline{\eta}) = \sum_{i=1}^{N} \omega_i \cdot \mathcal{N}(x;\mu_i,\sigma_i^2)$

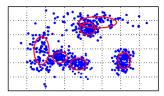
- universal function approximator
- possible applications
 - target tracking,
 - density estimation,
 - • •

Problems in Application

- recursive multiplication of Gaussian mixtures
- number of components grows rapidely (exponential growth)

T - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH)

Hniversität Kerlen I



Problem Description

Gaussian Mixture Reduction

Goal

- find a mixture η with K < N components (reduced mixture),
- so that a deviation measure $d(\tilde{\eta}, \eta)$ is minimized.

Deviation Measures

- Integrated Squared Distance (ISD): $d(f_1(x), f_2(x)) = \int_{\mathbb{R}} (f_1(x) - f_2(x))^2 dx$
- Kullback-Leibler divergence (KLD): $d(f_1(x), f_2(x)) = \int_{\mathbb{R}} f_1(x) \log \frac{f_1(x)}{f_2(x)} dx$
- normalized variants

Problem Description

Gaussian Mixture Reduction

Goal

- find a mixture η with K < N components (reduced mixture),
- so that a deviation measure $d(\tilde{\eta}, \eta)$ is minimized.

Deviation Measures

• Integrated Squared Distance (ISD): $d(f_1(x), f_2(x)) = \int_{\mathbb{R}} (f_1(x) - f_2(x))^2 dx$

• Kullback-Leibler divergence (KLD): $d(f_1(x), f_2(x)) = \int_{\mathbb{R}} f_1(x) \log \frac{f_1(x)}{f_2(x)} dx$

normalized variants

Overview

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (local, global, hybrid)

- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
 - PGMR

Overview

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (local, global, hybrid)

- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
- PGMR

Overview

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (local, global, hybrid)

- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
- PGMR

Overview

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (local, global, hybrid)

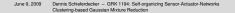
- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
 - PGMR

Overview

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (local, global, hybrid)

- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
- PGMR



Overview

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (local, global, hybrid)

bottom-up approach

- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
 - PGMR

June 9, 2009 Dennis Schieferdecker – GRK 1194: Self-organizing Sensor-Actuator-Networks Clustering-based Gaussian Mixture Reduction Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Overview

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (West, Williams, Runnalls)

- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
 - PGMR

Overview

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (West, Williams, Runnalls)

- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
 - PGMR

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (West, Williams, Runnalls)

- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
 - PGMR

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (West, Williams, Runnalls)

- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
- PGMR

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (West, Williams, Runnalls)

- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
- PGMR

Overview

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (West, Williams, Runnalls)

- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
 - PGMR

Overview

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (West, Williams, Runnalls)

- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
 - PGMR

Overview

top-down approaches

- greedy methods
- iteratively replace two Gaussians with one
- chosen according to a deviation measure (West, Williams, Runnalls)

- constructive method
- starts with one Gaussian
- adds components as neccessary
- progressive approximation
 - PGMR state-of-the-art

F KIT – The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH

Clustering Method

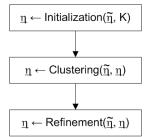
Overview

Gaussian Mixture Reduction via Clustering (GMRC)

- modular three-step algorithm
- input:
 - $\tilde{\eta}$ (parameter vector of the original mixture)
 - \overline{K} (number of reduced components)

output:

 η (parameter vector of the reduced mixture)



Conception

5

each component <u>n</u> is interpreted as point (site) in a space with an underlying deviation measure

I KIT The exponential of Exerchancements in Kalendra Gebbi and University Kalendra (Tk).

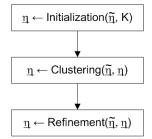
Hniversität Kerlend

Clustering Method

Overview

Gaussian Mixture Reduction via Clustering (GMRC)

- modular three-step algorithm
- input:
 - $\tilde{\eta}$ (parameter vector of the original mixture)
 - \overline{K} (number of reduced components)
- output:
 - η (parameter vector of the reduced mixture)

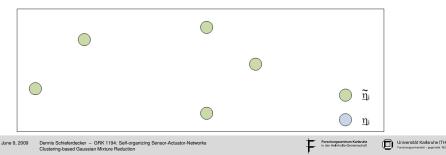


Conception

5

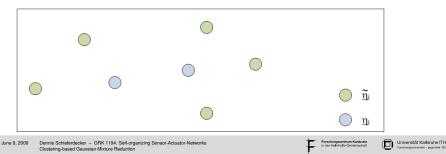
 each component <u>η</u> is interpreted as point (site) in a space with an underlying deviation measure

- compute a preliminary solution $\underline{\eta}$ (i.e. using West, Runnalls, ... \rightarrow initial cluster centers
- associate each original component (site) <u>n</u> with the nearest component of the reduced mixture
- replace each cluster center with a new one, retaining mean and variance of the associated sites



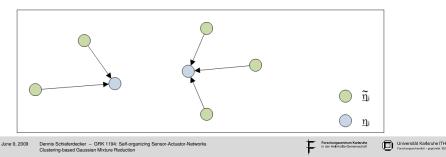
• compute a preliminary solution $\underline{\eta}$ (i.e. using West, Runnalls, ...) \rightarrow initial cluster centers

- associate each original component (site) $\underline{\tilde{\eta}}_i$ with the nearest component of the reduced mixture
- replace each cluster center with a new one, retaining mean and variance of the associated sites



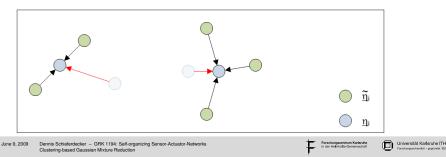
Initialization Step

- compute a preliminary solution $\underline{\eta}$ (i.e. using West, Runnalls, ...) \rightarrow initial cluster centers
- associate each original component (site) <u>n</u> with the nearest component of the reduced mixture
- replace each cluster center with a new one, retaining mean and variance of the associated sites



Initialization Step

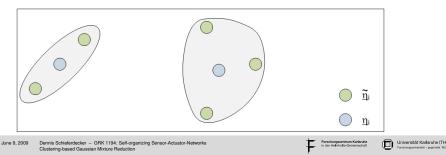
- compute a preliminary solution <u>η</u> (i.e. using West, Runnalls, ...) → initial cluster centers
- associate each original component (site) <u>η</u>, with the nearest component of the reduced mixture
- replace each cluster center with a new one, retaining mean and variance of the associated sites



Initialization Step

6

- compute a preliminary solution <u>η</u> (i.e. using West, Runnalls, ...) → initial cluster centers
- associate each original component (site) $\underline{\tilde{\eta}}_i$ with the nearest component of the reduced mixture
- replace each cluster center with a new one, retaining mean and variance of the associated sites



Clustering Step

- greedy approach
- based on Lloyd's algorihm (k-means algorithm):
 - associate each site $\tilde{\eta}_i$ with the 'nearest' center η
 - recompute centers according to the current association
 - repeat until the deviation no longer changes or is good enough

determine the 'nearest' center

- associate site $\tilde{\eta}_i$ with each center η_i
- temporarily update the affected centers
- compute change in deviation between updated reduced and original mixture (ISD)
- retain association with smallest deviation

Clustering Step

- greedy approach
- based on Lloyd's algorihm (k-means algorithm):
 - associate each site $\tilde{\eta}_i$ with the 'nearest' center η_i
 - recompute centers according to the current association
 - repeat until the deviation no longer changes or is good enough

determine the 'nearest' center

- associate site $\tilde{\eta}_i$ with each center η_i
- temporarily update the affected centers
- compute change in deviation between updated reduced and original mixture (ISD)
- retain association with smallest deviation

Clustering Step

- greedy approach
- based on Lloyd's algorihm (k-means algorithm):
 - **a** associate each site $\tilde{\eta}_i$ with the 'nearest' center η_i
 - recompute centers according to the current association
 - repeat until the deviation no longer changes or is good enough

determine the 'nearest' center

- associate site η
 _i with each center η_i
- temporarily update the affected centers
- compute change in deviation between updated reduced and original mixture (ISD)
- retain association with smallest deviation

Refinement Step

Parameter Optimization

- optimize parameter vector $\underline{\eta}$ w.r.t. ISD $\min_{\underline{\eta}} \int_{\mathbb{R}} \left(\tilde{f}(x; \underline{\tilde{\eta}}) - f(x; \underline{\eta}) \right)^2 dx$
- non-linear optimization problem \rightarrow Newton approach

finds local optimum

Weight Optimization

- system of linear equations
- finds global optimum

8 June 9, 2009 Dennis Schieferdecker – GRK 1194: Self-organizing Sensor-Actuator-Networks Clustering-based Gaussian Mixture Reduction

Refinement Step

Parameter Optimization

- optimize parameter vector $\underline{\eta}$ w.r.t. ISD $\min_{\underline{\eta}} \int_{\mathbb{R}} \left(\tilde{f}(x; \underline{\tilde{\eta}}) - f(x; \underline{\eta}) \right)^2 dx$
- non-linear optimization problem \rightarrow Newton approach
- finds local optimum

Weight Optimization

- system of linear equations
- finds global optimum

Simulation Setup

- Office PC (Intel Core2 Duo E8400)
- OpenSUSE 11.0
- Matlab 7.7.0 (R2008b)

- reduction of mixtures with $N \in \{40, 120, 200, 500, 1000\}$ components down to K = 10
- each evaluated with 1 000 simulation runs

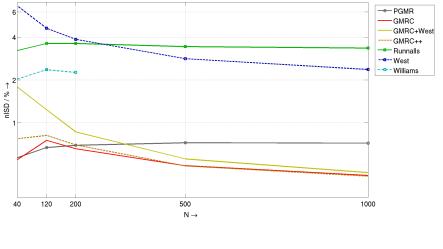
10 June 9, 2009 Dennis Schleferdecker – GRK 1194: Self-organizing Sensor-Actuator-Networks Clustering-based Gaussian Mixture Reduction

Ē

Universität Karlsruhe (TH) Forschurgsuniversität - pegrindet 1825

Forschungszentrum Karlsruhe in der Heimholtz-Gemeinschaft

Results Approximation Quality



11 June 9, 2009 Dennis Schieferdecker - GRK 1194: Self-organizing Sensor-Actuator-Networks Clustering-based Gaussian Mixture Reduction

Ē KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH)

Universität Karlsruhe (TH)

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft



algorithm		running time	norm. ISD
GMRC	complete	$\boxed{\textbf{2.793}\pm \textbf{0.052s}}$	$\overline{0.658\pm0.494}$
	w. random init. w/o clustering w/o refinement		$\begin{array}{c} \hline 1.272 \pm 1.561 \\ 0.774 \pm 0.872 \\ 1.697 \pm 0.432 \end{array}$
Runnalls		$1.678\pm0.024s$	$\textbf{3.606} \pm \textbf{0.752}$

(initialization with Runnalls' algorithm; N = 200, K = 10)

algorithm		running time	norm. ISD
GMRC	complete	$\boxed{\textbf{2.793}\pm \textbf{0.052s}}$	$\overline{0.658\pm0.494}$
	w. random init. w/o clustering w/o refinement	$ \hline \hline 1.135 \pm 0.045s \\ 1.742 \pm 0.043s \\ 2.737 \pm 0.036s \\ \hline \end{tabular} $	$\begin{array}{c} \hline 1.272 \pm 1.561 \\ 0.774 \pm 0.872 \\ 1.697 \pm 0.432 \end{array}$
Runnalls		$\boxed{1.678\pm0.024s}$	$\overline{\textbf{3.606}\pm\textbf{0.752}}$

(initialization with Runnalls' algorithm; N = 200, K = 10)

a good initial solution is mandatory

clustering step primarily improves variance

refinement has single-most impact on approximation quality

12 June 9, 2009 Dennis Schieferdecker – GRK 1194: Self-organizing Sensor-Actuator-Networks Clustering-based Gaussian Mixture Reduction

algorithm		running time	norm. ISD
GMRC	complete	$\boxed{\textbf{2.793}\pm \textbf{0.052s}}$	$\overline{0.658\pm0.494}$
	w. random init. w/o clustering w/o refinement		$\begin{array}{c} \hline 1.272 \pm 1.561 \\ 0.774 \pm 0.872 \\ 1.697 \pm 0.432 \end{array}$
Runnalls		$\boxed{1.678\pm0.024s}$	$\overline{\textbf{3.606}\pm\textbf{0.752}}$

(initialization with Runnalls' algorithm; N = 200, K = 10)

a good initial solution is mandatory

clustering step primarily improves variance

refinement has single-most impact on approximation quality

algorithm		running time	norm. ISD
GMRC	complete	$\boxed{\textbf{2.793}\pm \textbf{0.052s}}$	$\overline{0.658\pm0.494}$
	w. random init. w/o clustering w/o refinement	$ \hline \hline 1.135 \pm 0.045s \\ 1.742 \pm 0.043s \\ 2.737 \pm 0.036s \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
Runnalls		$\boxed{1.678\pm0.024s}$	$\overline{\textbf{3.606}\pm\textbf{0.752}}$

(initialization with Runnalls' algorithm; N = 200, K = 10)

a good initial solution is mandatory

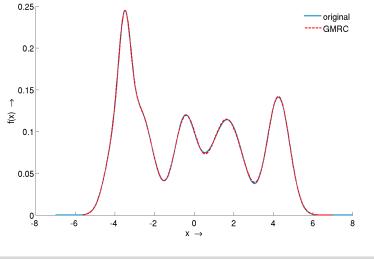
clustering step primarily improves variance

refinement has single-most impact on approximation quality

13

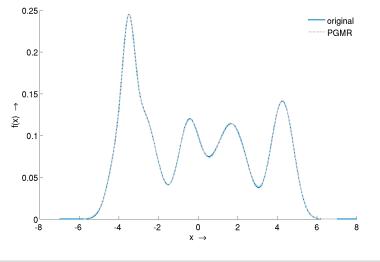
Karlsruhe Institute of Technology

Visualization



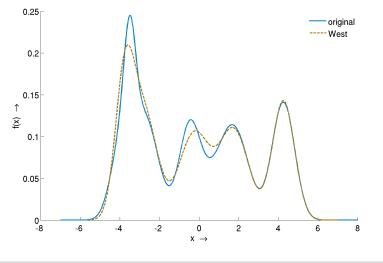
June 9, 2009 Dennis Schieferdecker – GRK 1194: Self-organizing Sensor-Actuator-Networks Clustering-based Gaussian Mixture Reduction Forschungszentrum Karlsruhe in der Helmholtz-Gameinschaft

Visualization



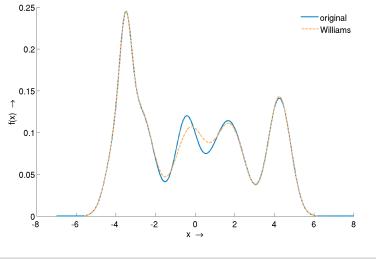
13 June 9, 2009 Dennis Schieferdecker – GRK 1194: Self-organizing Sensor-Actuator-Networks Clustering-based Gaussian Mixture Reduction Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Visualization



13 June 9, 2009 Dennis Schieferdecker – GRK 1194: Self-organizing Sensor-Actuator-Networks Clustering-based Gaussian Mixture Reduction Forschungszentrum Karlsruhe in der Helmholtz-Gameinschaft

Visualization



13 June 9, 2009 Dennis Schieferdecker – GRK 1194: Self-organizing Sensor-Actuator-Networks Clustering-based Gaussian Mixture Reduction Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Summary

- novel top-down, global reduction algorithm
- competitive w.r.t. current state-of-the-art (PGMR)
- combines algorithmic and numerical ideas

Outlook

- extension to multivariate Gaussian mixtures
- impact of different clustering methods and deviation measures
- adaptive reduction of components

Summary

- novel top-down, global reduction algorithm
- competitive w.r.t. current state-of-the-art (PGMR)
- combines algorithmic and numerical ideas

Outlook

- extension to multivariate Gaussian mixtures
- impact of different clustering methods and deviation measures
- adaptive reduction of components

Thank you for your attention!

time for questions

15 June 9, 2009 Dennis Schieferdecker – GRK 1194: Self-organizing Sensor-Actuator-Networks Clustering-based Gaussian Mixture Reduction

