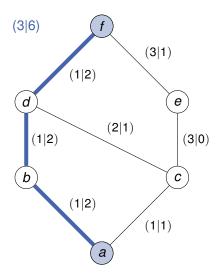
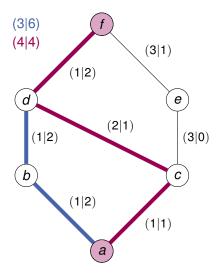

Flexible Route Planning with Contraction Hierarchies

Robert Geisberger, **Moritz Kobitzsch** and Peter Sanders – {geisberger,kobitzsch,sanders}@kit.edu

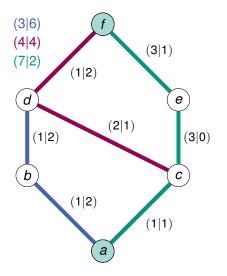
Institute for Theoretical Computer Science, Algorithmics II


- route planning becomes ubiquitous
- route planning services
 e.g. Google Maps
- wide spread generates wide variety of interests
- multiple optimization criterias possible (e.g. (time|cost))

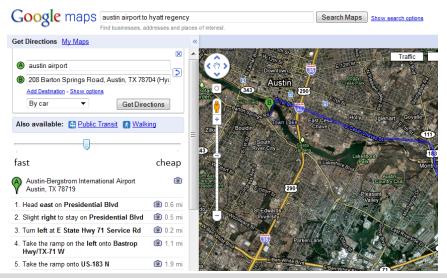
2 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies


- route planning becomes ubiquitous
- route planning services
 e.g. Google Maps
- wide spread generates wide variety of interests
- multiple optimization criterias possible (e.g. (time|cost))

2 Robert Geisberger, Moritz Kobitzsch and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

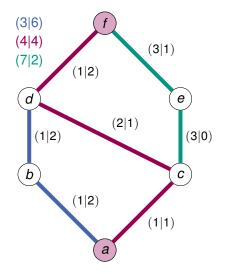

- route planning becomes ubiquitous
- route planning services
 e.g. Google Maps
- wide spread generates wide variety of interests
- multiple optimization criterias possible (e.g. (time|cost))

2 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies


- route planning becomes ubiquitous
- route planning services
 e.g. Google Maps
- wide spread generates wide variety of interests
- multiple optimization criterias possible (e.g. (time|cost))

2 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

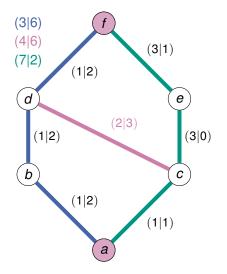
Just imagine...



3 Robert Geisberger, Moritz Kobitzsch and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

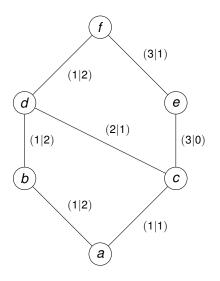
Pareto Optimality

- find all non dominated routes
- A dominates B if A is better or equal to B in every weight term
- may result in an exponential number of routes
- heuristics necessary to gain practical algorithms

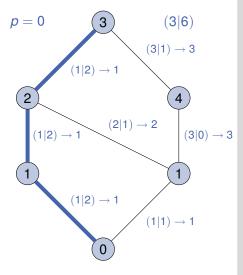


4 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

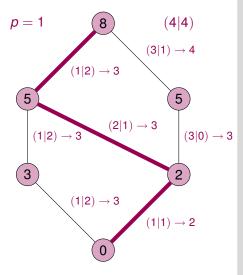
Pareto Optimality


- find all non dominated routes
- A dominates B if A is better or equal to B in every weight term
- may result in an exponential number of routes
- heuristics necessary to gain practical algorithms

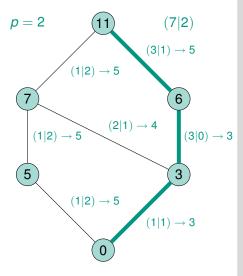
4 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies


- linear combination of weight terms
- $\bullet (t|c) \Rightarrow t + p \cdot c$
- preprocessing considers all possible parameter values
- query for fixed parameter ⇒ single criteria techniques
- parameter range allows to select maximal impact of weight terms

5 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

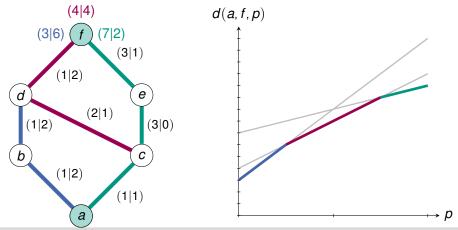

- linear combination of weight terms
- $\bullet (t|c) \Rightarrow t + p \cdot c$
- preprocessing considers all possible parameter values
- query for fixed parameter ⇒ single criteria techniques
- parameter range allows to select maximal impact of weight terms

5 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies


- linear combination of weight terms
- $\bullet (t|c) \Rightarrow t + p \cdot c$
- preprocessing considers all possible parameter values
- query for fixed parameter ⇒ single criteria techniques
- parameter range allows to select maximal impact of weight terms

5 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

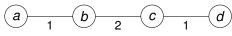
- linear combination of weight terms
- $\bullet (t|c) \Rightarrow t + p \cdot c$
- preprocessing considers all possible parameter values
- query for fixed parameter ⇒ single criteria techniques
- parameter range allows to select maximal impact of weight terms



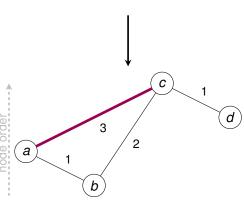
5 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

Parameterized Weight Functions

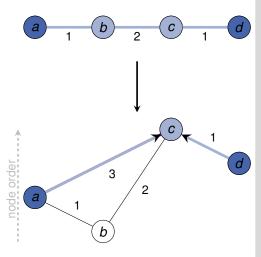
- the distance function d(a, f) for two nodes a, f is concave
- monotone due to positive weight terms



6 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

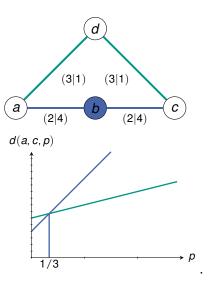

Faculty for Computer Science Institute for Theoretical Computer Science, Algorithmics II

Contraction Hierarchy Routing


- order nodes by importance $\{v_1, \ldots, v_n\}$
- contract in this order
- preserve original distances by adding shortcuts
- necessity of shortcuts decided by witness paths
- query only relaxes edges to more important nodes

7 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

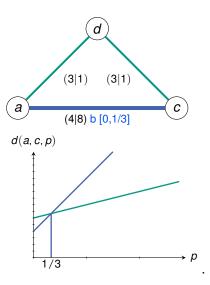
Contraction Hierarchy Routing


- order nodes by importance $\{v_1, \ldots, v_n\}$
- contract in this order
- preserve original distances by adding shortcuts
- necessity of shortcuts decided by witness paths
- query only relaxes edges to more important nodes

7 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

Flexible Contraction Hierarchies

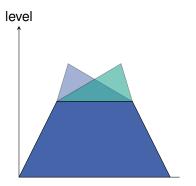
- shortcuts in flexible scenario if ∃p: (a, b, c) is the only shortest path
- necessity of shortcuts only on continuous intervals ⇒ store necessity interval in edges
- necessity interval on average deductable from two single criteria Dijkstra queries
- query uses only necessary edges



8 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

Flexible Contraction Hierarchies

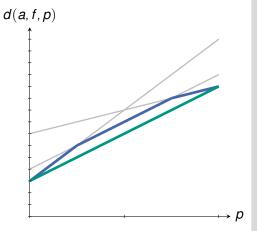
- shortcuts in flexible scenario if ∃p: (a, b, c) is the only shortest path
- necessity of shortcuts only on continuous intervals ⇒ store necessity interval in edges
- necessity interval on average deductable from two single criteria Dijkstra queries
- query uses only necessary edges



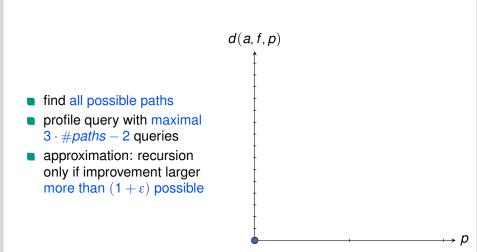
8 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

Flexible Contraction Hierarchies

- single node order not practical for wide parameter range
- a lot of shortcuts for all parameter values
- split parameter interval with heuristics
- repeat as necessary
- buckets to support fast scanning of necessary edges

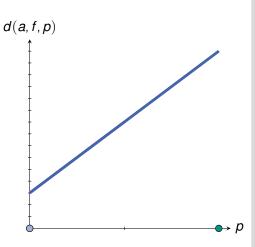

9 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

Faculty for Computer Science Institute for Theoretical Computer Science, Algorithmics II


Core-ALT for flex-CH

core based approach to

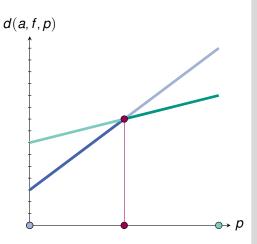
- speed up preprocessing (uncontracted core)
- speed up query (contracted core)
- uses ALT algorithm on |k| topmost nodes
- adaptable to flexible scenario with linear interpolation



Faculty for Computer Science Institute for Theoretical Computer Science, Algorithmics II

Profile Queries

- find all possible paths
- profile query with maximal 3 · #paths - 2 queries
- approximation: recursion only if improvement larger more than (1 + ε) possible



Faculty for Computer Science Institute for Theoretical Computer Science, Algorithmics II

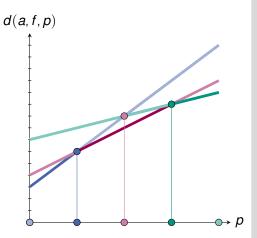
Profile Queries

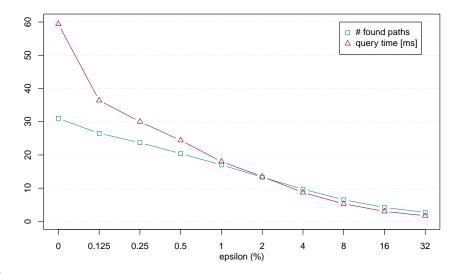
- find all possible paths
- profile query with maximal 3 · #paths - 2 queries
- approximation: recursion only if improvement larger more than (1 + ε) possible

Faculty for Computer Science Institute for Theoretical Computer Science, Algorithmics II

Profile Queries

- find all possible paths
- profile query with maximal 3 · #paths - 2 queries
- approximation: recursion only if improvement larger more than (1 + ε) possible




Table: Preprocessing and query performance for 64 landmarks on the German road network, average over 10 000 queries. (4 692 751 nodes and 10 806 191 directed edges)

core	preproc	space	query	speedup
	[hh:mm]	[B/node]	[ms]	
-	-	60	2037.52	1
0	1:54	159	2.90	698
uncontracted 5 000	1:08	167	2.58	789
contracted 10 000	2 : 07	183	0.63	3 2 3 4

12 Robert Geisberger, Moritz Kobitzsch and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

Experimental results

13 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

Comparison to SHARC

Table: Approximated profile search on Western Europe

	preproc	ε	#	time
algorithm			paths	[ms]
flexCH	5 : 15	0.00	12.5	21.9
flexCH	5 : 15	0.01	5.7	6.2
Pareto-SHARC	7 : 12	(no guarantee)	5.3	35.4

14 Robert Geisberger, Moritz Kobitzsch and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

Conclusion

- exact flexible routing for server scenarios
- comparable even to single criteria speedups
- circumvents problems of Pareto-optimality
- scales well through parameter splitting

Thank You

Thank you for your attention.

16 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

Questions

Questions?

17 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies

Future Work

- mobile implementation
- apply parallelization techniques
- more than two weight terms (?)

18 Robert Geisberger, *Moritz Kobitzsch* and Peter Sanders: Flexible Route Planning with Contraction Hierarchies