
Parallel Time-Dependent Contraction
Hierarchies

Christian Vetter

July 13, 2009

Student Research Project
Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

Supervised by G. V. Batz and P. Sanders

Abstract

Time-Dependent Contraction Hierarchies is a routing technique
that solves the shortest path problem in graphs with time-dependent
edge weights, that have to satisfy the FIFO property. Although it
shows great speedups over Dijkstra’s Algorithm the preprocessing is
slow. We present a parallelized version of the preprocessing taking
advantage of the multiple cores present in todays CPUs. Nodes in-
dependent of one another are found and processed in parallel. We
give experimental results for the German road network. With 4 and
8 cores a speedup of up to 3.4 and 5.3 is achieved respectively.

1

Contents

1 Introduction 3
1.1 Related Work . 3
1.2 Overview and Results . 3

2 Preliminaries 3
2.1 Time-Dependent Contraction Hierarchies 3

2.1.1 Modeling . 4
2.1.2 Contraction . 5
2.1.3 Query . 6
2.1.4 Node Ordering . 6

2.2 OpenMP . 8
2.2.1 Programming Model 8
2.2.2 Parallel Construct . 9
2.2.3 Work-Sharing Constructs 9
2.2.4 Synchronization Constructs 10

3 Parallelized Contraction 11
3.1 Independent Node Sets . 11
3.2 Iterative Contraction . 13

4 Parallelized Node Ordering 13
4.1 Node Ordering Terms . 14
4.2 Independent Node Sets . 15
4.3 Iterative Node Ordering . 17

5 Experiments 18
5.1 Testbed . 18
5.2 Inputs . 18
5.3 Preexperiment . 18
5.4 Contraction . 19
5.5 Node Ordering . 22
5.6 Load Balancing . 27

6 Discussion and Future Work 32
6.1 Further Parallelization . 32
6.2 Better Evaluation Functions 33
6.3 Parallel Contraction Hierarchies 33

2

1 Introduction

Over the last years a great deal of work went into designing routing algorithms
for road networks. While the resulting techniques for static networks show
great speedups with little preprocessing time invested, efficient routing in
time-dependent road networks still requires much longer preprocessing.

Although most desktop and server processors feature at least two cores,
the most promising techniques, Time-Dependent SHARC Routing [1] and
Time-Dependent Contraction Hierarchies [2] (TDCH), have no parallelized
preprocessing step. In this work we take a look at the feasibility of paral-
lelizing the preprocessing of TDCH.

1.1 Related Work

Not much work has been done to explicitly parallelize the preprocessing of
routing algorithms. A distant ancestor of the TDCH, Highway Node Routing,
[3] was parallelized by Holtgrewe [4] exploiting the inherent parallelism in the
preprocessing step. The result cannot be applied to TDCH, though.

1.2 Overview and Results

In section 2 we will introduce the basics of TDCH and OpenMP. Details
not relevant to the parallelization will only be covered briefly. Section 3
and 4 then describe the actual parallelization. Sets of nodes which can be
contracted in parallel are iteratively found. By restricting the nodes to be
contracted in each iteration we can compute the node order in parallel. We
modify the node ordering used in TDCH to work better with the parallel
version. The experiments in Section 4 use commercial data with realistic
traffic patterns for Germany. It turns out, that the preprocessing scales
quite well with the number of cores as long as the memory bandwidth is not
the limiting factor.

2 Preliminaries

2.1 Time-Dependent Contraction Hierarchies

Time-Dependent Contraction Hierarchies speed up the query by assigning
each node a level and restricting the edges the query can relax. Additional

3

edges, called shortcuts, are inserted to ensure that every shortest path can
be found within these restrictions.

2.1.1 Modeling

We consider time-dependent networks where the objective function is travel
time and edges have an edge weight f : R → R≥0, that maps each point
t in time to the time it takes to traverse this edge. We assume that all
edge weights satisfy the FIFO property ∀t : f ′(t) ≥ −1: It never pays off to
wait at a node and traverse the edge later on. Functions that do not satisfy
this property can easily be modified to do so. Furthermore all functions are
periodic and represented by piecewise linear functions. We define |f | the size
of the function f , that is the amount of linear pieces used to describe it.

This enables us to handle the edge weight similar to the static case:

• Edge weights can be linked. When traversing an edge with the weight f
at the time t and then an edge with the weight g the resulting function
is f ⊕ g : t 7→ f(t) + g(t + f(t)). The result can be computed in
O(|f |+ |g|) and |f ⊕ g| ≤ |f |+ |g| − 1.

• We can determine whether a function f undercuts a function g. This
is the case if and only if ∃t : f(t) < g(t). The result can be computed
in O(|f |+ |g|).

• We can determine whether a function f weakly undercuts a function
g. This is the case if and only if ∃t : f(t) ≤ g(t). The result can be
computed in O(|f |+ |g|).

• We can compute the minimum of two edge weights f and g. The
resulting function is min(f, g) : t 7→ min(f(t), g(t)). The result can be
computed in O(|f |+ |g|) and |min(f, g)| ≤ |f |+ |g| − 1.

For given source and destination nodes s and d we differentiate between two
kind of distances:

• Travel Time Distance: This is the shortest path distance from s to d at
a given departure time t. This can easily be computed using a modified
Dijkstra’s Algorithm that remembers at what point in time it arrived
at a node.

4

• Travel Time Profile Distance: This is a function that maps each depar-
ture time t to the travel time distance between s and d. This distance
cannot be computed with a label setting Dijkstra’s Algorithm. A la-
bel correcting approach can be used for limited searches though. The
complexity of the edge weight operations in the computation of this dis-
tance are the main reason the preprocessing is slow. As an abbreviation
we call this distance the profile distance.

2.1.2 Contraction

We have a graph G = (V, E) with n = |V | nodes and m = |E| edges.
First the nodes are ordered uniformly with increasing importance for routing.
Nodes are more important if they are crossing points of many shortest paths.
Furthermore nodes of similar order should be uniformly spread across the
graph. This node order is denoted with <: When a node u is higher in the
order than a node v we write v < u.

The goal of the preprocessing is to move each node into its own level of
the hierarchy while ensuring that the query finds all shortest path. A node
u in a level only stores edges (u, v) which lead to more important nodes or
edges (v, u) coming from more important nodes, that is u < v. We define
the subgraph of nodes and edges that are not yet in a level as the remaining
graph.

Initially no node is in a level. The TDCH is then constructed by contract-
ing the nodes according to the node order, starting with the least important
node. A node u is contracted by moving it to its own level while preserving
all shortest path distances and profile distances within the remaining graph.
This can be achieved by inserting shortcut edges bypassing the contracted
node: For each neighbor v and w of u and edge weights f(v,u) and f(u,w) we
determine the length f〈v,u,w〉 := f(v,u) ⊕ f(u,w) of the path 〈v, u, w〉. If f〈v,u,w〉
weakly undercuts the profile distance g between v and w, a shortcut (v, w)
with edge weight f〈v,u,w〉 is inserted. If f〈v,u,w〉 does not weakly undercut1 g
no shortcut is necessary as the path 〈v, u, w〉 is never part of a shortest path
at any point in time. In this case we call g the witness profile.

After all nodes are contracted the remaining graph is empty and each node

1This ensures that we do not find f〈v,u,w〉 as a witness profile for itself. This also could
be achieved by other means so that it would suffice that f〈v,u,w〉 does not undercut g. But
then the result of a contraction would not only depend on adjacent edges but also on the
edges contributing to g.

5

is the only one in its level. The outcome of the contraction of a node depends
on the adjacent edges and witness profiles. As witness profiles are profile
distances and therefore preserved within the remaining graph, the result of
a contraction depends only on the adjacent edges. This fact is important for
the parallelization of the contraction as it limits data dependencies during
the preprocessing.

2.1.3 Query

The query computes the travel time distance at a departure time t. It is a
modified bidirectional search. When searching for the distance of a destina-
tion node d from a source node s, first a backward search starts from d and
then a forward search starts from s. The backward search only uses back-
ward edges coming from a higher level of the hierarchy. It cannot compute
exact travel time distances though, because the arrival time is not known
yet. Instead all relaxed edges are marked.

The forward search relaxes only outgoing edges leading into a higher level
of the hierarchy or edges marked by the backward search. It knows the exact
time of departure t and can compute the travel distance. It is guaranteed
that the forward search discovers the shortest path from s to d due to inserted
shortcuts. By interleaving both searches and computing tight minima and
maxima in the backward search basic pruning can be applied. However, this
is not in the scope of this work.

2.1.4 Node Ordering

A tentative node order can be computed in a first phase and then updated
on-the-fly during the contraction: First of all a simulated contraction is per-
formed for each node. Based on the result of the simulation weighted evalua-
tion functions compute a priority for every node. These functions do evaluate
the nodes based on:

• Edge Difference: The edge difference is the difference between the
amount of shortcuts added and the amount of edges removed from
the remaining graph. It keeps the remaining graph and resulting hier-
archy sparse and evaluates nodes as more important that are a crossing
point of many shortest paths. Contracting such nodes early on would
mean that we insert many shortcuts bypassing this node.

6

• Function Size Difference: The function size difference is the difference
in the sum of the size of all edge weights in the remaining graph. While
this does not necessarily improve the quality of the hierarchy it speeds
up the preprocessing itself. It penalizes the insertion of space intensive
weight functions. Small functions are easier to process in the local
searches for witness profiles.

• Complexity Difference: We define the complexity of an edge as the
amount of edges it represents in the original graph. Every non-shortcut
edge has the complexity of 1. A shortcut replacing the edges (v, u)
and (v, w) has the summed complexity of these edges. The complexity
difference then is the sum of the complexity of all added shortcuts minus
the sum of the complexity of all edges removed from the remaining
graph. This function strives to improve the uniformity of the node
order.

• Hierarchy Depths : This function’s result is related to the size of weight
functions you can visit on one path while descending into the lower
levels of the hierarchy. Initially we set depth(u) = 0 for every node u.
We can easily keep track of this value during the contraction: After a
node u is contracted, for each edge (u, v) in the level of u and weight f
of (u, v) we set depth(v) = max(depth(v), depth(u)+size(f)). The idea
is, that a node with a low hierarchy depth should be contracted earlier
than a node with an already larger depth. This limits the amount of
large weight functions the query has to examine. This function also
greatly improves the uniformity of the node order.

During the contraction the node with the lowest priority in the remaining
graph is contracted. Afterwards the priority of neighboring nodes needs to
be updated; they lost a neighbor in the remaining graph and may have
gained some adjacent shortcut edges. The priority of all other nodes does
not change, thus we do not need to recompute it. A simulated contraction
has to be performed many times for most nodes, exactly each time a neighbor
is contracted.

The actual contraction of a node on the other hand is faster. It benefits
from the simulated one. During the simulation it was already determined
which shortcuts need to be inserted if this node would be contracted. Caching
this information speeds up the contraction of the node while wasting only

7

a small amount of memory. Therefore the simulated contractions clearly
dominate the running time.

The resulting node order can then be used for a contraction without
recomputing the node order.

The node evaluation function presented here are the same used in the
ALENEX TDCH paper [2]. They were not explicitly mentioned there, though.

2.2 OpenMP

According to [5] the OpenMP Application Program Interface (API) supports
multi-platform shared-memory parallel programming in C/C++ and Fortran
on many architectures, including Unix platforms and Windows NT platforms.
Jointly defined by a group of major computer hardware and software vendors,
OpenMP seeks to be a portable, scalable model that gives shared-memory
parallel programmers a simple and flexible interface for developing parallel
applications for platforms ranging from the desktop to the supercomputer.

2.2.1 Programming Model

OpenMP is based upon the shared memory programming paradigm. Every
process can own up to one thread per core, all utilizing the same address
space. OpenMP provides a compiler extension and libraries to easily achieve
parallel execution. The parallelization is explicit, the programmer can specify
how certain regions of the code are parallelized. To achieve this, OpenMP
uses the fork-join model of parallel execution: At the start of a parallel region
the master thread creates a pool of worker threads as seen in Figure 1. After
each thread has run out of work the execution is joined again into the master
thread.

During the parallel section of the program OpenMP employs a relaxed
consistency model. Instead of ensuring a coherent view of all the data, only
at the end of a parallel region it is guaranteed, that each thread has the same
copy of the data. This greatly speeds up the execution, as otherwise most
of the memory and register accesses would have to be synchronized with the
other cores. OpenMP provides explicit synchronization constructs for use in
the parallel sections.

Some atomic operations exist for concurrent data access. For example
the C++ operations ++, −−, +=, *= . . . can be performed atomically

8

with OpenMP. Furthermore certain sections of the code can be performed
mutually exclusive.

Fork

Join

Sequential Section

Parallel Section

Sequential Section

Figure 1: OpenMP Utilizes a Fork/Join Model

2.2.2 Parallel Construct

The basic construct in OpenMP are parallel regions. Once a parallel region is
entered, each worker thread executes it in parallel. Most of the more complex
work sharing constructs could be implemented with the parallel construct and
some atomic operations.

2.2.3 Work-Sharing Constructs

OpenMP provides several work sharing constructs to easily parallelize loops.
When such a construct is encountered in a parallel region, the worker threads
divide the loop iterations between themselves each computing only its part.
This means that the loop iterations are not necessarily computed in order
and the programmer has to ensure that data dependencies and concurrent
access do not cause erroneous computation.

OpenMP offers several possibilities to distribute the work between the
threads:

• Static Assignment: At the start of the parallel loop each thread receives
about the same amount of iterations to process. The actual running
time has no impact on this.

9

• Dynamic Assignment: Each thread only grabs a small chunk of itera-
tions at a time. After finishing one it tries to get another. If the running
time of the iterations is unevenly distributed this helps to reduce the
overall running time. The chunk size is a tuning parameter: Small
chunk sizes mean that the scheduler can react better to actual running
times, big chunks reduce the amount of synchronization necessary to
distribute work.

• Guided Assignment: Similar to the dynamic assignment each thread
only grabs chunks of work at a time. In the beginning the chunks are
bigger and get smaller the less iterations are available. This reduces
the synchronization overhead while balancing the load towards the end
better than the static variant.

Furthermore OpenMP offers the possibility to specify certain sections of
the code in a parallel construct to be divided between the worker threads.
This parallelization does not need loops. We do not use it in this work
because the different stages of the preprocessing are not independent of one
another.

2.2.4 Synchronization Constructs

OpenMP has multiple synchronization constructs:

• Master Only : Only the master thread processes this section

• Critical : Only one thread at a time can process this section

• Barrier : All threads wait at the barrier until all other threads have
reached it. All threads then resume their work.

• Atomic: The same as critical. Only some specific instructions can be
atomic. Special CPU instructions are used to remove explicit synchro-
nization needs. For example most architectures provide a fetch-and-add
instruction.

• Flush: The same as Barrier. Furthermore all data items get synchro-
nized between the threads. E.g. a thread can cache a variable in a
CPU register while working with it. A flush operation would force the
thread to synchronize the cached version. At the end of work-sharing

10

constructs as well as the parallel construct automatic flushes are exe-
cuted.

All of these constructs block the other threads to some extent. Usually
it pays off to invest some extra work to avoid explicit synchronization.

3 Parallelized Contraction

The most obvious parallelism in the contraction of a node u is the search for
witness profiles. Almost every pair of neighbors has to be considered: For
each edge (v, u) and (u, w) we must determine the profile distance between
v and w to identify necessary shortcuts. While this is easily converted to
a parallel approach, the benefits are small. Most of the nodes do not have
many neighbors when contracted. This limits the speedup for a larger amount
of cores. Furthermore the overhead for such small parallel sections is larger
than the benefit. We saw a considerable slowdown when trying this approach.
Therefore we want to find parallelism on a larger scale. As it was not our goal
to develop a multi-threaded graph data structures and inserting edges into
the graph takes only a small amount of time we do not employ an efficient
thread-safe graph data structure. Instead most of the write accesses have to
be done sequentially.

3.1 Independent Node Sets

We define an independent node set as a set of nodes whose outcome of the
contraction does not depend on the contraction of any node in the remaining
graph. That means that every node in this set can be contracted indepen-
dently of every other remaining node. Thus nodes in an independent node
set can be contracted in any order without changing the result. If we can
find large independent node sets we can contract these nodes in parallel.

During a contraction without node ordering the node order is already
given. This enables us to find independent node sets: Whenever a node u
has no neighbor v in the remaining graph, v < u, the adjacent edges of u do
not change until u itself is contracted. They can only change when a neighbor
of u is contracted. Because all profile distances between the neighbors of u
are preserved, it does not matter when u is contracted. All witness profiles
remain intact and no neighbor gets contracted before u does. Therefore the

11

set of nodes with this property is an independent node set. We settle for this
as it is easily checked for: For each node all neighbors in the remaining graph
have to be examined. Furthermore this ensures that at least one independent
node is found in each iteration.

In Figure 2 we see an example for an independent node set. The filled
nodes are independent as they got no neighbor with a lower order in the
remaining graph. New adjacent shortcuts can only be inserted if an adjacent
node is contracted. During a sequential contraction the filled nodes would
get contracted before their neighbors. Therefore it is safe to contract them in
parallel. During the contraction of the filled nodes the dotted shortcut edges
are inserted. This means that every other node’s adjacent edge set changes.
They are not independent. In this case our criteria for independent nodes
manages to identify all of them. In general this is not the case and we miss
a few. Without knowing beforehand all shortcuts that will be inserted we
cannot do better, though.

contracted

n
od

e
or

d
er

Figure 2: An example of an independent node set. The filled nodes are
independent of every non-contracted node.

12

3.2 Iterative Contraction

Instead of contracting one node after another, we iteratively find independent
node sets and contract them in parallel as seen in listing 1. Large sets of
nodes are processed in parallel and read-only access to the graph is clearly
separated from write access.

Algorithm 1 Iterative Contraction

while Remaining Graph not Empty do
I ← Independent Node Set
E ← Necessary Shortcuts
Move I to their Level
Insert E into Remaining graph

end while

1. Finding Independent Node Set : We must determine an independent
node set. We separate this into two steps: First of all we determine for
each node whether it is independent of the other nodes. This is easily
parallelized as no dependencies exist in this step. Second, the node
set is partitioned into the independent and remaining nodes. Parallel
partitioning algorithms are easy to implement and the Multi Core STL
(MCSTL) provides a parallel version of std::partition for C++ [6]. As
the MCSTL is part of the new version of the GCC we opt for using
this implementation.

2. Find Necessary Shortcuts : This can be parallelized quite easily. The
nodes to be contracted are divided among the threads. Each thread
then finds all necessary shortcuts for the contraction of its nodes.

3. Move Independent Nodes to their Level and Insert Shortcuts : We do
not parallelize these steps.

4 Parallelized Node Ordering

While it is easy to find an independent node set during the contraction, it
is more difficult to apply this idea to the node ordering. The priority of
a node is not set in stone, instead it changes quite often depending on the

13

contraction of other nodes. We show that, by using modified node evaluation
functions, a different node order can be computed in parallel that performs
as well as the sequentially computed.

4.1 Node Ordering Terms

During the sequential node ordering it is sufficient for the priorities to point
out the next node to contract. The priority of most nodes gets updated
several times before it is contracted. As we now want to contract huge
chunks of nodes in parallel, the priorities need to point out many nodes that
get contracted before their neighbors without many updates. That means
that we want to use a linear combination of evaluation functions, that indicate
early on what set of nodes is the most suitable to be contracted next.

Therefore a combination of evaluation functions that does seldom de-
crease during updates is desirable: When a node has a lower priority than
its neighbors it is likely that it still has a lower priority after its neighbor’s
priority is updated. We will describe in the next section how to use this to
our advantage and how to find sets of nodes that are probably independent.

The evaluation functions described in section 2.1.4 have several shortcom-
ings regarding this: The function weight difference clearly dominates all other
functions except the hierarchy depth making the node order very dependent
on the complexity of edge weights. Also the hierarchy depth function uses
the function size to influence the resulting order. This results in a priority
that decreases often during updates and many nodes that end up being con-
tracted before their neighbors do not initially have a lower priority than their
neighbors.

All this makes it hard to determine early on which place in the hierarchy
a node will have in the end. We modify the evaluation functions to remove
this disadvantages. The most significant adjustment we make is replacing
the differences by quotients. The resulting priority rarely decreases during
preprocessing. Furthermore they allow us to simplify the hierarchy depth
function:

• Edge Quotient : The edge quotient function is simply the quotient be-
tween the amount of shortcuts added and the amount of edges removed
from the remaining graph. Its effect is very similar to the edge differ-
ence function. However, the result is much more limited: The edge
difference of a node u with n neighbors could range anywhere from −n

14

(no necessary shortcuts) to n · (n − 1) − n (a shortcut is inserted for
every pair of distinct neighbors). The edge quotient can only range
from 0 to n− 1.

• Function Size Quotient : The function size quotient is calculated by
dividing the total size of the new weight functions by the total size of
the weight functions removed from the remaining graph. Although this
function has benefits similar to the function size difference it does not
suffer from its disadvantages, in particular it does not dominate the
other functions later on. When linking two functions f and g, size(f ⊕
g) ≤ size(f)+size(g)−1 holds true. For a node u with n neighbors and
a size m of every edge weight the function size difference could range
from −n ·m (no necessary shortcuts) to n · (n−1) · (2 ·m−1)−n ·m (a
shortcut is inserted for every distinct pair of neighbors). The function
size quotient ranges from 0 to ≈ 2 · n− 3 in this case.

• Complexity Quotient : We simply compute the quotient of the complex-
ity instead of the difference. While the result does not increase in the
way the original function did, this is not necessary any more. The other
functions are similarly limited in growth. Particularly the complexity
quotient is similar to the function size quotient as the complexity of a
shortcut is the sum of the complexity of its two constituent edges.

• Hierarchy Depths : This function’s result now is the amount of hops
that can be performed while descending into the lower levels of the
hierarchy. We can easily keep track of this value during the contraction:
When a node u is contracted, for each neighbor v we set depth(v) =
max(depth(v), depth(u) + 1). This eliminates the weight function’s
size from the computation, making it better suited for graphs with
uneven edge weight distributions. Furthermore it now dominates the
other functions enforcing uniformity better than the original function
and making it hard for the other functions to decrease the priority of
neighboring nodes during priority updates.

4.2 Independent Node Sets

As the node priority is in flux and we cannot find large accurate independent
node sets, we settle for finding nodes that are probably independent. We
define the k-neighborhood of a node as the set of nodes that are reachable

15

with at most k hops. The priority of a node u can only change after a direct
neighbor of u is contracted. When a node u has the lowest priority within
its k-neighborhood, u is contracted before its direct neighbors, unless the
priorities of at least k nodes in the k-neighborhood are decreased below u’s
priority. This is caused by the fact that a node’s priority does only change
when an adjacent node is contracted. When u is contracted before its direct
neighbors u is independent. As the hierarchy depth is the dominating evalu-
ation function and enforcing uniform contraction, it is unlikely that another
node’s priority in u’s k-neighborhood gets decreased below the priority of u.

In Figure 3 we see an example. The nodes v1...v6 are within u’s 3-
neighborhood, u has the lowest priority. The node u will get contracted
before v3 and v4 unless the priority of at least 3 nodes in the 3-neighborhood
changes. E.g. a node w outside the 3-neighborhood gets contracted and
the priority of v1 gets updated below u’s priority. In a chain reaction the
priority of v2 and v3 also get updated after the contraction of v1 and v2. In
this case v3 is contracted before u and u is not independent. The larger the
k-neighborhood in diameter the less likely are these chain reactions.

p
ri

or
it
y

v1

v2

v3 v4

v5

v6

v1
v2

v3
u

w

Figure 3: u gets contracted before its direct neighbors unless the priority of
3 nodes in its 3-neighborhood changes.

We therefore add every node that has the lowest priority within its own
k-neighborhood to the independent node set, k being a tuning parameter.
Because nodes can have the same priority we need tie breaking rules to ensure
that at least one node is independent in each iteration.

The parameter k has a big influence on the preprocessing. The smaller
the value of k, the larger the independent node sets we find. The larger the
value of k the more the node order is similar to the sequential one. As a

16

value of 1 would impose certain restrictions on the parallelization and lead
to by far worse node orders we require k ≥ 2.

4.3 Iterative Node Ordering

With the new definition of independent node sets the node ordering procedure
is very similar to the contraction as seen in listing 2:

Algorithm 2 Iterative Node Ordering

Update Priorities of all Nodes with Simulated Contractions
while Remaining Graph not Empty do

I ← Independent Node Set
E ← Necessary Shortcuts
Move I to their Level
Insert E into Remaining graph
Update Priority of Neighbors of I with Simulated Contractions

end while

1. Finding Independent Node Set : We execute this step in almost the same
manner as during the contraction. First, for every node we determine
whether it is independent and then we partition the node set. The only
difference is, that we have to use breadth-first searches which inspect
all nodes at most k edges away to compute the independence of nodes.
Therefore this step can be fully parallelized.

2. Find Necessary Shortcuts : Almost the same as during the contraction.
The only difference is, that the information computed earlier during the
simulated contractions can be used to find witness profiles, speeding up
this step.

3. Move Independent Nodes to their Level : Because we assume that k is
at least 2 we can parallelize this step even with our simple graph data
structure. Each processed node has no neighbor in common with any
other. We can therefore safely move the edges around in parallel.

4. Insert Shortcuts : The same as during the contraction.

17

5. Update Priority of Neighbors : Because we choose to limit k to at least 2,
no two independent nodes have any neighbor in common. Furthermore
the priority of different nodes can be computed in parallel. There-
fore we can divide the computation between the threads by assigning
the independent nodes to the threads. Each thread then processes all
neighboring nodes and recomputes their priority. This step takes a
great amount of time and has a very unevenly distributed workload.

5 Experiments

5.1 Testbed

For the experiments we used a machine with four quad-core AMD Opterons
8350. They feature 16GB of RAM each, amounting to a total of 64GB of
RAM. Each core runs at 2GHz and has a 512kb level 2 cache. We compiled
our program with GCC 4.3.2 using optimization level 3. The machine was
running OpenSUSE 11.1. We left the assignment of the threads to the cores
to the operating system.

5.2 Inputs

We use two real-world road networks provided by the PTV AG for scientific
use. Both are a time-dependent version of the road network of Germany. One
has relatively high time-dependency and reflects the midweek (Tuesday till
Thursday) traffic scenario. The other one has relatively low time-dependency
and reflects the Sunday traffic scenario. Both are collected from historical
data. The midweek graph has about 8% time-dependent edge weights while
the Sunday graph has about 3%. Both graphs feature about 4 700 000 nodes
and 10 000 000 edges.

5.3 Preexperiment

First of all we want to determine which k-neighborhood sizes we should
use. There might be a real trade off between preprocessing time and query
time. In Table 2 we see the result for different values of k. 8 Threads were
used for node ordering and contraction. The query time is the average of
100 000 queries with random start and destination nodes as well as random

18

departure time. Using a value of 2 for k seems enough to achieve good query
times. Using a larger value does not benefit the query time, but hurts the
preprocessing quite a bit. As the k-neighborhood grows in size we find less
and less independent nodes in each iteration. The contraction times seem to
be unaffected by the different node orders we produce. We therefore decide
to use a value of 2 for the remainder of the experiments.

It is not very surprising that a value of 2 suffices as the original node order
itself is computed using only heuristics. We just added another heuristics
layer on top of that.

Function Weights
Edge Quotient 2
Function Size Quotient 2
Complexity Quotient 1
Hierarchy Depth 1

Table 1: Factors used for the evaluation functions.

We weighted the evaluation functions with the factors shown in Table 1.
This yields query times better than any produced by the original evaluation
functions described in section 2.1.4: For the midweek graph we now get
1.69ms instead of 1.73ms while the Sunday graph even improved, 1.19ms
versus 1.34ms. At the same time the amount of iterations needed is more
than halved: For a contraction without node ordering the midweek graph
needs 110 iterations instead of 234 while the Sunday graph only needs 105
instead of 203 iterations. We settled for these values and did not perform an
exhaustive parameter space search similar to the one in [7]. Our goal was
to find substitute evaluation functions well suited for parallel preprocessing
while not increasing query times.

5.4 Contraction

In Table 3 and Figure 4 we compare running times of the contraction with a
different number of threads2. Up to 7 threads the preprocessing scales quite
well for both graphs.

2As it turns out our parallelized implementation runs slightly faster with just one thread
than the original sequential version. Therefore we compute the speedup by comparing to
the parallelized version with just one thread.

19

k Node Order [s] Contraction [s] Query [ms]

Sunday

2 246.2 65.4 1.19
3 299.4 66.4 1.13
4 401.7 68.6 1.16
5 510.8 67.7 1.21
6 657.4 66.6 1.17

Midweek

2 581.6 144.5 1.69
3 710.2 144.6 1.73
4 872.7 146.2 1.74
5 1096.8 147.6 1.72
6 1350.0 146.6 1.73

Table 2: Comparison of different k-neighborhood sizes.

Midweek Sunday
Threads Time [s] Speedup Eff. [%] Time [s] Speedup Eff. [%]

1 812.44 1.00 100.0 326.61 1.00 100.0
2 434.85 1.87 93.5 212.44 1.54 77.0
3 301.23 2.70 90.0 141.45 2.31 71.0
4 242.85 3.35 83.8 113.98 2.87 71.2
5 200.81 4.05 81.0 97.01 3.37 67.4
6 174.07 4.67 77.8 79.71 4.10 68.3
7 156.08 5.21 74.4 72.40 4.51 64.4
8 144.05 5.64 70.5 74.27 4.40 55.0
9 136.52 5.95 66.1 63.82 5.12 56.9

10 124.51 6.42 64.2 67.18 4.86 48.6
11 127.93 6.35 57.7 65.50 4.99 45.4
12 115.37 7.04 58.7 62.75 5.21 43.3
13 114.18 7.12 54.8 63.35 5.16 39.7
14 116.97 6.95 49.6 63.57 5.14 36.7
15 108.05 7.52 50.1 61.33 5.33 35.5
16 114.84 7.07 44.2 61.68 5.30 33.1

Table 3: Time, speedup and efficiency (Eff.) of the contraction are measured
with a different number of threads

20

●

●

●

●

●

●

●

●
●

● ●

● ●
●

●

●

Threads

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 12 14 16

0

1

2

3

4

5

6

7 ● Midweek
Sunday

Figure 4: Total speedup of the contraction

From 8 threads upwards the efficiency drops rapidly for the Sunday graph.
The midweek graphs stagnates after 11 threads. Furthermore a somewhat
erratic behavior is observed, the preprocessing runs faster with less threads
in some cases: For example the preprocessing is faster with 15 threads than
with 16 for the midweek graph. We suspect that this is caused by the fact
that each core is limited by its memory bandwidth. In that case it is not
always beneficial to add another thread. It seems that this also makes the
speedup dependent on the scheduling of the threads. We observed variations
in the preprocessing time of up to 10% when using 16 threads. With 8 threads
only up to 3% were observed. Both graphs behave very similar, the Sunday
graph has less speedup, though.

Midweek [s] Sunday [s] Parallelized
Independent Node Set 6.9 6.4 yes
Contraction 775.8 300.7 yes
Edge Insertion 19.8 10.1 no
Moving Nodes to their Level 9.9 9.5 no

Table 4: Breakdown of the contraction time with 1 thread

21

To further investigate which part of the preprocessing yields better speedup
we benchmark each one. In Table 4 we see, that the actual contraction of
nodes takes up the most time. The non-parallelized sections take up only
29.7s and 19.6s for midweek and Sunday respectively. In Figure 5 we see,
that finding the independent nodes scales very well with up to 8 threads and
then stagnates. This was to be expected as this step is all about memory
throughput. There seems to be only little difference between both graphs.
In Figure 6 we see the speedup of the contraction of independent nodes. The
Sunday graph shows a behavior similar to when finding independent nodes.
The midweek graph on the other hand benefits from additional threads as it
has to do much more computational work due to more time-dependent edges
being present. This is due to the the complexity of the operations on edge
weight functions described in section 2.1.1.

Our parallelization strategy was to break up the contraction process into
several iterations, contracting nodes within each iteration in parallel. As it
turns out the amount of iterations needed is quite small, 110 and 105 for the
midweek and Sunday graph respectively. In Figure 7 we see that the amount
of nodes processed in each iteration is decreasing exponentially. Both graphs
show almost the same characteristic.

In Figures 8 and 9 we have a breakdown of the running time with one
thread for each iteration. It is clearly visible that all parts of the prepro-
cessing except the contraction itself have most of their workload in the first
iterations. At first, as the number of nodes processed in each iteration de-
creases, the running time also decreases. But later on the complexity of the
contraction compensates this and even increases the running time for a while.
This can also be observed for the Sunday graph Figure, but to a lesser degree.

5.5 Node Ordering

In Table 5 and Figure 10 we compare the running times of the node ordering
with different numbers of threads. While the overall running time is larger
than a contraction without node ordering, the speedup is very similar. The
most significant difference is, that the less time-dependent Sunday graph has
almost the same speedup as the more time-dependent midweek graph. It is
also notable that we get a somewhat super linear speedup on the Sunday
graph with 2 and 3 threads.

We again take a look at the speedup of the individual components. It
is clearly seen in Table 6, that the updating priorities step is the dominant

22

●

●

●

●

●

●
●

●

● ●

●

●
●

● ●
●

Threads

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 12 14 16

0

1

2

3

4

5

6 ● Midweek
Sunday

Figure 5: Speedup of finding independent nodes

●

●

●

●

●

●

●

●

●

● ●

● ● ●

●

●

Threads

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 12 14 16

0
1
2
3
4
5
6
7
8
9

10 ● Midweek
Sunday

Figure 6: Speedup of contracting nodes

23

Iteration

N
od

es

0 20 40 60 80 100

100

101

102

103

104

105

106

Midweek
Sunday

Figure 7: The amount of nodes processed in each iteration

Iteration

T
im

e
[s

]

0

5

10

15

20

25

30
Contraction
Changing Edge Level
Edge Insertion
Independent Node Set

0 10 20 30 40 50 60 70 80 90 110

Figure 8: Breakdown of the contraction for the midweek graph

24

Iteration

T
im

e
[s

]

0

5

10

15

20

25 Contraction
Changing Edge Level
Edge Insertion
Independent Node Set

0 10 20 30 40 50 60 70 80 90 100

Figure 9: Breakdown of the contraction for the Sunday graph

●

●

●

●

●

●
●

●

●
● ●

● ●
●

●
●

Threads

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 12 14 16

0

1

2

3

4

5

6

7 ● Midweek
Sunday

Figure 10: Total speedup of the node ordering

25

Midweek Sunday
Threads Time [s] Speedup Eff. [%] Time [s] Speedup Eff. [%]

1 3005 1.00 100.0 1361 1.00 100.0
2 1567 1.92 95.8 664 2.05 102.5
3 1247 2.40 80.2 450 3.02 100.7
4 865 3.43 85.7 362 3.76 94.0
5 737 4.01 80.2 310 4.39 87.9
6 644 4.46 76.0 285 4.78 79.9
7 597 4.91 70.2 269 5.06 72.2
8 554 5.28 66.0 247 5.50 68.7
9 506 5.75 63.9 236 5.78 64.2

10 479 6.05 60.5 227 6.00 60.0
11 473 6.11 55.5 221 6.15 55.9
12 448 6.42 53.5 207 6.56 54.7
13 443 6.49 50.0 208 6.54 50.3
14 430 6.65 47.5 199 6.86 49.0
15 414 6.88 45.9 197 6.91 46.1
16 405 7.03 44.0 189 7.21 45.1

Table 5: Time, speedup and efficiency (Eff.) of the node ordering are mea-
sured with a different number of threads

Midweek [s] Sunday [s] Parallelized
Independent Node Set 86.4 63.0 yes
Contraction 54.8 19.6 yes
Edge Insertion 14.6 9.2 no
Moving Nodes to their Level 9.9 9.6 yes
Update Priorities 3005.3 1259.6 yes

Table 6: Breakdown of the node ordering time with 1 thread

26

component for both graphs. It takes much more time for the midweek graph
however. As the contraction step is basically reduced to a lookup of the
cached simulation results it now takes even less time than finding independent
nodes.

In Figure 11 we see, that the speedup of finding independent nodes is
better for the midweek graph. The Sunday graph still seems to be more
limited. The k-neighborhood of each node is larger for the midweek graph.
Each thread has more nodes to analyze in the same area. This means they
operate more cache friendly and are less likely to be limited by memory
bandwidth.

The contraction step only has to look up cached simulation results. This
leads to a very poor speedup as seen in Figure 12. The same holds true for
moving nodes to their level. We only have to move data around without any
computational effort. Each processor’s memory bandwidth is already fully
utilized by one thread. Updating priorities on the other hand scales very
well with increasing number of threads. Adding an additional thread always
leads to a decreased runtime. The speedup is suboptimal, though, indicating
some kind of bottleneck.

Computing the node order takes more iterations than the simple contrac-
tion: 495 and 513 for midweek and Sunday respectively. This is only natural
as our changed definition of independent nodes is more strict. In Figure
15 we see that each iteration now processes less nodes, in fact a very steep
decrease is noticeable in the first iterations.

In Figures 16 and 17 we give a break down of the running time with
one thread for each iteration. The first iteration takes more time because
the priorities for all nodes have to be computed. All steps except updating
priorities have most of their workload in the first 50 iterations. Similar to
the contraction the increased complexity of the weight function operations
compensates for the decreasing number of nodes processed in each iteration.
This can also be seen in in the difference between both graphs. The less
complex Sunday graph has a less noticeable impact of these operations.

5.6 Load Balancing

In this section we want to figure out which kind of load balancing suits the
different parts of the preprocessing best. We test static, dynamic and guided
load balancing strategies. We opt to use 8 threads instead of the maximum
of 16 because with up to 8 threads memory bandwidth does not seem to

27

●

●

●

●

●
●

●

●
●

●
●

● ●
●

● ●

Threads

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 12 14 16

0

1

2

3

4

5

6

7

8
● Midweek

Sunday

Figure 11: Speedup of finding independent nodes

●

●

●

●

●

●
● ●

● ● ● ●
● ● ●

●

Threads

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 12 14 16

0

1

2

3

4 ● Midweek
Sunday

Figure 12: Speedup of node contraction

28

●

●

●

●

●
●

●

●

● ●
●

● ●
● ● ●

Threads

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 12 14 16

0

1

2

3

4 ● Midweek
Sunday

Figure 13: Speedup of moving edge to their level

●

●

●

●

●

●
●

●

●
● ●

● ●
●

●
●

Threads

S
pe

ed
up

1 2 3 4 5 6 7 8 9 10 12 14 16

0

1

2

3

4

5

6

7
● Midweek

Sunday

Figure 14: Speedup of updating priorities

29

Iteration

N
od

es

0 100 200 300 400 500

100

101

102

103

104

105

106
Midweek
Sunday

Figure 15: The amount of nodes processed in each iteration

5 45 90 140 195 250 305 360 415 470

Iteration

T
im

e
[s

]

0

10

20

30

40 Updating Priorities
Changing Edge Level
Edge Insertion
Contraction
Independent Node Set

Figure 16: Breakdown of the node ordering for the midweek graph

30

5 40 85 135 190 245 300 355 410 465

Iteration

T
im

e
[s

]

0

10

20

30
Updating Priorities
Changing Edge Level
Edge Insertion
Contraction
Independent Node Set

Figure 17: Breakdown of the node ordering for the Sunday graph

be so much of a limiting factor. This should give a better evaluation of the
different strategies. As both test graphs behave very similar we only test the
more complex midweek variant. All strategies use the default chunk sizes.

Table 7 shows the results we obtained. First we discuss the computa-
tion of the node order. While the dynamic strategy fares better with the
independent node set and contraction steps than the static one, it is itself
outperformed at finding independent nodes by guided one. Finding inde-
pendent nodes seems to have a somewhat uneven distribution of workload,
but not bad enough to justify the extra synchronization work of dynamic.
Moving nodes to the their level is a very simple task. The workload is almost
completely evenly spread across the nodes. Therefore static and guided give
similar results while dynamic is slower. When updating the priorities the
workload seems to be very unevenly spread. Some independent nodes have a
larger degree and more shortcuts were added during their contraction. This
justifies using more complex strategies. Dynamic is the best choice here.

The independent node set step of the contraction is simpler than dur-
ing the computation of the node order. While the workload is not perfectly
distributed each node takes up only a very short amount of time. The syn-
chronization overhead of the dynamic strategy exceeds the computational

31

Speedup
Static Dynamic Guided

Node Order

Independent Node Set 4.18 4.57 5.58
Contraction 3.41 4.15 4.08
Moving Nodes to their Level 4.91 4.01 4.94
Updating Priorities 4.51 5.49 5.17
Total 4.40 5.31 5.04

Contraction
Independent Node Set 3.98 1.15 4.91
Contraction 5.47 6.79 6.52
Total 4.60 5.37 5.36

Table 7: Comparison of different workload balancing strategies

time explaining the poor speedup. Guided outperforms static in this step.
The contraction step is more complex and dynamic and guided run well with
it.

In summary, no single strategy is perfect. Each step has to be analyzed
whether it is complex enough to legitimate the use of the dynamic strategy.
The static one seems to be obsoleted by the guided all over the board, though.
This narrows down the choice to guided and dynamic. These strategies could
even be improved a little bit by adjusting the chunk size correctly. This would
introduce a multitude of additional tuning parameters, though.

6 Discussion and Future Work

6.1 Further Parallelization

When working with an increasing number of threads the sequential parts
of the preprocessing become the limiting factor. To get a better speedup a
thread-safe and mostly lock-free graph data structure has to be used. This
would speed up the edge insertion and edge deletion. Moving nodes to their
level during a contraction without node ordering would also benefit. Further-
more the preprocessing is limited by the memory bandwidth. In a NUMA
aware architecture we could specifically schedule threads that share some
cache levels to process similar nodes. This would mean that we could not
use the automatic work-sharing constructs of OpenMP, though.

32

6.2 Better Evaluation Functions

The evaluation functions we found perform quite well. We omitted an ex-
haustive parameter space search, though. It may well be that we can weight
them better. Furthermore other evaluation functions may be better suited
for time-dependent graphs. For example a shortcut’s weight function only
weakly undercuts its witness profile during a certain time window. This
information could be used to better estimate the importance of the nodes.

6.3 Parallel Contraction Hierarchies

While we worked on parallelizing TDCH due to its lengthy preprocessing
all the modifications could also easily be applied to the not time-dependent
Contraction Hierarchies (CH) [7]. We would expect that the speedup is less
than with TDCH though. During the preprocessing of the CH no complex
operations with edge weight functions are necessary. The whole process is
more dependent on memory throughput. As we saw with TDCH this becomes
a limiting factor when using a larger number of threads.

33

References

[1] D. Delling: Time-Dependent SHARC-Routing. 16th Annual European
Symposium on Algorithms (ESA 2008). LNCS 5193, pages 332 – 343,
Springer (2008)

[2] G.V. Batz, D. Delling, P. Sanders, C. Vetter: Time-Dependent Contrac-
tion Hierarchies. 11th Workshop on Algorithm Engineering and Experi-
ments (ALENEX 2009)

[3] D. Schultes and P. Sanders: Dynamic Highway-Node Routing. 6th Work-
shop on Experimental Algorithms (WEA 2007). LNCS 4525, pages 66 –
79, Springer (2007)

[4] M. Holtgrewe: Parallel Highway-Node Routing. Student research project,
Universität Karlsruhe (TH) (2008)

[5] OpenMP Website: http://openmp.org/wp/about-openmp/ (2009)

[6] J. Singler, P. Sanders, and F. Putze: The Multi-Core Standard Template
Library. Euro-Par 2007 Parallel Processing. LNCS 4641, pages 682 – 694,
Springer (2007)

[7] R. Geisberger: Contraction Hierarchies: Faster and Simpler Hierarchical
Routing in Road Networks. Diploma Thesis, Universität Karlsruhe (TH)
(2008)

34

	1 Introduction
	1.1 Related Work
	1.2 Overview and Results

	2 Preliminaries
	2.1 Time-Dependent Contraction Hierarchies
	2.1.1 Modeling
	2.1.2 Contraction
	2.1.3 Query
	2.1.4 Node Ordering

	2.2 OpenMP
	2.2.1 Programming Model
	2.2.2 Parallel Construct
	2.2.3 Work-Sharing Constructs
	2.2.4 Synchronization Constructs

	3 Parallelized Contraction
	3.1 Independent Node Sets
	3.2 Iterative Contraction

	4 Parallelized Node Ordering
	4.1 Node Ordering Terms
	4.2 Independent Node Sets
	4.3 Iterative Node Ordering

	5 Experiments
	5.1 Testbed
	5.2 Inputs
	5.3 Preexperiment
	5.4 Contraction
	5.5 Node Ordering
	5.6 Load Balancing

	6 Discussion and Future Work
	6.1 Further Parallelization
	6.2 Better Evaluation Functions
	6.3 Parallel Contraction Hierarchies

