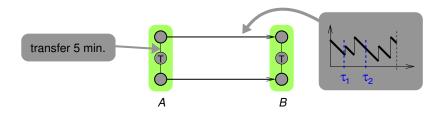

Contraction of Timetable Networks with Realistic Transfers

Robert Geisberger – geisberger@kit.edu

Institute for Theoretical Computer Science, Algorithmics II

- Route planning in time-dependent road networks is fast.
- Speed-up techniques gain three orders of magnitude over time-dependent Dijkstra (earliest arrival queries).
 - Contraction Hierarchies [ALENEX'09, SEA'10]
 - SHARC [ESA'08, SEA'10]
- Road network is modelled as graph with time-dependent edge weights that map arrival time → travel time.



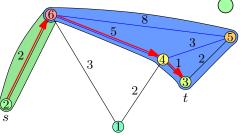
2 Robert Geisberger:

Contraction of Timetable Networks with Realistic Transfers

- Route planning in public transportation networks is slow.
- Speed-up techniques gain one order of magnitude.
 - SHARC [ESA'08, ATMOS'09]
- Network is still modelled as graph with time-dependent edge weights that map arrival time → travel time.
- Parallel edges necessary to model realistic transfers (minimum transfer buffer for each station).

3 Robert Geisberger:

Contraction of Timetable Networks with Realistic Transfers



Node contraction, a very successful technique for route network performs worse when parallel edges are involved:

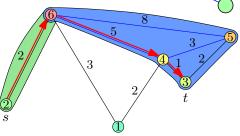
- Order nodes by 'importance', $V = \{1, 2, \dots, n\}$.

node orde

 Query relaxes only edges to more "important" nodes ⇒ valid due to shortcuts.

4 Robert Geisberger: Contraction of Timetable Networks with Realistic Transfers

Faculty for Computer Science Institute for Theoretical Computer Science, Algorithmics II

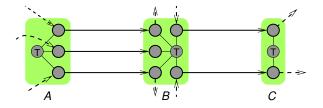


Node contraction, a very successful technique for route network performs worse when parallel edges are involved:

• Order nodes by 'importance', $V = \{1, 2, \dots, n\}$.

node orde

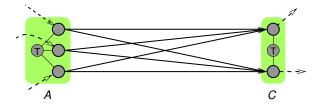
 Query relaxes only edges to more "important" nodes ⇒ valid due to shortcuts.


4 Robert Geisberger: Contraction of Timetable Networks with Realistic Transfers

Faculty for Computer Science Institute for Theoretical Computer Science, Algorithmics II

Node contraction, a very successful technique for route network performs worse when parallel edges are involved:

Shortcuts can multiply: a incoming parallel edges and b outgoing parallel edges may result in a · b parallel shortcuts.


5 Robert Geisberger:

Contraction of Timetable Networks with Realistic Transfers

Node contraction, a very successful technique for route network performs worse when parallel edges are involved:

Shortcuts can multiply: a incoming parallel edges and b outgoing parallel edges may result in a · b parallel shortcuts.

5 Robert Geisberger:

Contraction of Timetable Networks with Realistic Transfers

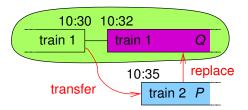
Station graph model First contribution

- 1:1 mapping between nodes and stations.
- No parallel edges.
- Each edge stores a set of connections, no FIFO-property required.
- Store additional train information to respect transfer buffers.

departure train	departure time	arrival time	arrival train
1	09:30	10:15	1
2	09:45	10:15	2
2	10:45	11:10	3
()		→ ○
	<u> </u>		-
	A		В

Another station model was independently developed by Berger et al. [ATMOS'09], but requires parallel edges and the FIFO-property.

Contraction of Timetable Networks with Realistic Transfers


Station graph model

Dominant connections

We say that a connection P dominates a connection Q if we can replace Q by P, i.e.

- *P* does not depart before *Q* and does not arrive after *Q*.
- When their departure trains differ, there has to be enough time to transfer from the train of *Q* to the train of *P*.
- The same has to hold for arrival trains.

7 Robert Geisberger:

Contraction of Timetable Networks with Realistic Transfers

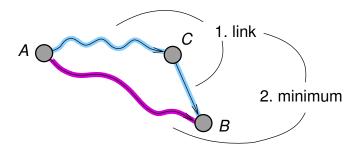
Station graph model Operations

- Store only dominant set of connections with each edge.
- A search computes dominant sets of connections.

Required operations:

- Link the connections of two incident edges.
- Build the minimum of two sets of connections between the same station pair.

Both operations are 'almost' linear in the number of connections.


8 Robert Geisberger:

Contraction of Timetable Networks with Realistic Transfers

Station graph model Profile guery

- Compute a dominant set of all connections between a pair of stations (A, B).
- Dijkstra-like label correcting algorithm based on new link and minimum operation. Priority queue key: minimum duration.

Combine link and minimum operation to avoid some copying.

9 Robert Geisberger:


Contraction of Timetable Networks with Realistic Transfers

Station graph model

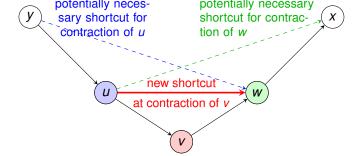
Time query

- Compute the fastest connection between a pair of stations (A, B) not departing earlier than time τ.
- Problem: Subpath-optimality not given when we only look at time.
- We need to compute for each train the earliest arrival time, and only drop connections that arrive 'transfer buffer' or more minutes later.

10 Robert Geisberger:

Contraction of Timetable Networks with Realistic Transfers

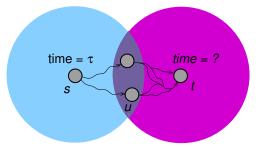
Timetable Contraction Hierarchies


Second contribution

- Most difficult part is preprocessing. Highlevel:
 - Assign each node a priority on how attractive it is to contract it.
 - Contract the most attractive node.
 - Update the priorities of the neighbors of the contracted node.
 - Repeat from Step 2 until all nodes are contracted.
- Step 3 is the most time-consuming, as it performs a simulated contraction for each neighbor to compute the number of necessary shortcuts (used for node priority).
- Problem: For road networks, min-max-search helps to speedup contraction. But maximum on timetable networks is mostly too high, e.g. when there is no service during the night.

Timetable Contraction Hierarchies Preprocessing

Store for each remaining node the set of necessary shortcuts.
Feasible, as there are much less nodes as in road networks.
After contraction of a node, we need to update theses sets.
Only the endpoints of added shortcuts are affected (⊆ neighbors).
At most one forward profile search and one backward profile search from each neighbor are necessary.


12 Robert Geisberger:

Contraction of Timetable Networks with Realistic Transfers

Timetable Contraction Hierarchies

- Profile query is performed bidirectional from source and target.
- Time query does not know the arrival time. Two-phase approach:
 - Backward BFS from the target using downward edges.
 - Sorward query using upward edges, and then used downward edges.

 Additional optimizations important for road networks (min-max-search, stall-on-demand) bring no advantage.

13 Robert Geisberger:

Contraction of Timetable Networks with Realistic Transfers

Environment: Intel Xeon X5550 at 2.67 GHz

Networks:

- long distance connections of Europe
- local traffic in Berlin/Brandenburg in Germany

	time-de	ependent	station	based	factor	
network	nodes edges		nodes	edges	nodes	edges
long	550 975	1 488 978	30517	88 091	18.1	16.9
local	228874	599 406	12069	33 473	16.9	17.9

14 Robert Geisberger: Contraction of Timetable Networks with Realistic Transfers

Experiments Station graph model

	query		#delete	speed	time	speed
	type	model	mins	up	[ms]	up
	time	time-dep.	259 506	-	54.3	-
long	ume	station	14 504	17.9	9.4	5.8
<u>_</u>	profile	time-dep.	1 949 940	-	1 994	-
profile	station	48216	40.4	242	8.2	
	time	time-dep.	112683	-	20.9	-
local	ume	station	5969	18.9	4.0	5.2
ŏ	profile	time-dep.	1 167 630	-	1 263	-
	prome	station	33 592	34.8	215	5.9

15 Robert Geisberger: Contraction of Timetable Networks with Realistic Transfers

Experiments

Timetable Contraction Hierarchies

	PREF	PROC.	QUERY				
	time	edge	type	#del.	speed	time	speed
	[s]	inc.		mins	up	[ms]	up
long	619	86%	time	183	79	0.2	43.5
9	019	00 /0	profile	251	192	3.4	71.4
local	685	128%	time	186	32	0.4	9.2
ŏ	5 005 120%		profile	426	79	24.2	8.9

16 Robert Geisberger:

Contraction of Timetable Networks with Realistic Transfers

Experiments Timetable Contraction Hierarchies

Comparison with time-dependent SHARC [ESA'08] on network long.

	PREPROC.		QUERY				
	time	edge	type	#del.	speed	time	speed
	[s]	inc.		mins	up	[ms]	up
eco	2 268	74%	time	32 575	8	7.4	7.2
SHARC	2200	/4/0	profile	181 782	11	415.0	5.4
gen	18 522	74%	time	8771	30	2.0	26.6
SHARC	10 522 74%	profile	55 306	35	114.7	19.5	
СН	619	86%	time	183	79	0.2	43.5
UT1	619	00%	profile	251	192	3.4	71.4

We scaled timings of SHARC based on plain Dijkstra timings.

17 Robert Geisberger: Contraction of Timetable Networks with Bealistic Transfers

Experiments Timetable Contraction Hierarchies

Comparison with time-dependent SHARC [ESA'08] on network long.

	PREPROC.		QUERY					
	time	edge	type	#del.	speed	time	speed	
	[s]	inc.		mins	up	[ms]	up	
eco	2 268	74%	time	32 575	8	7.4	7.2	
SHARC	2200	/4/0	profile	181 782	11	415.0	5.4	
gen	18 522	74%	time	8771	30	2.0	26.6	
SHARC	10022 74%	/4%	profile	55 306	35	114.7	19.5	
СН	619	86%	time	183	1 418	0.2	251.4	
	019	00%	profile	251	7 769	3.4	586.5	

We scaled timings of SHARC based on plain Dijkstra timings.

18 Robert Geisberger: Contraction of Timetable Networks with Bealistic Transfers

Conclusion

- Station graph model is superior to time-dependent model for the given scenario.
- Node contraction works, as hierarchy is better visible due to 1:1 mapping between nodes and stations.
- Timetable Contraction Hierarchies have preprocessing time of a few minutes with query times of half a millisecond.

Open work:

- Support for multi-criteria scenarios, that e.g. respect number of transfers.
- Combination with goal-directed techniques.

Thank You

Thank you for your attention.

20 Robert Geisberger: Contraction of Timetable Networks with Realistic Transfers

Questions

Questions?

21 Robert Geisberger: Contraction of Timetable Networks with Realistic Transfers