Alternative Routes and Route Corridors

Moritz Kobitzsch - moritz.kobitzsch@kit.edu

Institute of Theoretical Informatics

Introduction

Moritz Kobitzsch

- general interest in algorithms, especially shortest path algorithms
- Karlsruhe Institute of Technology
- parts of this talk on ongoing research

Collaborators

- Daniel Delling daniel.delling@microsoft.com
- Renato Werneck renato.werneck@microsoft.com
- Dennis Luxen dennis.luxen@kit.edu
- Dennis Schieferdecker dennis.schieferdecker@kit.edu

Microsoft Research, Silicon Valley

Microsoft Research, Silicon Valley

Karlsruhe Institute of Technology
Karlsruhe Institute of Technology

Stochastic On Time Arrival Problem

Definition

Given a graph $G=(V, A),|V|=n,|A|=m$, for each $a \in A$ a probability distribution $p: \mathbb{N} \mapsto[0,1]$, depicting the cumulative probability to traverse an arc in a given time $T \in \mathbb{N}$, as well as a time budget B and a source node s as well as a target node t :

Goal: Find the optimal strategy, starting at s, maximizing the probability of arriving at t within the budget B.

Strategy

Problems

- strategy depends on so far experienced travel times
\rightarrow optimal strategy might contain loops
\rightarrow computation has to look at each node multiple times
- each edge relaxation represents a costly convolution

Strategy

Problems

- strategy depends on so far experienced travel times
\rightarrow optimal strategy might contain loops
\rightarrow computation has to look at each node multiple times
- each edge relaxation represents a costly convolution

Grid-Graph

- 64×64 nodes
- travel time identical for every edge
- numbers: optimal order to search from top left to bottom right corner

budget	convolutions
128	8191
256	270335
512	794623
1280	2367487
12800	25960447

SOTA

An interactive service?

Requirements

- response time within 100 ms
- ideally possible on large networks...
... or at least city areas (>50k nodes)

SOTA

An interactive service?

Requirements

- response time within 100 ms
- ideally possible on large networks...
... or at least city areas (>50k nodes)

Reality

- response time within minutes, on really small networks
- memory consumption too large (\geq budget $\cdot n$)

SOTA

An interactive service?

Requirements

- response time within 100 ms
- ideally possible on large networks...
... or at least city areas (> 50k nodes)

Reality

- response time within minutes, on really small networks
- memory consumption too large (\geq budget $\cdot n$)

Lost Cause?

- even with optimal processing: only small networks possible
- response times to large for interactive online service

SOTA

A Possible Solution

Exactness

- computation only exact within bounds of an inexact model
- large amount of convolutions for little improvement (looks back really far)

A Possible Solution

Exactness

- computation only exact within bounds of an inexact model
- large amount of convolutions for little improvement (looks back really far)

Reality

- road networks contain only limited sets of viable routes
- no one will ever turn back for a few hundred miles after experiencing a stop and go

A Possible Solution

Exactness

- computation only exact within bounds of an inexact model
- large amount of convolutions for little improvement (looks back really far)

Reality

- road networks contain only limited sets of viable routes
- no one will ever turn back for a few hundred miles after experiencing a stop and go

Our Goals (ongoing research)

- extract sparse but meaningful subgraphs from road network
- only evaluate stochastic model to provide high quality routes

Outline

Introduction

Motivation

Preliminaries - Contraction Hierarchies

Alternative Routes

Route Corridors

Final Remarks

Contraction Hierarchies

Method

- n-level preprocessing method for static routeplanning
- bidirectional search, only upwards
- introduces shortcuts to represent unique shortest paths

Properties

- preprocessing within minutes

- query times below a millisecond
- next to no memory overhead at all
- very small search space (around a few hundred nodes)

Contraction Hierarchies

Method

- n-level preprocessing method for static routeplanning
- bidirectional search, only upwards
- introduces shortcuts to represent unique shortest paths

Properties

- preprocessing within minutes
- query times below a millisecond

- next to no memory overhead at all
- very small search space (around a few hundred nodes)

Contraction Hierarchies

Method

- n-level preprocessing method for static routeplanning
- bidirectional search, only upwards
- introduces shortcuts to represent unique shortest paths

Properties

- preprocessing within minutes
- query times below a millisecond

- next to no memory overhead at all
- very small search space (around a few hundred nodes)

Contraction Hierarchies

Method

- n-level preprocessing method for static routeplanning
- bidirectional search, only upwards
- introduces shortcuts to represent unique shortest paths

Properties

- preprocessing within minutes
- query times below a millisecond

- next to no memory overhead at all
- very small search space (around a few hundred nodes)

Contraction Hierarchies

Search Space

contracted search space
Illustration based on OpenStreetMap graph of Baden-Wuerttemberg www.openstreetmap.org

Contraction Hierarchies

Search Space

contracted search space

extracted search space

Illustration based on OpenStreetMap graph of Baden-Wuerttemberg www.openstreetmap.org

Contraction Hierarchies

Path Extraction

Methods

- recursive
- store middle node for each shortcut \rightarrow find composing edges
- store composing edge ids
\rightarrow much faster, double the overhead
- store fully expanded shortest path

- costly overhead, but fastest method
- can be optimized by storing pointers into longer paths

Alternative Routes

Definition

Definition

For a graph $G=(V, A)$, a shortest path $P=\langle s, \ldots, t\rangle$ a path \widetilde{P} is a viable alternative path if it fulfils the following conditions:

1. bounded stretch
2. limited sharing
3. local optimality

$$
\begin{array}{r}
(|\widetilde{P}| \leq \alpha|P|) \\
(|P \cap \widetilde{P}| \leq \beta|P|) \\
(\text { any } p \subseteq \widetilde{P} \text { with }|p| \leq \gamma|P| \text { is optimal })
\end{array}
$$

Where $\alpha(>1), \beta(<1), \gamma(<1)$ can be chosen as desired.

Alternative Route Calculation

Alternative Graphs

- iterative approach
- penalization of calculated path / surrounding edges
\rightarrow needs fully dynamic searches, e.g. Dijkstras algorithm
\rightarrow currently to slow for interactive process
- creates full graph from which alternative routes can be extracted

Via Node / Plateau

- composed path $\widetilde{P}=\langle s, \ldots, v\rangle\langle v, \ldots, t\rangle$
- possible sources of v :

1. additional meeting nodes within the CH search space
2. set of precomputed candidates for groups of nodes

- test different v until applicable alternative route found

Alternative Routes

Testing Criteria

Bounded Stretch

- heuristic: $d(s, v) \in S P(s)+d(v, t) \in S P(t)$ (may use incorrect distance labels)
- full check: compute $d(s, v)$ and $d(v, t)$

Limited Sharing

- heuristic: comparison based on shortcuts (shortcuts might share parts of paths)
- full check: check on extracted paths

Local Optimality

- heuristic: check whether $p(v-\gamma|P|, v+\gamma|P|)$ is a shortest path (2 approximation)
- full check: quadratic number of shortest path queries (too expansive)

Alternative Route Calculation

Clusters

Precomputing Via Nodes

- only few reasonable routes between regions
\rightarrow small sets of possible via node candidates
\rightarrow allows for per region pair precomputation
- expansive admissibility tests only on candidate set for regions
\rightarrow fast: only few, good candidates to be tested
\rightarrow increased success rate: candidate need not be in search space intersection

Numbers (Europe, XX regions)

- avg. via nodes between region pairs: 12.2
- precomputation time:
4.3 hours
0.1 ms

Alternative Routes

Multiple Alternatives

Procedure

- iterate on further via nodes
- candidate sets for each further alternative
- criteria to be tested against all previously found alternatives

Results

n	success rate [\%]	calculation time [ms]	candidates
1	81.2	0.1	12.2
2	51.2	0.3	15.0
3	25.0	0.4	14.2

Route Corridors

Concept

- developed to make hybrid routeplanning robust on a mobile device
- idea: not only transmit shortest path, transmit additional information close to it

Route Corridors

Concept

- developed to make hybrid routeplanning robust on a mobile device
- idea: not only transmit shortest path, transmit additional information close to it

Realizations

Turn Corridor

- initialize with shortest path
- allow for one deviation
- fill in shortest path information
- repeat

Deviation-Time Corridor

- initialize with shortest path
- include everything reachable within a deviation budget
- fill in shortest path information

Corridor graphs

Computation

Algorithm (iterative)

- grow a shortest path tree to t
(linear scans from top to bottom)
- extract what is needed for the corridor (two stack approach)
- only augment if information is missing (prune search space)

Exploitable CH Properties

- $v \in S P(s) \rightarrow S P(v) \subseteq S P(s)$
$\rightarrow S P(s)$ and $S P(t)$ contain all information for any shortest path $P(v, t), v \in S P(s)$
- for any shortest path $P=\left\langle s=v_{0}, \ldots, v_{k}=t\right\rangle$ holds:

$$
\exists v_{i}:\left\langle v_{0}, \ldots, v_{i}\right\rangle \subset S P(s) \wedge\left\langle v_{i}, \ldots, v_{k}\right\rangle \subset S P(t)
$$

Corridor Graphs

Shortest Path Trees

Initialization Phase

- single (complete) backwards search
- will result in some correct
... and some incorrect distance labels

Sweep Phase

- extract forward search space (one or many nodes)
- sweep search space from top to bottom
- distance values now correct for any v within the sweeped search space

Corridor Graphs

Shortest Path Trees

Initialization Phase

- single (complete) backwards search
- will result in some correct
... and some incorrect distance labels

Sweep Phase

- extract forward search space (one or many nodes)
- sweep search space from top to bottom
- distance values now correct for any v within the sweeped search space

Corridor Graphs

Extraction

Two Stack Method

- initialize $S_{0}=s, S_{1}=\varnothing$
- follow parent pointers of topmost element from S_{0}
- deviation vertices pushed on S_{1}
- parent vertex pushed on S_{0}
- when S_{0} runs empty swap stacks
- extend tree if necessary
- repeat extraction

- works as close to target as possible
\rightarrow cache efficient

Corridor Graphs

Early pruning

Extraction Based Pruning

- path extraction increases number of nodes shortest path distances are known for
\rightarrow search space generation able to stop on known distance
\rightarrow only small search spaces generated
- computation of deviation vertices depends on extracted paths
\rightarrow path extraction necessary anyhow
\rightarrow allows for early pruning, for free

Corridor Graphs

Results

Computation

- input graph: European road network
- taken from 9th DIMACS implementation challenge (2006)
- edge based version with (high) turn penalties

turns	time [ms]	size
0	0.73	1351
1	5.67	4835
2	9.73	12204
3	16.26	25892

Quality

- random drives with fixed failure rate
- next to perfect success rates for three turns and reasonable failure rates

Conclusion

On The Road to Interactive SOTA (?)

- full search to slow and memory inefficient
- evaluation on sparse subgraphs might form a valid alternative
- existing techniques could be a good starting point
- alternative routes
- alternative graphs - if possible to compute fast
- corridor graphs
- arbitrary combinations

Ongoing Research

- fast calculation of alternative graphs
- a different approach to alternative routes
- SOTA on sparse subgraphs of large networks

