

## **Alternative Routes and Route Corridors**

Moritz Kobitzsch – moritz.kobitzsch@kit.edu

### Institute of Theoretical Informatics



## Introduction



### Moritz Kobitzsch

- general interest in algorithms, especially shortest path algorithms
- Karlsruhe Institute of Technology
- parts of this talk on ongoing research

### Collaborators

- Daniel Delling daniel.delling@microsoft.com
- Renato Werneck renato.werneck@microsoft.com
- Dennis Luxen dennis.luxen@kit.edu
- Dennis Schieferdecker dennis.schieferdecker@kit.edu
- 2 Moritz Kobitzsch: Alternative Routes and Route Corridors

Microsoft Research, Silicon Valley

Microsoft Research, Silicon Valley

Karlsruhe Institute of Technology

Karlsruhe Institute of Technology

Department of Informatics Institute of Theoretical Informatics - Algorithms II

## **Stochastic On Time Arrival Problem**



### Definition

Given a graph G = (V, A), |V| = n, |A| = m, for each  $a \in A$  a probability distribution  $p : \mathbb{N} \mapsto [0, 1]$ , depicting the cumulative probability to traverse an arc in a given time  $T \in \mathbb{N}$ , as well as a time budget *B* and a source node *s* as well as a target node *t*:

**Goal:** Find the optimal strategy, starting at s, maximizing the probability of arriving at t within the budget B.

4 Moritz Kobitzsch: Alternative Routes and Route Corridors

## Strategy

### Problems

### strategy depends on so far experienced travel times

- ightarrow optimal strategy might contain loops
- $\rightarrow\,$  computation has to look at each node multiple times
- each edge relaxation represents a costly convolution





### 4 Moritz Kobitzsch: Alternative Routes and Route Corridors

 $64 \times 64$  nodes

#### Department of Informatics Institute of Theoretical Informatics - Algorithms II

# Strategy

### Problems

Grid-Graph

### strategy depends on so far experienced travel times

- ightarrow optimal strategy might contain loops
- $\rightarrow\,$  computation has to look at each node multiple times
- each edge relaxation represents a costly convolution

travel time identical for every edge numbers: optimal order to search from

top left to bottom right corner

| budget | convolutions |
|--------|--------------|
| 128    | 8 1 9 1      |
| 256    | 270 335      |
| 512    | 794 623      |
| 1 280  | 2367487      |
| 12800  | 25 960 447   |





## **SOTA** An interactive service?



- response time within 100 ms
- ideally possible on large networks...
  - ... or at least city areas (> 50k nodes)





## **SOTA** An interactive service?

### Requirements

- response time within 100 ms
- ideally possible on large networks...
  - ... or at least city areas (> 50k nodes)

### Reality

- response time within minutes, on really small networks
- memory consumption too large ( $\geq$  budget  $\cdot$  n)



## **SOTA** An interactive service?

### Requirements

- response time within 100 ms
- ideally possible on large networks...
  - ... or at least city areas (> 50k nodes)

### Reality

- response time within minutes, on really small networks
- memory consumption too large ( $\geq$  budget  $\cdot$  n)

### Lost Cause?

- even with optimal processing: only small networks possible
- response times to large for interactive online service

## SOTA A Possible Solution



### Exactness

- computation only exact within bounds of an inexact model
- large amount of convolutions for little improvement (looks back really far)

## SOTA A Possible Solution



### Exactness

- computation only exact within bounds of an inexact model
- large amount of convolutions for little improvement (looks back really far)

### Reality

- road networks contain only limited sets of viable routes
- no one will ever turn back for a few hundred miles after experiencing a stop and go

## SOTA A Possible Solution



### Exactness

- computation only exact within bounds of an inexact model
- large amount of convolutions for little improvement (looks back really far)

### Reality

- road networks contain only limited sets of viable routes
- no one will ever turn back for a few hundred miles after experiencing a stop and go

### Our Goals (ongoing research)

- extract sparse but meaningful subgraphs from road network
- only evaluate stochastic model to provide high quality routes

## Outline



Introduction

Motivation

Preliminaries - Contraction Hierarchies

Alternative Routes

**Route Corridors** 

**Final Remarks** 

7 Moritz Kobitzsch: Alternative Routes and Route Corridors Department of Informatics Institute of Theoretical Informatics - Algorithms II

## **Contraction Hierarchies**



### Method

- n-level preprocessing method for static routeplanning
- bidirectional search, only upwards
- introduces shortcuts to represent unique shortest paths

### Properties

- preprocessing within minutes
- query times below a millisecond
- next to no memory overhead at all
- very small search space (around a few hundred nodes)



## **Contraction Hierarchies**

### Method

- n-level preprocessing method for static routeplanning
- bidirectional search, only upwards
- introduces shortcuts to represent unique shortest paths

### Properties

- preprocessing within minutes
- query times below a millisecond
- next to no memory overhead at all
- very small search space (around a few hundred nodes)





### Properties

Method

preprocessing within minutes

unique shortest paths

- query times below a millisecond
- next to no memory overhead at all
- very small search space (around a few hundred nodes)

n-level preprocessing method for static routeplanning



bidirectional search, only upwards introduces shortcuts to represent





# **Contraction Hierarchies**

### Method

- n-level preprocessing method for static routeplanning
- bidirectional search, only upwards
- introduces shortcuts to represent unique shortest paths

### Properties

- preprocessing within minutes
- query times below a millisecond
- next to no memory overhead at all
- very small search space (around a few hundred nodes)





## Contraction Hierarchies Search Space





### contracted search space

Illustration based on OpenStreetMap graph of Baden-Wuerttemberg www.openstreetmap.org

9 Moritz Kobitzsch: Alternative Routes and Route Corridors Department of Informatics Institute of Theoretical Informatics - Algorithms II

## Contraction Hierarchies Search Space





### contracted search space

### extracted search space

Illustration based on OpenStreetMap graph of Baden-Wuerttemberg www.openstreetmap.org

9 Moritz Kobitzsch: Alternative Routes and Route Corridors Department of Informatics Institute of Theoretical Informatics - Algorithms II

# **Contraction Hierarchies**

### Path Extraction

### Methods

- recursive
  - store middle node for each shortcut
    - ightarrow find composing edges
  - store composing edge ids
    - $\rightarrow\,$  much faster, double the overhead
- store fully expanded shortest path
  - costly overhead, but fastest method
  - can be optimized by storing pointers into longer paths





# Alternative Routes



### Definition

For a graph G = (V, A), a shortest path  $P = \langle s, ..., t \rangle$  a path  $\tilde{P}$  is a viable alternative path if it fulfils the following conditions:

- 1. bounded stretch  $(|\widetilde{P}| \le \alpha |P|)$
- 2. limited sharing
- 3. local optimality

$$(|P \cap \widetilde{P}| \leq \beta |P|)$$
  
( any  $p \subseteq \widetilde{P}$  with  $|p| \leq \gamma |P|$  is optimal )

Where  $\alpha$  (>1),  $\beta$  (<1),  $\gamma$  (<1) can be chosen as desired.

11 Moritz Kobitzsch: Alternative Routes and Route Corridors

## **Alternative Route Calculation**



### **Alternative Graphs**

- iterative approach
- penalization of calculated path / surrounding edges
  - $\, 
    ightarrow \,$  needs fully dynamic searches, e.g. Dijkstras algorithm
  - $\rightarrow~\mbox{currently}$  to slow for interactive process
- creates full graph from which alternative routes can be extracted

### Via Node / Plateau

- composed path  $\widetilde{P} = \langle s, \dots, v \rangle \langle v, \dots, t \rangle$
- possible sources of v:
  - 1. additional meeting nodes within the CH search space
  - 2. set of precomputed candidates for groups of nodes
- test different v until applicable alternative route found



# **Alternative Routes**

**Testing Criteria** 

### **Bounded Stretch**

- heuristic:  $d(s, v) \in SP(s) + d(v, t) \in SP(t)$ (may use incorrect distance labels)
- full check: compute d(s, v) and d(v, t)

## Limited Sharing

- heuristic: comparison based on shortcuts (shortcuts might share parts of paths)
- full check: check on extracted paths

### Local Optimality

- heuristic: check whether  $p(v \gamma |P|, v + \gamma |P|)$  is a shortest path (2 approximation)
- full check: quadratic number of shortest path queries (too expansive)

# Alternative Route Calculation



### **Precomputing Via Nodes**

- only few reasonable routes between regions
  - $\, 
    ightarrow \,$  small sets of possible via node candidates
  - $\rightarrow~$  allows for per region pair precomputation
- expansive admissibility tests only on candidate set for regions
  - $\rightarrow~$  fast: only few, good candidates to be tested
  - → increased success rate: candidate need not be in search space intersection

### Numbers (Europe, XX regions)

- avg. via nodes between region pairs: 12.2
- precomputation time:
- query time:





14 Moritz Kobitzsch: Alternative Routes and Route Corridors

# **Alternative Routes**



**Multiple Alternatives** 

### Procedure

- iterate on further via nodes
- candidate sets for each further alternative
- criteria to be tested against all previously found alternatives

### Results

| n | success  | calculation | candidates |
|---|----------|-------------|------------|
|   | rate [%] | time [ms]   |            |
| 1 | 81.2     | 0.1         | 12.2       |
| 2 | 51.2     | 0.3         | 15.0       |
| 3 | 25.0     | 0.4         | 14.2       |

15 Moritz Kobitzsch: Alternative Routes and Route Corridors Department of Informatics Institute of Theoretical Informatics - Algorithms II

## **Route Corridors**



### Concept

- developed to make hybrid routeplanning robust on a mobile device
- idea: not only transmit shortest path, transmit additional information close to it

## **Route Corridors**



### Concept

- developed to make hybrid routeplanning robust on a mobile device
- idea: not only transmit shortest path, transmit additional information close to it

### Realizations

### Turn Corridor

- initialize with shortest path
- allow for one deviation
- fill in shortest path information
- repeat

### **Deviation-Time Corridor**

- initialize with shortest path
- include everything reachable within a deviation budget
- fill in shortest path information

### 17 Moritz Kobitzsch: Alternative Routes and Route Corridors

Department of Informatics Institute of Theoretical Informatics - Algorithms II

# Corridor graphs

### Computation

### Algorithm (iterative)

- grow a shortest path tree to t
- extract what is needed for the corridor
- only augment if information is missing

### **Exploitable CH Properties**

- $v \in SP(s) \rightarrow SP(v) \subseteq SP(s)$
- $\rightarrow$  *SP*(*s*) and *SP*(*t*) contain all information for any shortest path *P*(*v*, *t*), *v*  $\in$  *SP*(*s*)
  - for any shortest path  $P = \langle s = v_0, \dots, v_k = t \rangle$  holds:  $\exists v_i : \langle v_0, \dots, v_i \rangle \subset SP(s) \land \langle v_i, \dots, v_k \rangle \subset SP(t)$





# **Corridor Graphs**

Shortest Path Trees

### Initialization Phase

- single (complete) backwards search
- will result in some correct
   and some incorrect distance
  - ... and some incorrect distance labels

### **Sweep Phase**

- extract forward search space (one or many nodes)
- sweep search space from top to bottom
- distance values now correct for any v within the sweeped search space







# **Corridor Graphs**

Shortest Path Trees

### Initialization Phase

- single (complete) backwards search
- will result in some correct
   ... and some incorrect distance labels

### **Sweep Phase**

- extract forward search space (one or many nodes)
- sweep search space from top to bottom
- distance values now correct for any v within the sweeped search space







# 19 Moritz Kobitzsch:

Alternative Routes and Route Corridors

### Corridor Graphs Extraction

### **Two Stack Method**

- initialize  $S_0 = s$ ,  $S_1 = \emptyset$
- follow parent pointers of topmost element from S<sub>0</sub>
  - deviation vertices pushed on S<sub>1</sub>
  - parent vertex pushed on S<sub>0</sub>
- when S<sub>0</sub> runs empty swap stacks
  - extend tree if necessary
  - repeat extraction
- works as close to target as possible
  - $\rightarrow$  cache efficient





# Corridor Graphs



### **Extraction Based Pruning**

- path extraction increases number of nodes shortest path distances are known for
  - $\, 
    ightarrow \,$  search space generation able to stop on known distance
  - $\, 
    ightarrow \,$  only small search spaces generated
- computation of deviation vertices depends on extracted paths
  - $\rightarrow$  path extraction necessary anyhow
  - $\rightarrow~$  allows for early pruning, for free

### 21 Moritz Kobitzsch: Alternative Routes and Route Corridors

#### Department of Informatics Institute of Theoretical Informatics - Algorithms II

# Corridor Graphs

### Results

### Computation

- input graph: European road network
- taken from 9th DIMACS implementation challenge (2006)
- edge based version with (high) turn penalties

## Quality

- random drives with fixed failure rate
- next to perfect success rates for three turns and reasonable failure rates

| turns | time [ms] | size   |
|-------|-----------|--------|
| 0     | 0.73      | 1 351  |
| 1     | 5.67      | 4835   |
| 2     | 9.73      | 12204  |
| 3     | 16.26     | 25 892 |



## Conclusion



### On The Road to Interactive SOTA (?)

- full search to slow and memory inefficient
- evaluation on sparse subgraphs might form a valid alternative
- existing techniques could be a good starting point
  - alternative routes
  - alternative graphs if possible to compute fast
  - corridor graphs
  - arbitrary combinations

### **Ongoing Research**

- fast calculation of alternative graphs
- a different approach to alternative routes
- SOTA on sparse subgraphs of large networks