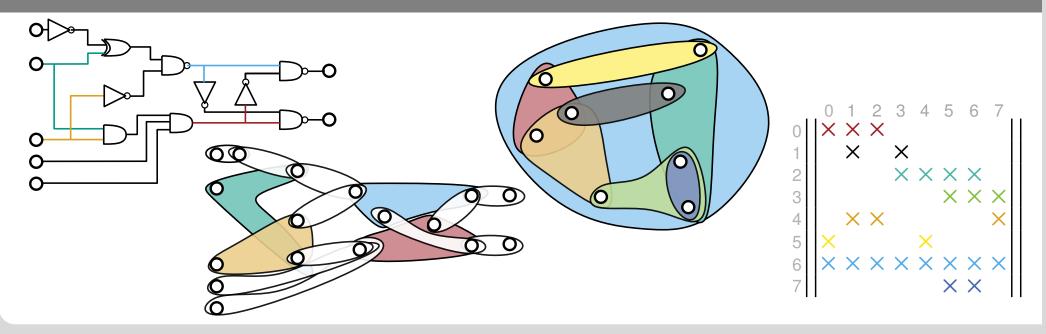


k-way Hypergraph Partitioning via *n*-Level Recursive Bisection

Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke Peter Sanders, Christian Schulz January 10th, 2016 @ ALENEX'16

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

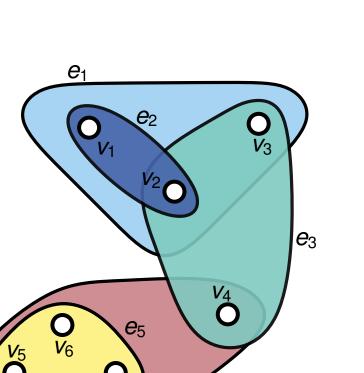


KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

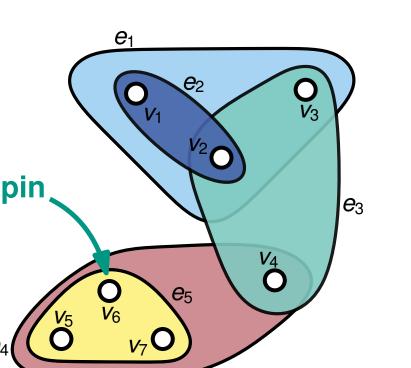
Hypergraphs

- Generalization of graphs \Rightarrow hyperedges connect \ge 2 nodes
- Graphs \Rightarrow dyadic (**2-ary**) relationships
- Hypergraphs \Rightarrow (**d-ary**) relationships
- Hypergraph $H = (V, E, c, \omega)$
 - Vertex set $V = \{1, ..., n\}$
 - Edge set $E \subseteq \mathcal{P}(V) \setminus \emptyset$
 - Node weights $c: V \to \mathbb{R}_{>1}$
 - Edge weights $\omega : E \to \mathbb{R}_{>1}$



Hypergraphs

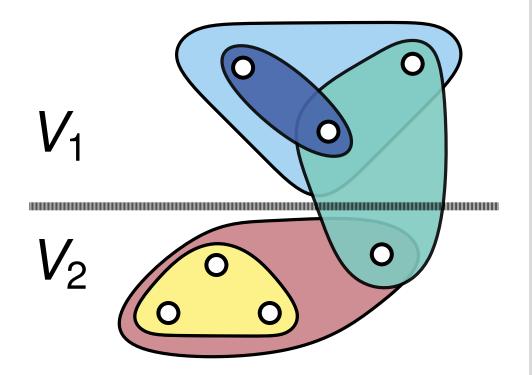
- Generalization of graphs \Rightarrow hyperedges connect \geq 2 nodes
- Graphs \Rightarrow dyadic (**2-ary**) relationships
- Hypergraphs \Rightarrow (**d-ary**) relationships
- Hypergraph $H = (V, E, c, \omega)$
 - Vertex set $V = \{1, ..., n\}$
 - Edge set $E \subseteq \mathcal{P}(V) \setminus \emptyset$
 - Node weights $c: V \to \mathbb{R}_{>1}$
 - Edge weights $\omega : E \to \mathbb{R}_{>1}$



Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

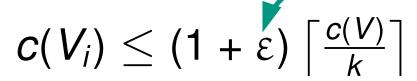
blocks V_i are roughly equal-sized:

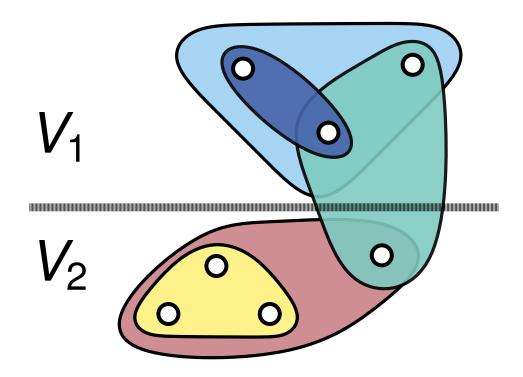
$$C(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$



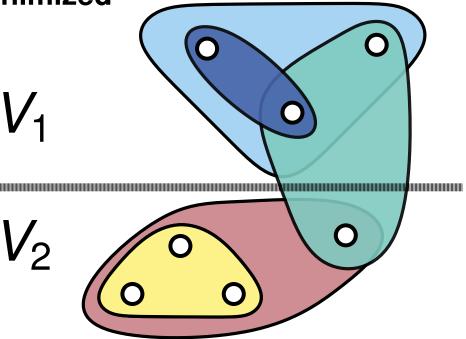
Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that:

blocks V_i are roughly equal-sized:



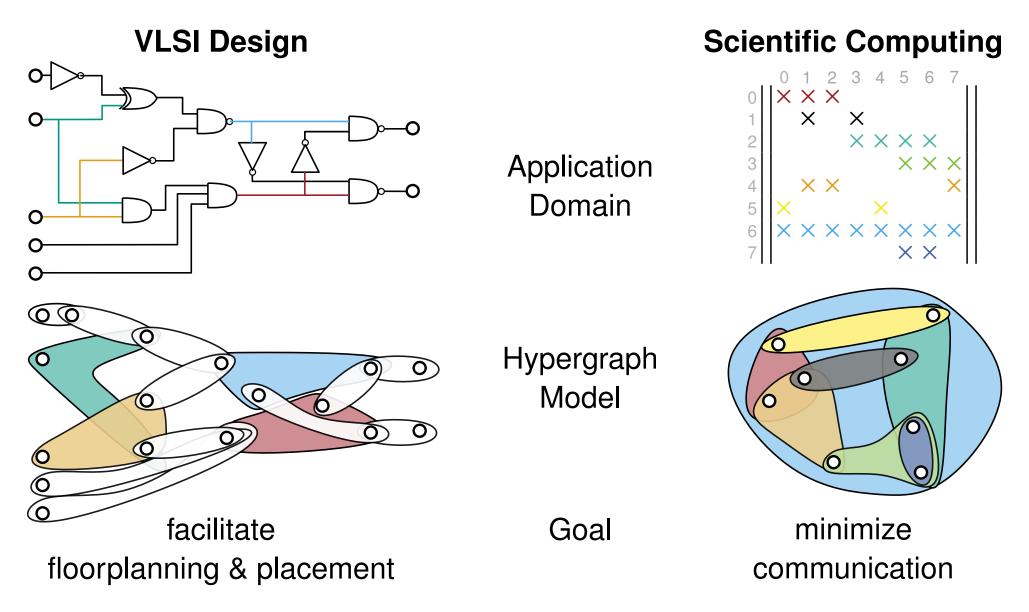


Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \dots, V_k\}$ such that: **imbalance** parameter $C(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$ **imbalance** parameter

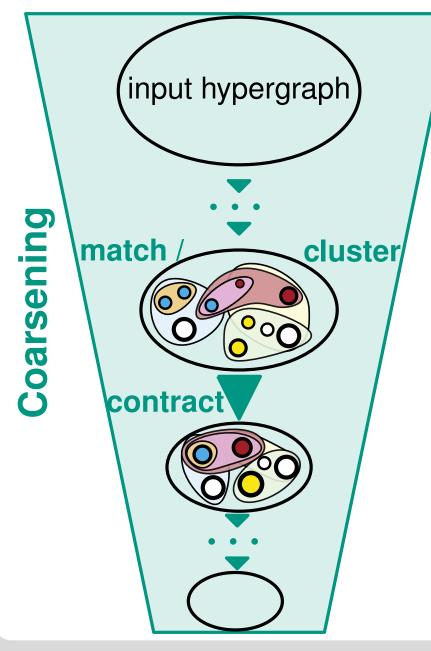


Partition hypergraph $H = (V, E, c, \omega)$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that: imbalance blocks V_i are **roughly equal-sized**: parameter $C(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$ total weight of **cut** hyperedges is **minimized** hyperedge connecting multiple blocks \bigcirc V_{2}

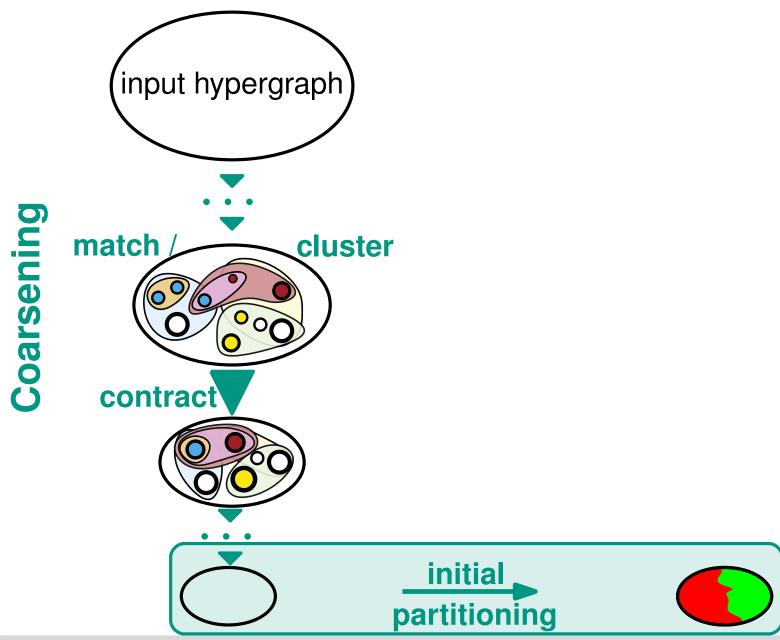
Applications



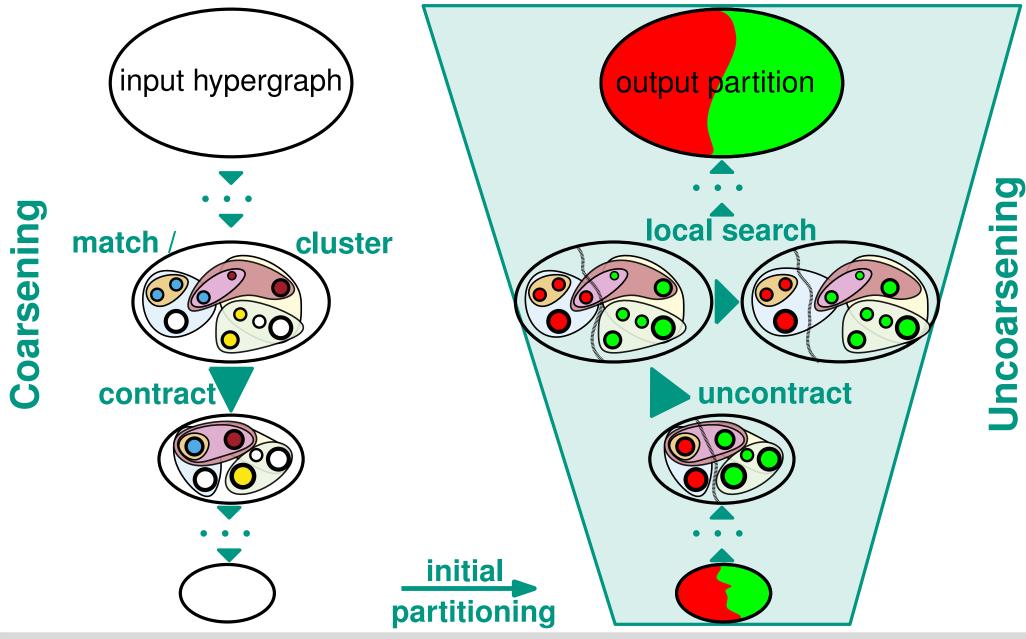
Multilevel Paradigm



Multilevel Paradigm

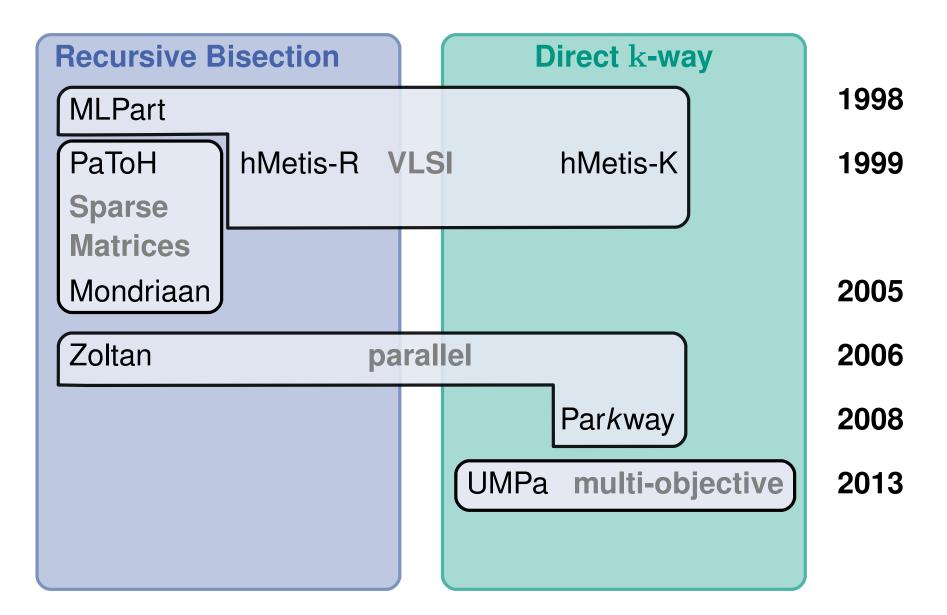


Multilevel Paradigm

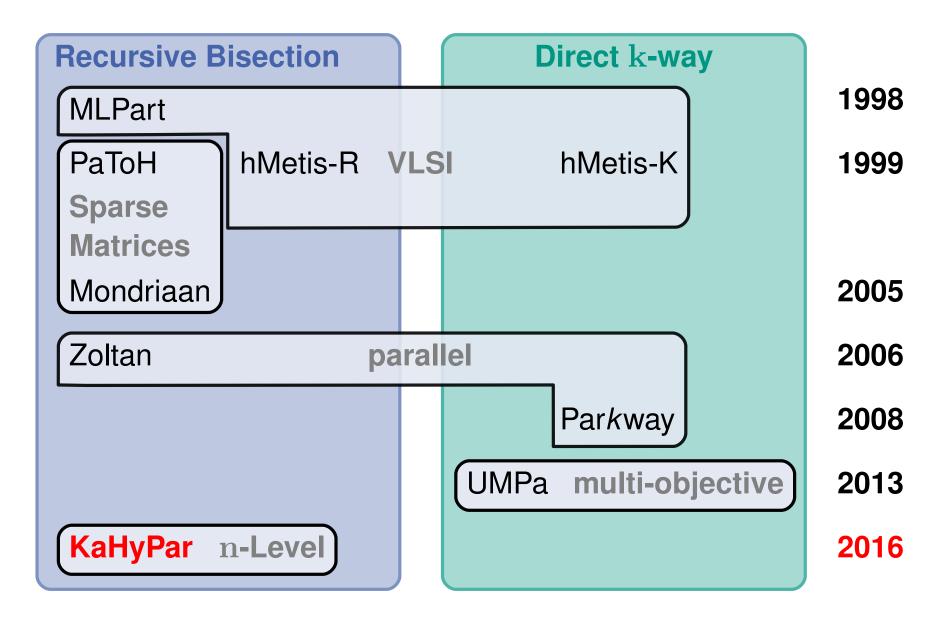


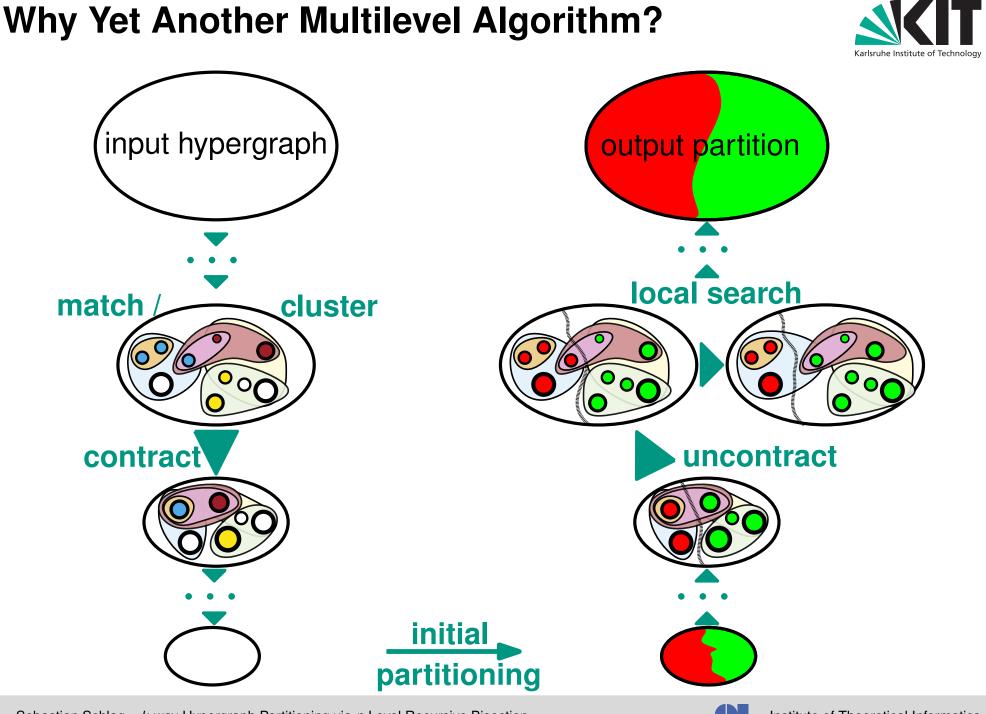
4 Sebastian Schlag – *k*-way Hypergraph Partitioning via *n*-Level Recursive Bisection

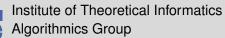
Taxonomy of Hypergraph Partitioning Tools



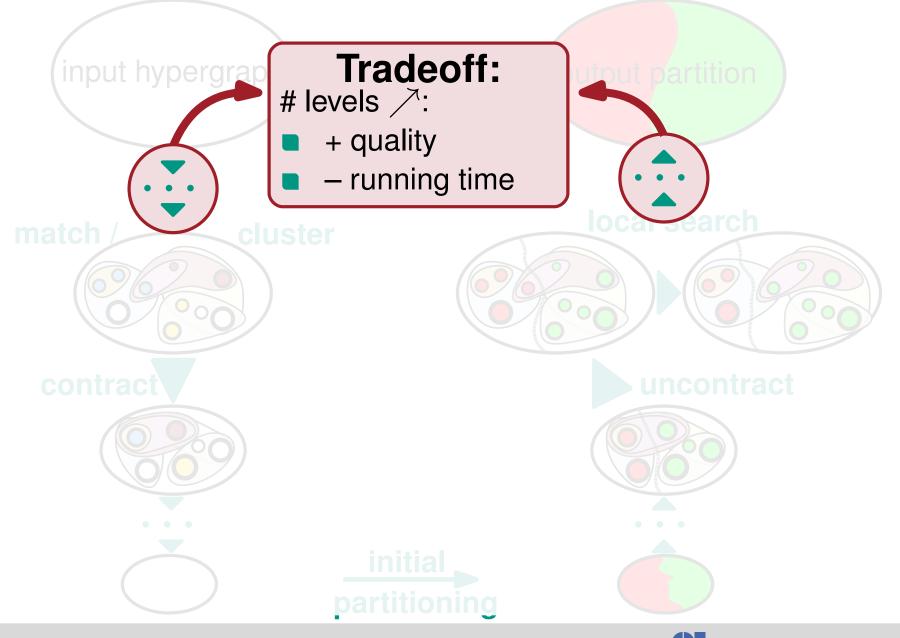
Taxonomy of Hypergraph Partitioning Tools



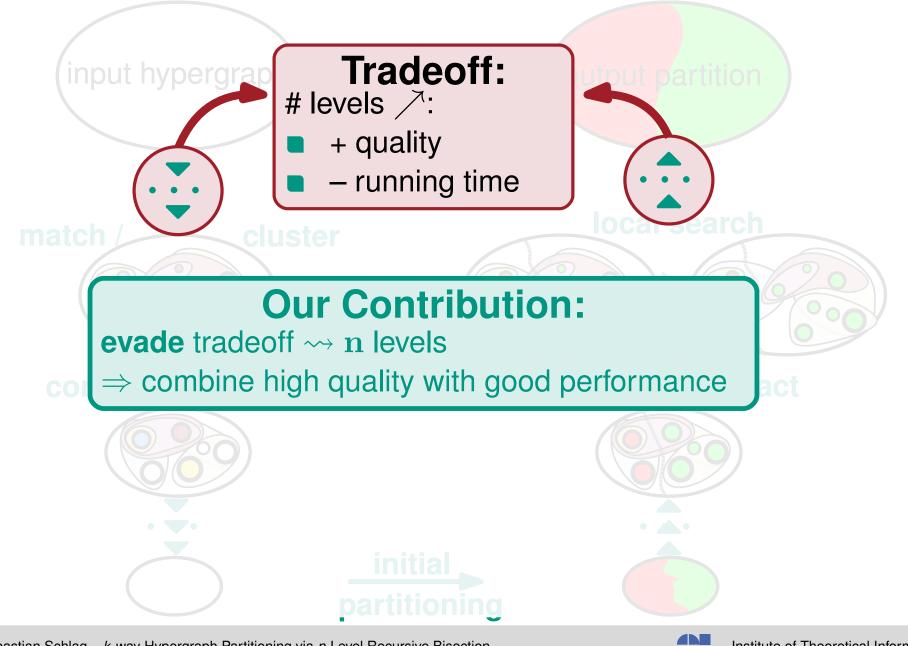




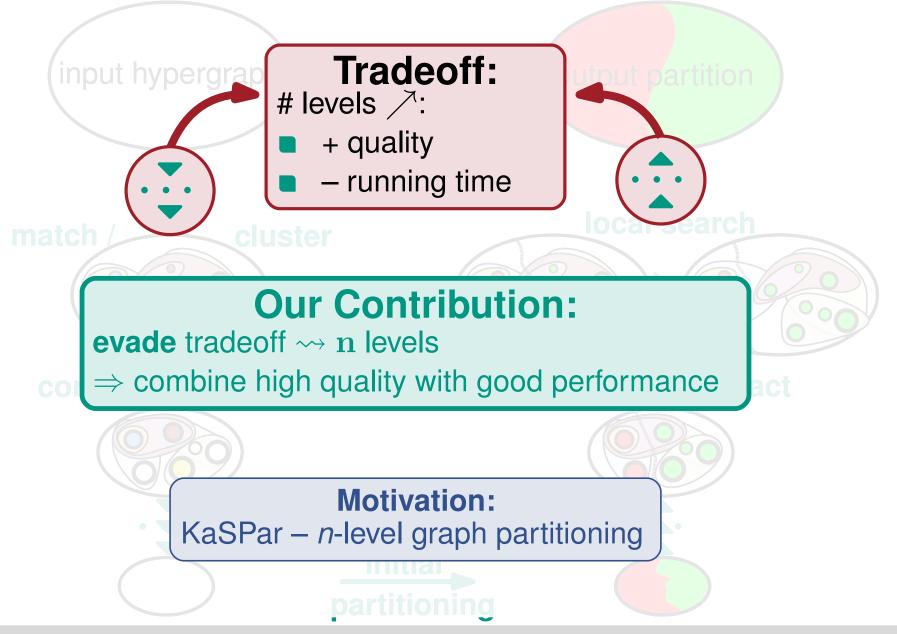
Why Yet Another Multilevel Algorithm?



Why Yet Another Multilevel Algorithm?

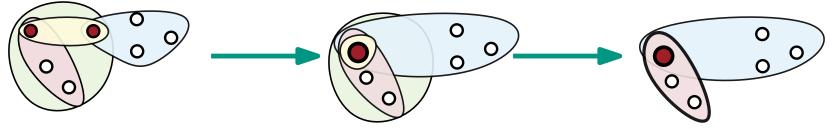


Why Yet Another Multilevel Algorithm?



Coarsening

contract only a single pair of vertices at each level



contract only a single pair of vertices at each level

Ο

0

How to determine that pair?

- compute rating r for all pairs of adjacent hypernodes
- choose pair (u, v) with highest rating (priority queue)
- **update** ratings for neighbors of contracted pair

О

contract only a single pair of vertices at each level

Ο

0

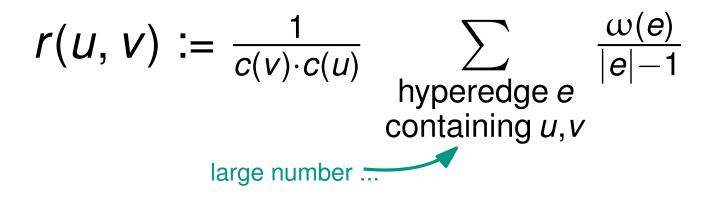
- compute rating r for all pairs of adjacent hypernodes
- choose pair (u, v) with highest rating (priority queue)
- **update** ratings for neighbors of contracted pair

$$r(u, v) := \frac{1}{c(v) \cdot c(u)} \sum_{\substack{\text{hyperedge } e \\ \text{containing } u, v}} \frac{\omega(e)}{|e| - 1}$$

contract only a single pair of vertices at each level

How to determine that pair?

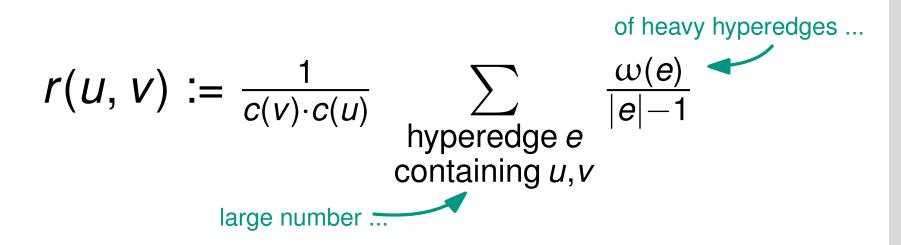
- compute rating r for all pairs of adjacent hypernodes
- choose pair (u, v) with highest rating (priority queue)
- **update** ratings for neighbors of contracted pair



0

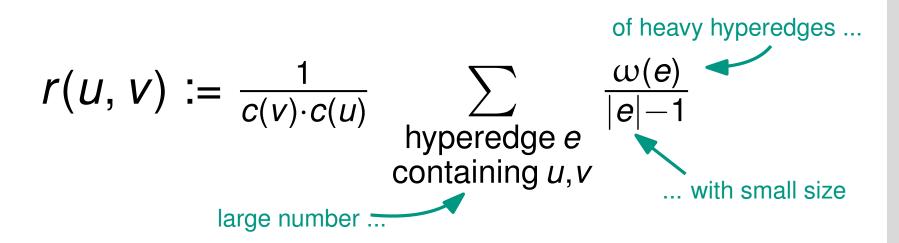
contract only a single pair of vertices at each level

- compute rating r for all pairs of adjacent hypernodes
- choose pair (u, v) with highest rating (priority queue)
- **update** ratings for neighbors of contracted pair



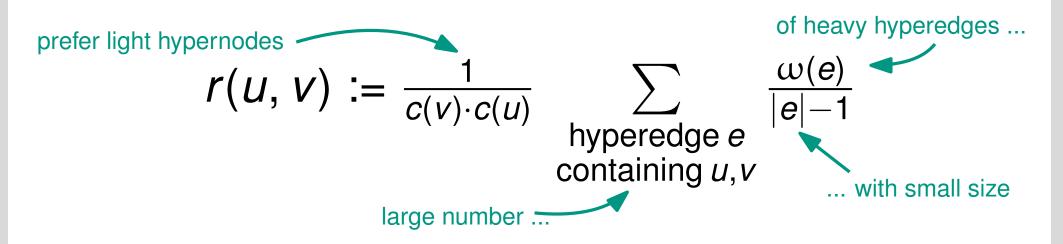
contract only a single pair of vertices at each level

- compute rating r for all pairs of adjacent hypernodes
- choose pair (u, v) with highest rating (priority queue)
- **update** ratings for neighbors of contracted pair



contract only a single pair of vertices at each level

- compute rating r for all pairs of adjacent hypernodes
- choose pair (u, v) with highest rating (priority queue)
- **update** ratings for neighbors of contracted pair

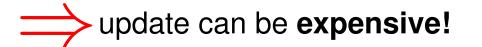


contract only a single pair of vertices at each level

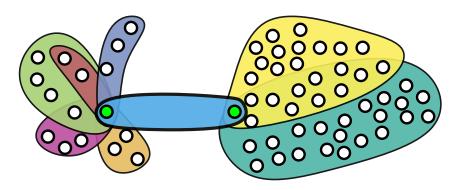
- compute rating r for all pairs of adjacent hypernodes
- choose pair (u, v) with highest rating (priority queue)
- update ratings for neighbors of contracted pair
- **repeat** until:
 - *t* hypernodes remain
 - no valid pair remains (size constraint on hypernodes)

contract only a single pair of vertices at each level

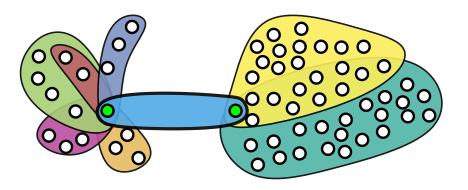
- compute rating r for all pairs of adjacent hypernodes
- choose pair (u, v) with highest rating (priority queue)
- update ratings for neighbors of contracted pair
- **repeat** until:
 - *t* hypernodes remain
 - no valid pair remains (size constraint on hypernodes)



- Problem: # neighbors potentially large
 - high-degree hypernodes
 - Iarge hyperedges
 - \Rightarrow update **all** pins of **all** hyperedges incident to contracted pair



- Problem: # neighbors potentially large
 - high-degree hypernodes
 - Iarge hyperedges
 - > update **all** pins of **all** hyperedges incident to contracted pair



- Solution: lazy updates
 - invalidate neighboring hypernodes
 - re-calculate rating on demand

Initial Partitioning

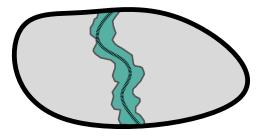
Initial Partitioning

- not affected by n-level paradigm
- use portfolio of algorithms ~> diversification
 - random partitioning
 - breadth-first search
 - greedy hypergraph growing
 - size-constrained label propagation
- \Rightarrow try all algorithms multiple times
- \Rightarrow select partition with **best** cut & **lowest** imbalance as initial partition

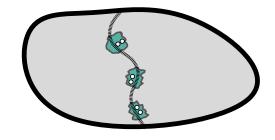
Local Search

Localized Local Search – Idea

- traditional multilevel algorithms
 - uncontract one level
 - vote local search around complete border



- n-level localized local search [KaSPar]
 - uncontract a single pair of nodes
 - vote local search around 2 nodes
 - \Rightarrow fine-grained optimization

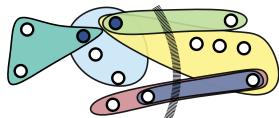


- Imit search to constant # of moves per level
 - otherwise $\rightsquigarrow |V|^2$ local search steps in total
 - \Rightarrow stop pass after *x* fruitless moves

Localized FM Local Search – Outline

Karlsruhe Institute of Technology

- hypernodes ~> unmarked, active, marked
- start around uncontracted vertex pair

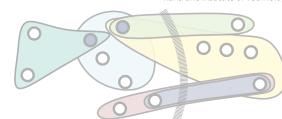


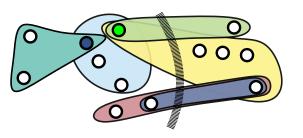
Localized FM Local Search – Outline

- hypernodes ~> unmarked, active, marked
- start around uncontracted vertex pair
- compute gain for move to other block:

 $g(v) = \sum_{\substack{\text{hyperedge } e \\ \text{containing } v}} \begin{cases} +\omega(e) & \text{if $\#$ pins in source = 1$} \\ -\omega(e) & \text{if $\#$ pins in target = 0$} \end{cases}$

Solution of the second seco



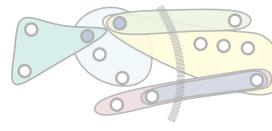


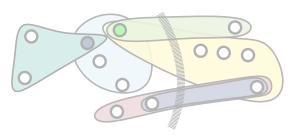
Localized FM Local Search – Outline

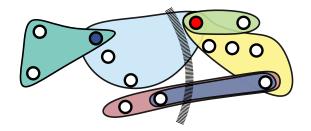
- hypernodes ~> unmarked, active, marked
- start around uncontracted vertex pair
- compute gain for move to other block:

 $g(v) = \sum_{\substack{\text{hyperedge } e \\ \text{containing } v}} \begin{cases} +\omega(e) & \text{if $\#$ pins in source = 1$} \\ -\omega(e) & \text{if $\#$ pins in target = 0$} \end{cases}$

- Solution of the second seco
- move highest-gain node to opposite block
 - • node becomes marked





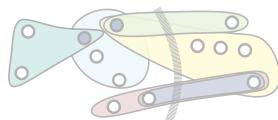


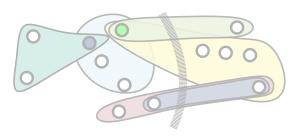
Localized FM Local Search – Outline

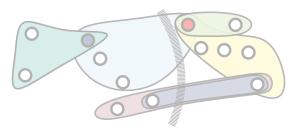
- hypernodes ~> unmarked, active, marked
- start around uncontracted vertex pair
- compute gain for move to other block:

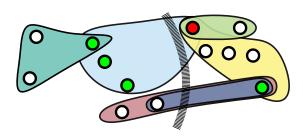
 $g(v) = \sum_{\substack{\text{hyperedge } e \\ \text{containing } v}} \begin{cases} +\omega(e) & \text{if $\#$ pins in source = 1$} \\ -\omega(e) & \text{if $\#$ pins in target = 0$} \end{cases}$

- Solution of the second seco
- move highest-gain node to opposite block
 - A vote becomes marked
- unmarked neighbors ~> active (if border node)
- active neighbors ~> update gain







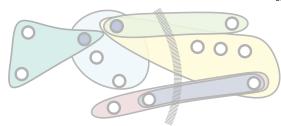


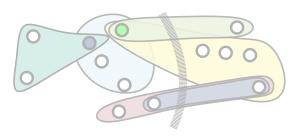
Localized FM Local Search – Outline

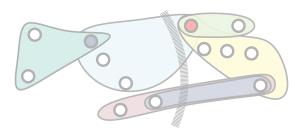
- hypernodes ~> unmarked, active, marked
- start around uncontracted vertex pair
- compute gain for move to other block:

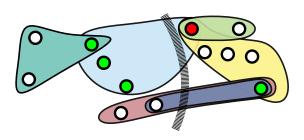
 $g(v) = \sum_{\substack{\text{hyperedge } e \\ \text{containing } v}} \begin{cases} +\omega(e) & \text{if $\#$ pins in source = 1$} \\ -\omega(e) & \text{if $\#$ pins in target = 0$} \end{cases}$

- Solution of the second seco
- move highest-gain node to opposite block
 - vode becomes marked
- unmarked neighbors ~> active (if border node)
- active neighbors ~> update gain
 - update & activation can be expensive!









Localized FM Local Search – Engineering

Problem: # neighbors potentially large

- high-degree hypernodes
- large hyperedges
 - large number of activations & updates on each level

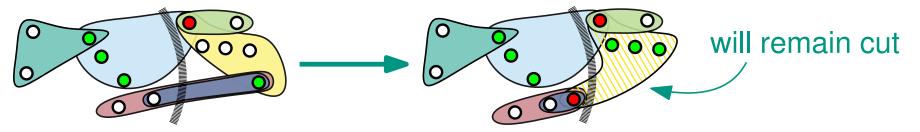
Localized FM Local Search – Engineering

Problem: # neighbors potentially large

- high-degree hypernodes
- large hyperedges
 - large number of activations & updates on each level

Known solutions for updates:

- perform δ-gain updates [Papa, Markov]
- exclude locked hyperedges from gain update [Krishnamurthy]



Localized FM Local Search – Engineering

Problem: # neighbors potentially large

- high-degree hypernodes
- large hyperedges
 - large number of activations & updates on each level

Known solutions for updates:

- perform δ-gain updates [Papa, Markov]
- exclude locked hyperedges from gain update [Krishnamurthy]

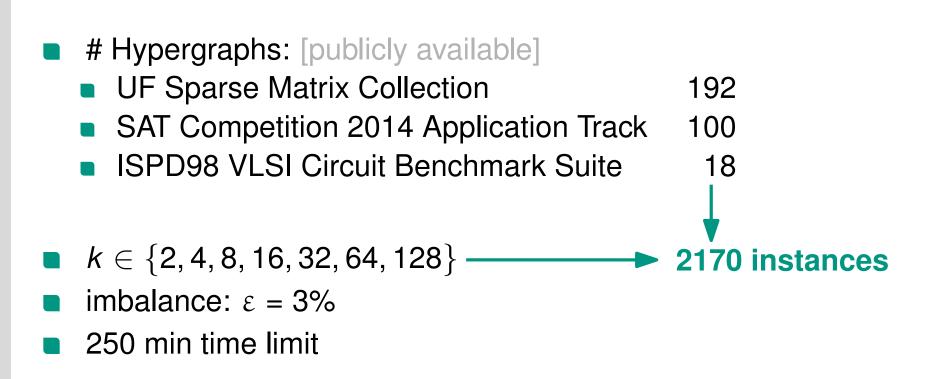


New solution for activations:

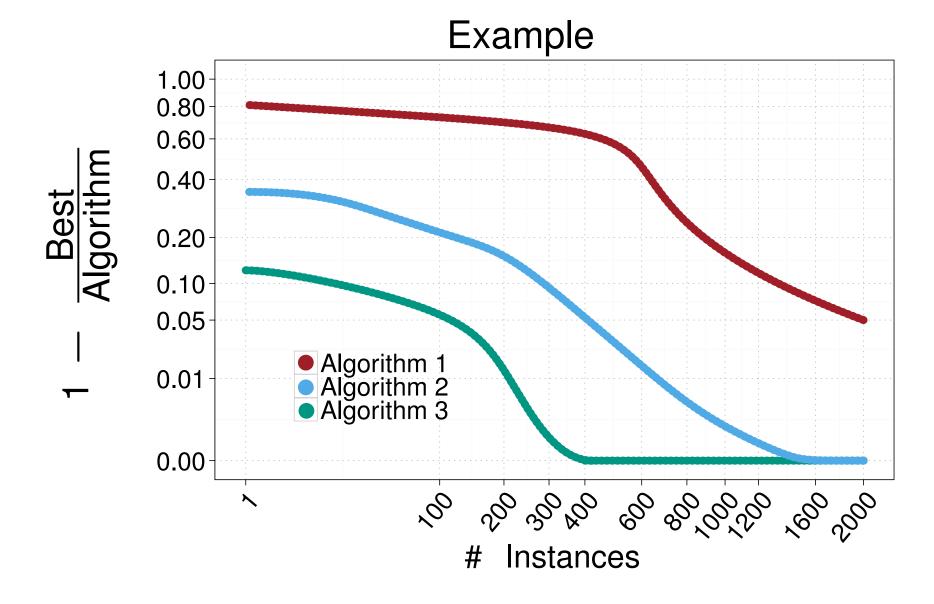
- cache gain values
 - compute gain g(v) at most **once** along the *n*-level hierarchy

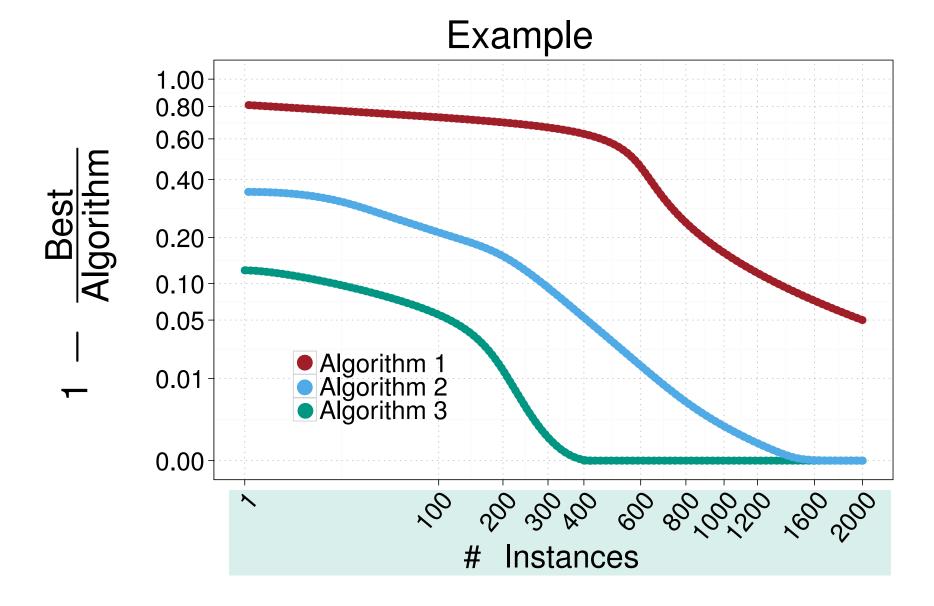
Experiments – Benchmark Setup

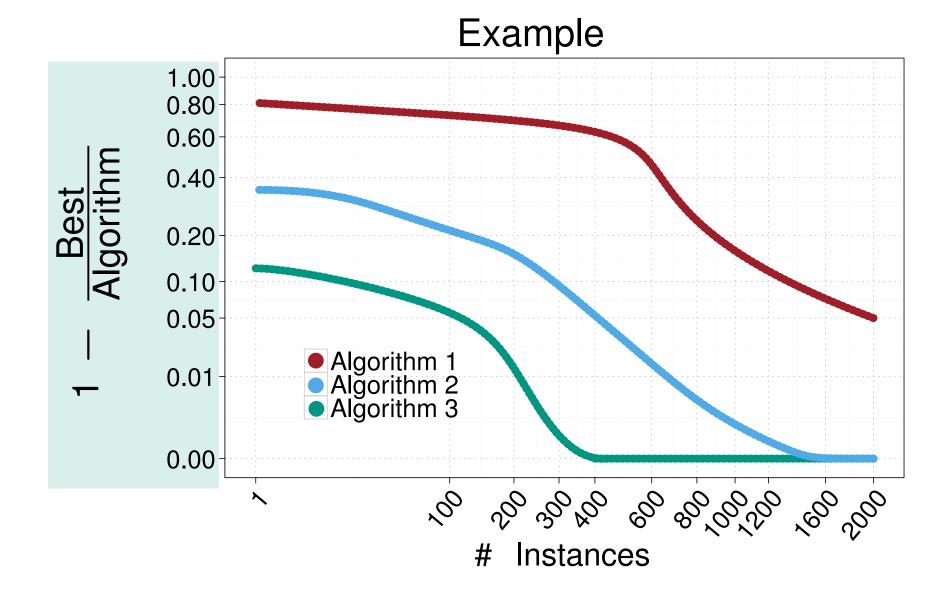
System: 1 core of 2 Intel Xeon E5-2670 @ 2.6 Ghz, 64 GB RAM

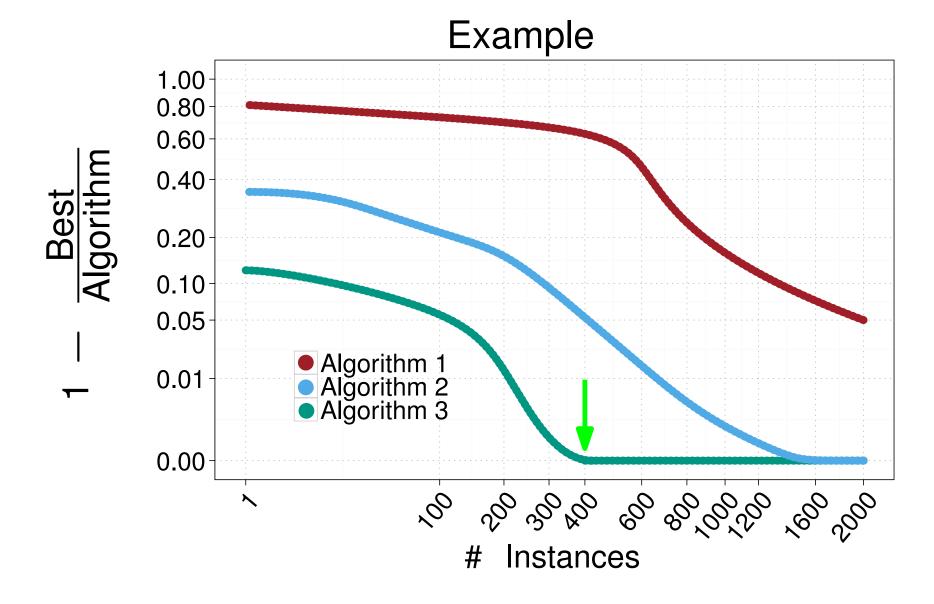


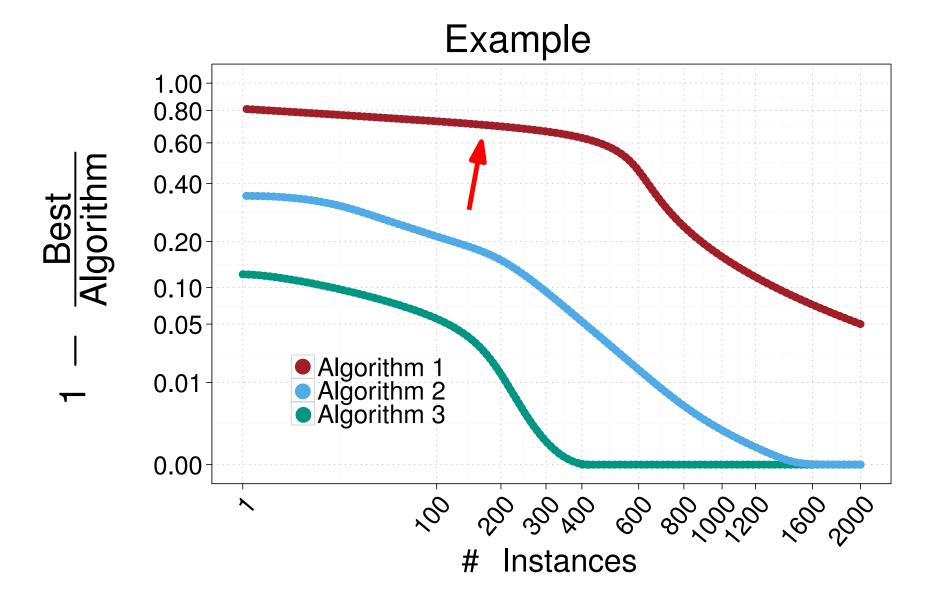
- Comparison with:
 - hMetis-R & hMetis-K
 - PaToH-Default & PaToH-Quality

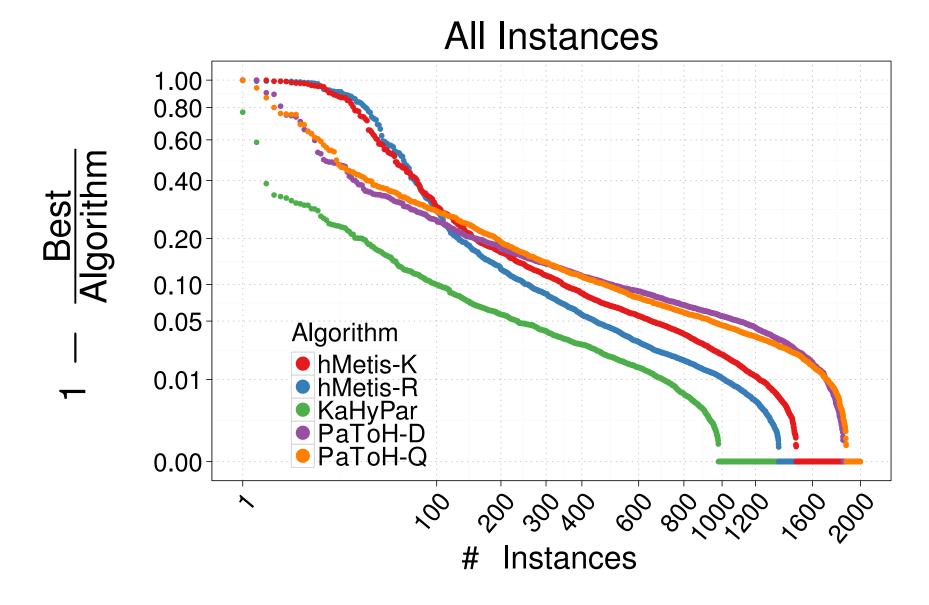


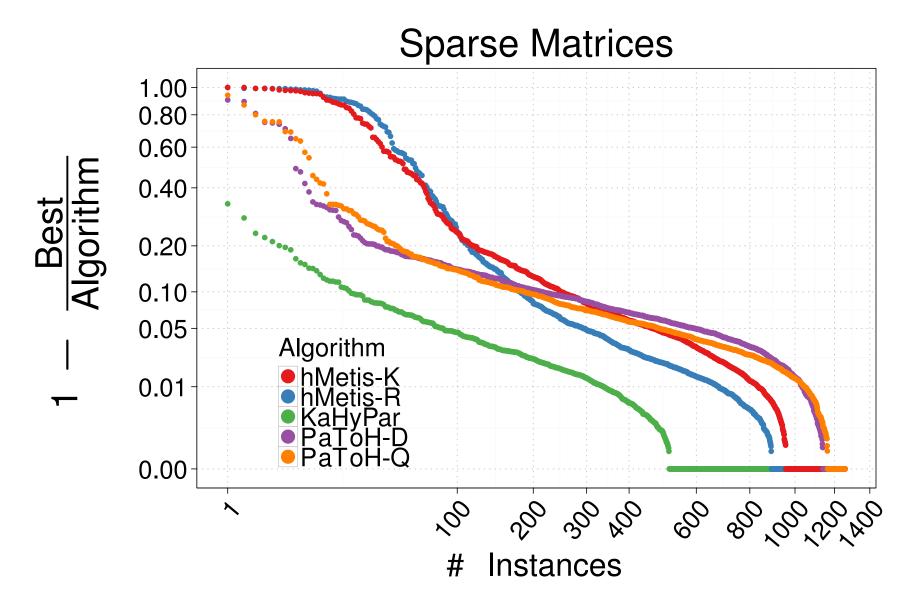


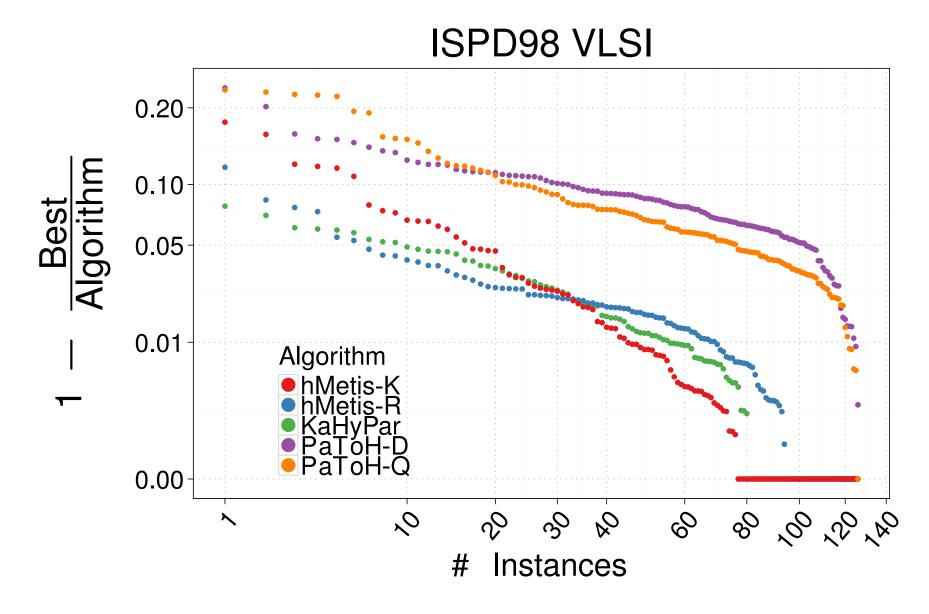




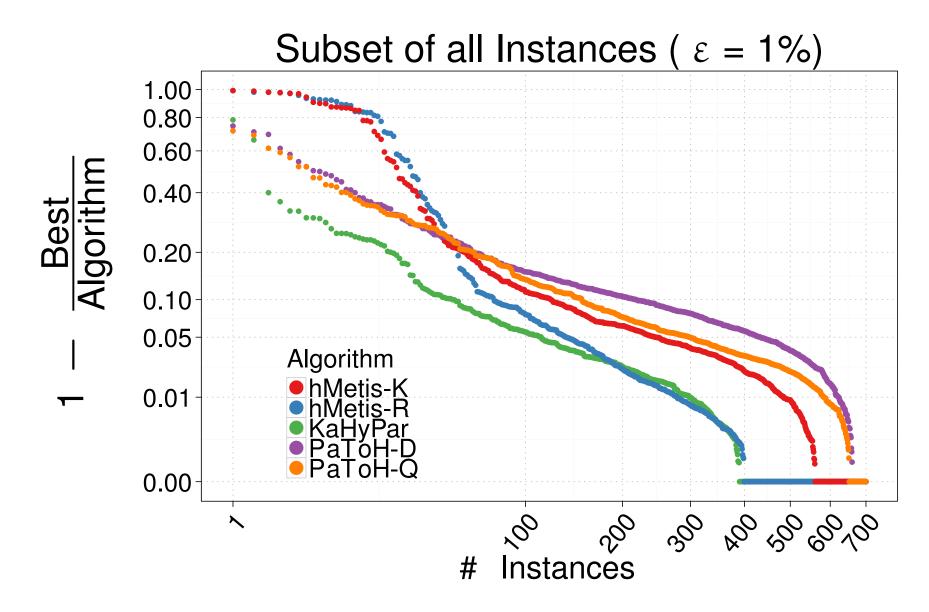




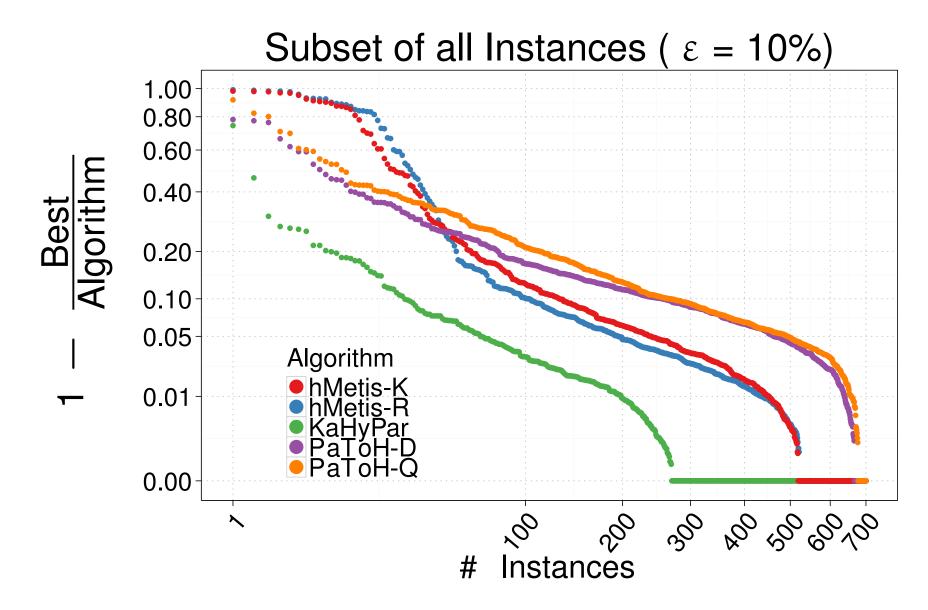




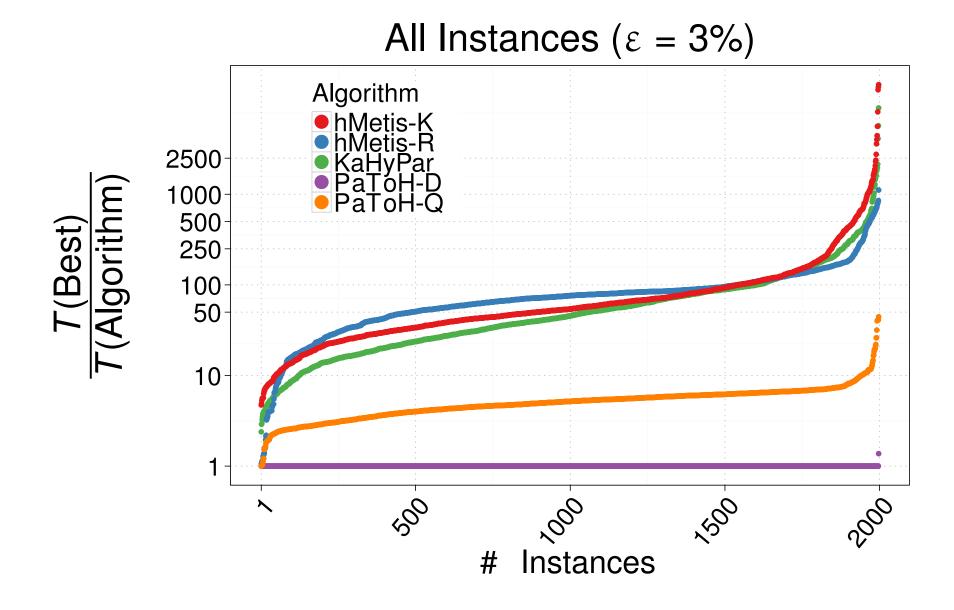
Experimental Results – Smaller Imbalance



Experimental Results – Larger Imbalance



Experimental Results – Running Time



Future Work

improve running time:

- ignore "large" hyperedges [PaToH]
- stop local search if improvement becomes unlikely [KaSPar]

improve quality:

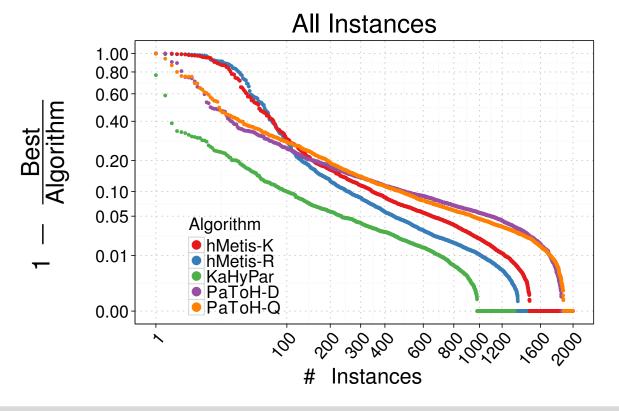
- introduce V-cycles
- evolutionary algorithm [KaHIP]

improve balancing:

optimize locally - rebalance globally

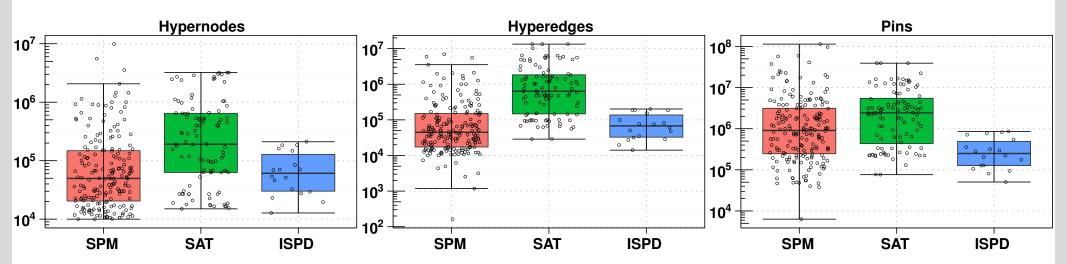
Conclusion & Discussion

- **evade** running time / quality tradeoff of multilevel algorithms $\rightsquigarrow n$ -level hierarchy
 - engineered coarsening phase
 - portfolio-based approach to initial partitioning
 - highly tuned local search algorithm



Coffee Break!

Benchmark Set Details



Benchmark Results – Partitioning Quality

