

Scalable Kernelization for Maximum Independent Sets

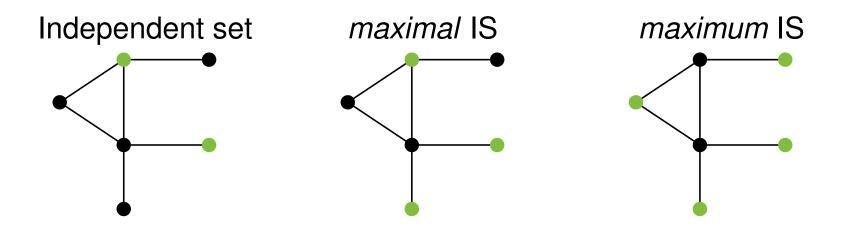
Big Data SPP Winter School · **13.11.2017** Demian Hespe, Christian Schulz, Darren Strash

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

Maximum Independent Sets

Independent Set (IS) Given a graph G = (V, E), find $I \subseteq V$ such that $\forall u, v \in I : \{u, v\} \notin E$

Find **Maximum** IS (MIS) *I*: for all IS *I'* of $G: |I| \ge |I'|$

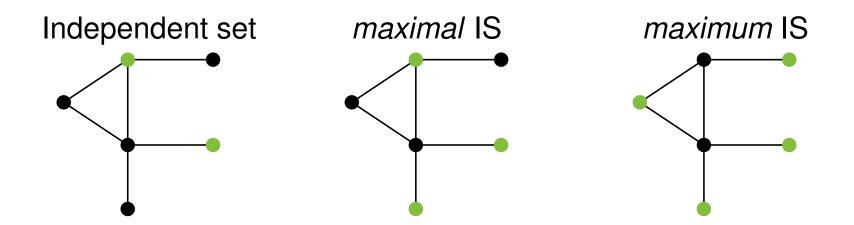


Maximum Independent Sets

Independent Set (IS)

Given a graph G = (V, E), find $I \subseteq V$ such that $\forall u, v \in I : \{u, v\} \notin E$

NP hard Find **Maximum** IS (MIS) *I*: for all IS *I'* of *G*: $|I| \ge |I'|$



Reduction Algorithm *R*:

- Input: G
- Output G' with $|G'| \leq |G|$

function KERNELMIS(G) $G' \leftarrow R(G)$ $I' \leftarrow MIS(G')$ $I \leftarrow R^{-1}(G', I')$ return /

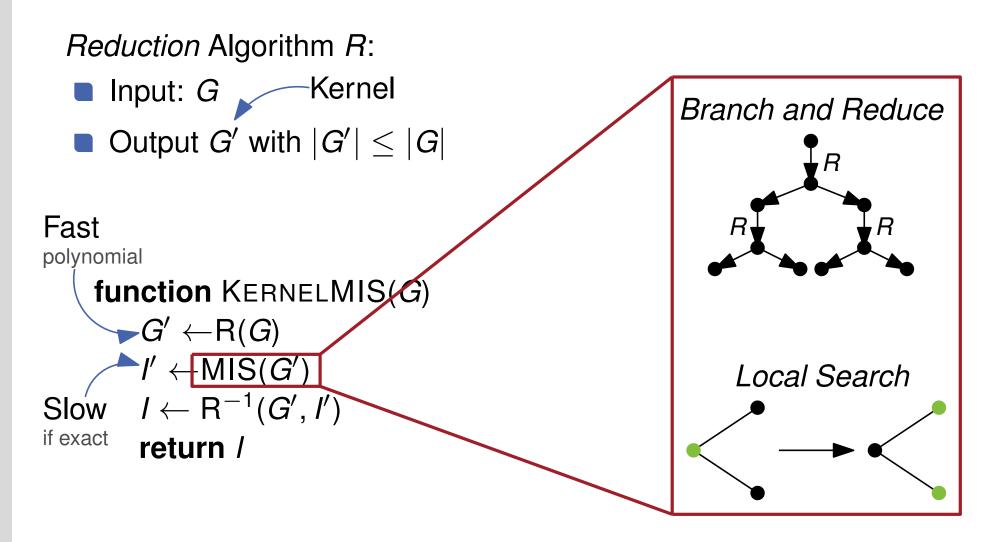
Reduction Algorithm *R*: Input: *G* Kernel Output *G*' with $|G'| \le |G|$

function KERNELMIS(G) $G' \leftarrow R(G)$ $I' \leftarrow MIS(G')$ $I \leftarrow R^{-1}(G', I')$ return /

Reduction Algorithm R:

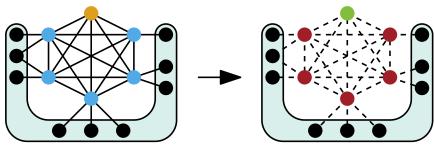
- Input: G Kernel
- Output G' with $|G'| \leq |G|$

```
Fast
polynomial
function KERNELMIS(G)
G' \leftarrow R(G)
I' \leftarrow MIS(G')
Slow I \leftarrow R^{-1}(G', I')
if exact return I
```

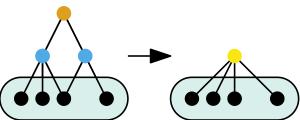



Reduction Algorithm *R*: Kernel Input: G Output G' with |G'|G Fast polynomial function KERNELMIS(G) $-G' \leftrightarrow \mathsf{R}(G)$ $H' \leftarrow \mathsf{MIS}(G')$ $I \leftarrow \mathsf{R}^{-1}(G',$ Slow if exact return /

Isolated Clique Reduction



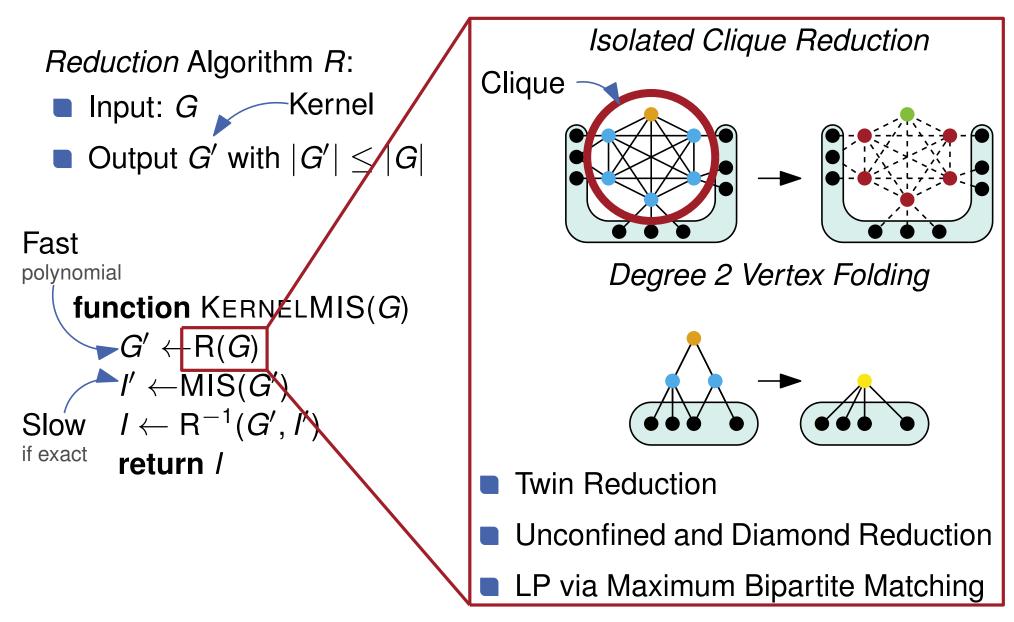
Degree 2 Vertex Folding

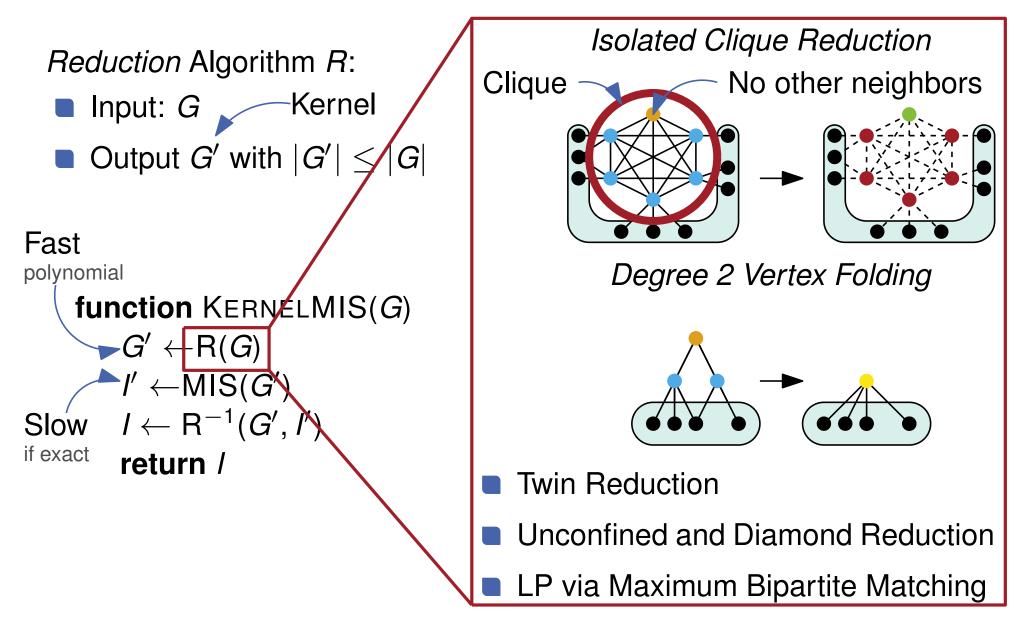


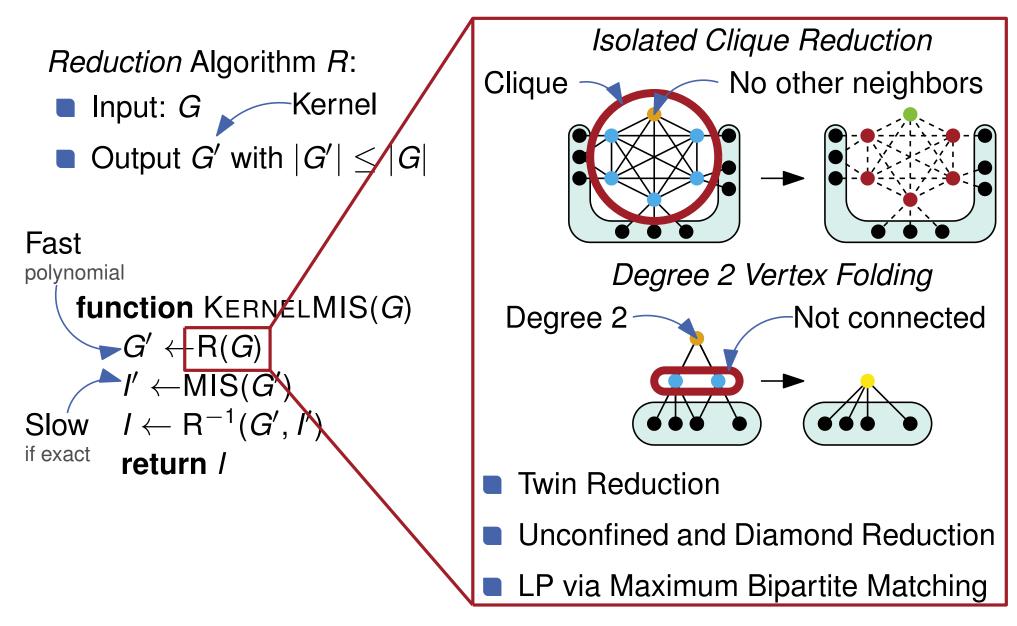
Twin Reduction

Unconfined and Diamond Reduction

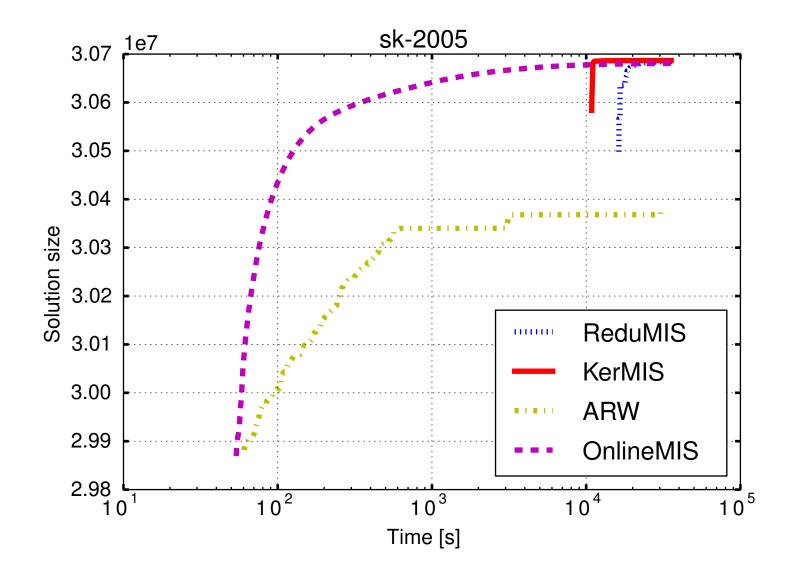
LP via Maximum Bipartite Matching



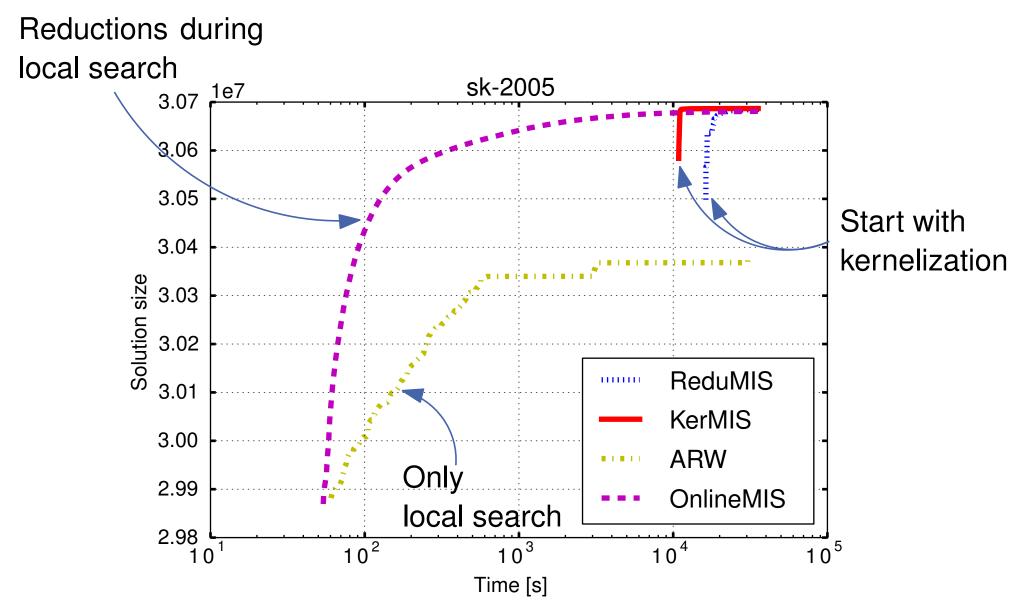


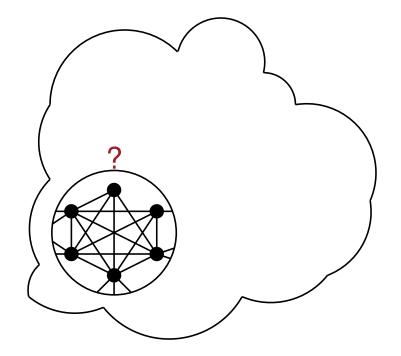


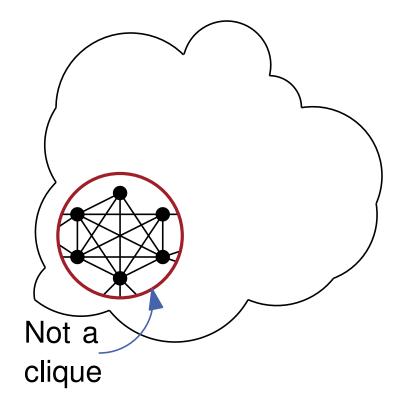
Motivation

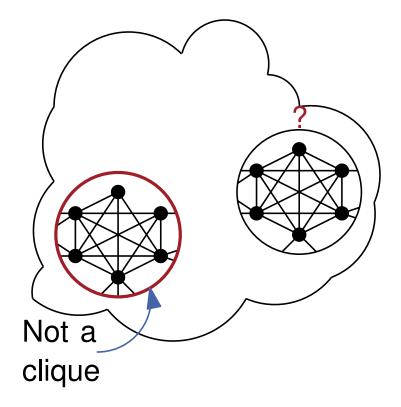


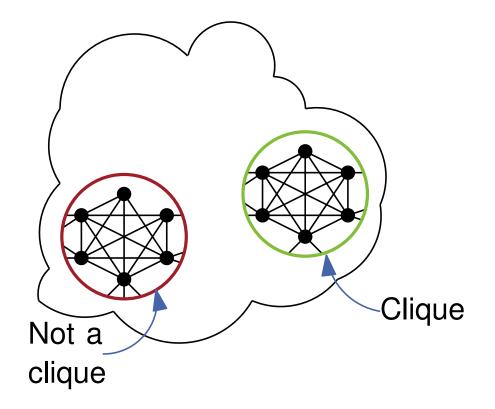
Motivation

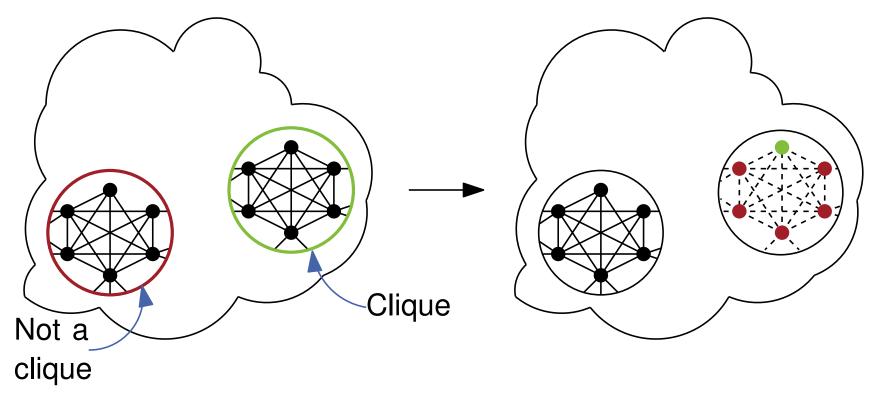


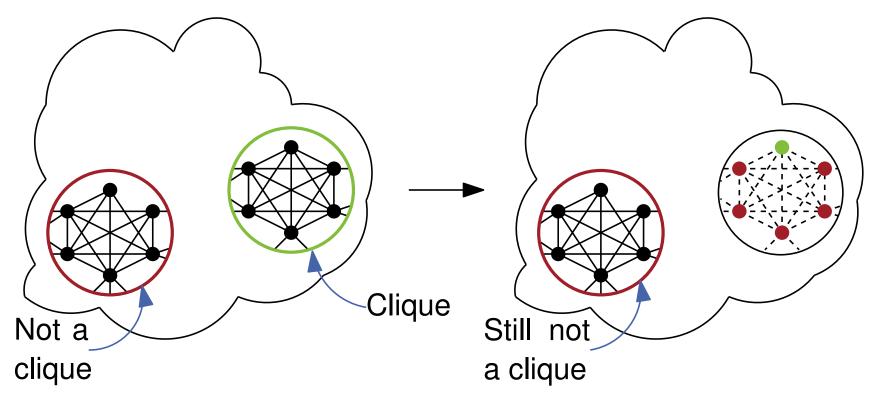


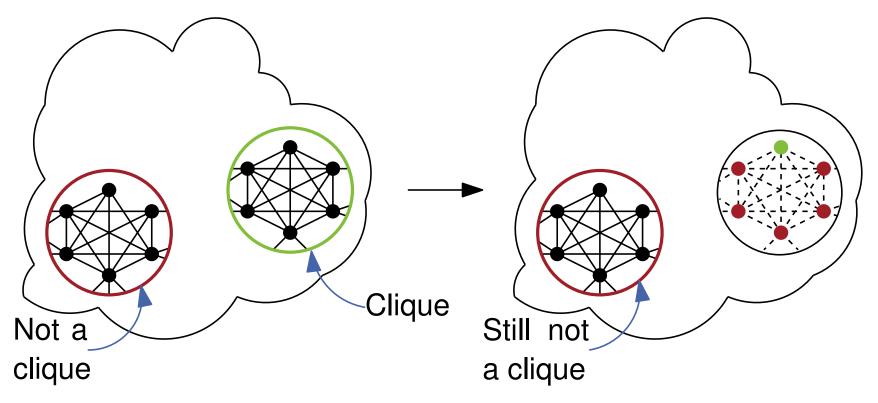








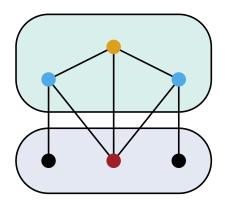


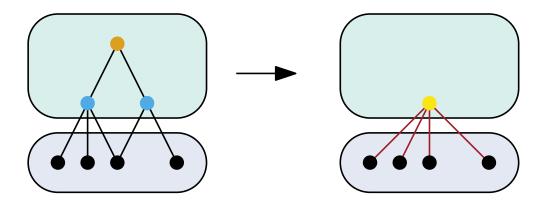


No reduction in *G* and $N_G(v) = N_{G'}(v) \Rightarrow$ No reduction in *G*'

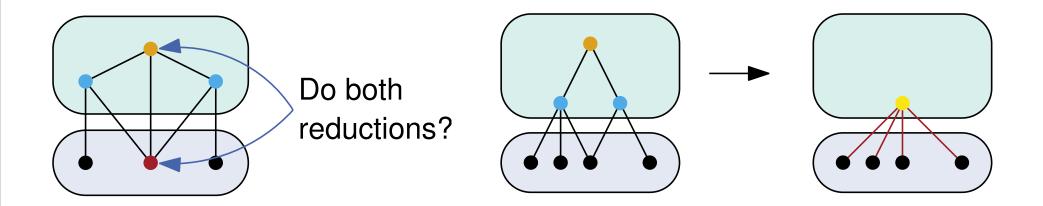
Isolated Clique Reduction
 Degree 2 Fold Reduction
 Twin Reduction
 Twin Reduction
 LP Reduction

- Idea: Partition graph into blocks and reduce them separately
- Boundaries problematic

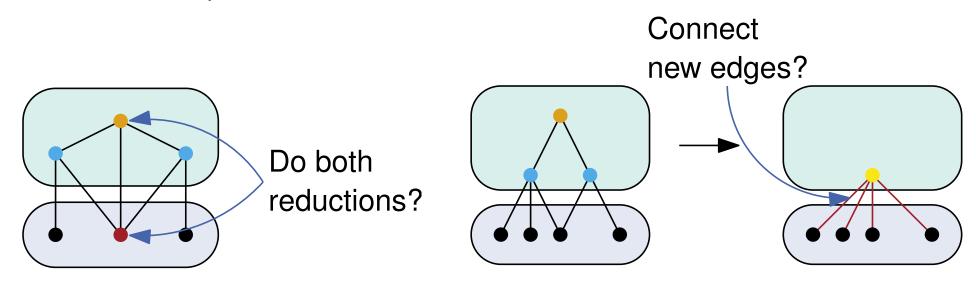




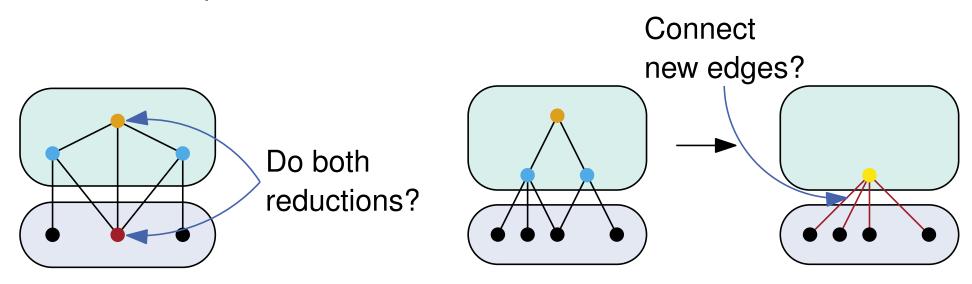
- Idea: Partition graph into blocks and reduce them separately
- Boundaries problematic



- Idea: Partition graph into blocks and reduce them separately
- Boundaries problematic

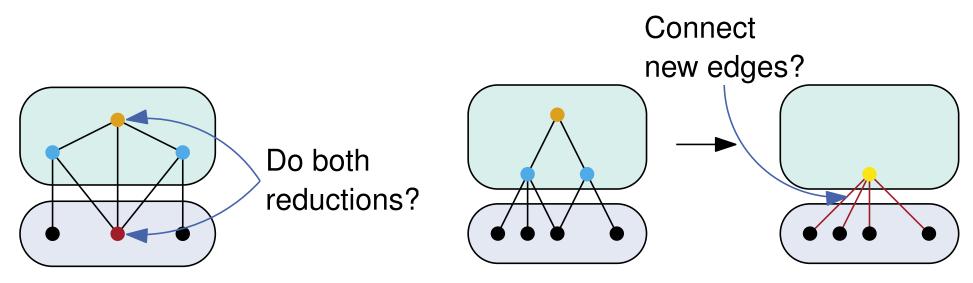


- Idea: Partition graph into blocks and reduce them separately
- Boundaries problematic



ParHIP (part of KaHIP) finds low cuts in parallel [Meyerhenke et al., TPDS'17]

- Idea: Partition graph into blocks and reduce them separately
- Boundaries problematic

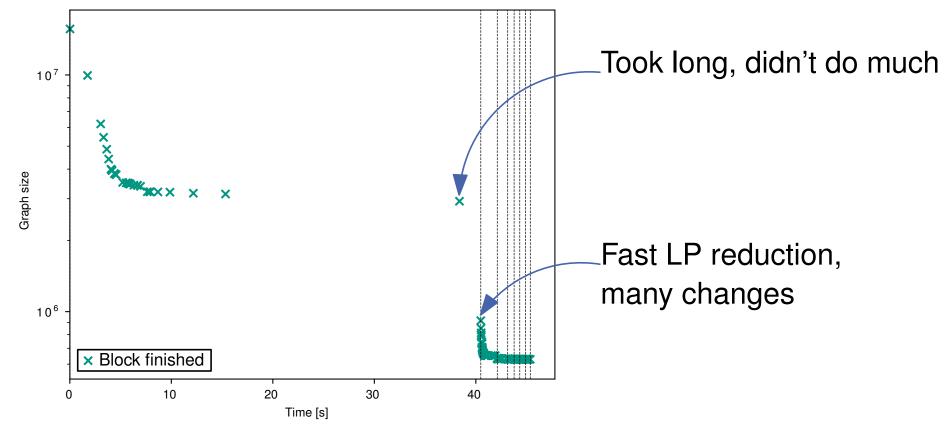


ParHIP (part of KaHIP) finds low cuts in parallel [Meyerhenke et al., TPDS'17]

Parallelize LP reduction with parallel maximum bipartite matching [Azad et al., TPDS'17]

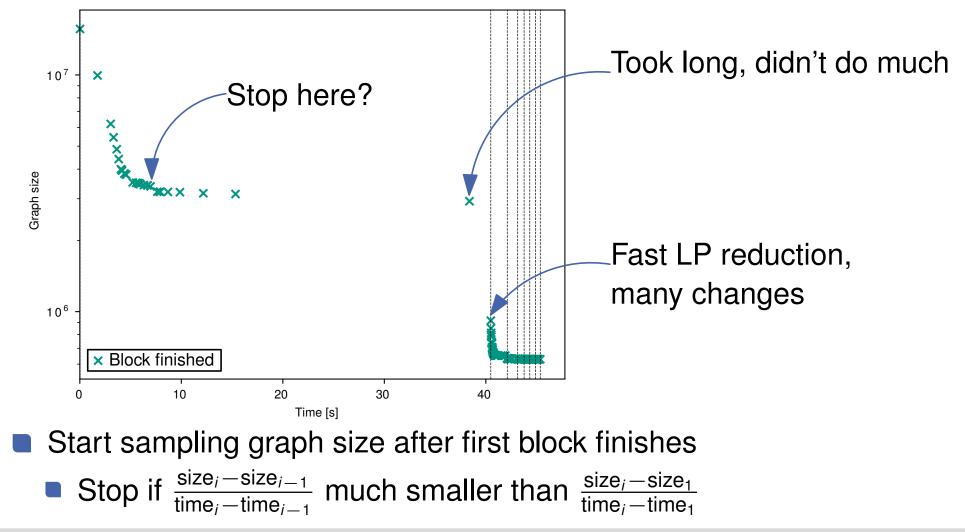
Reduction Tracking

- Some blocks take significantly longer than others
- Few changes after a while



Reduction Tracking

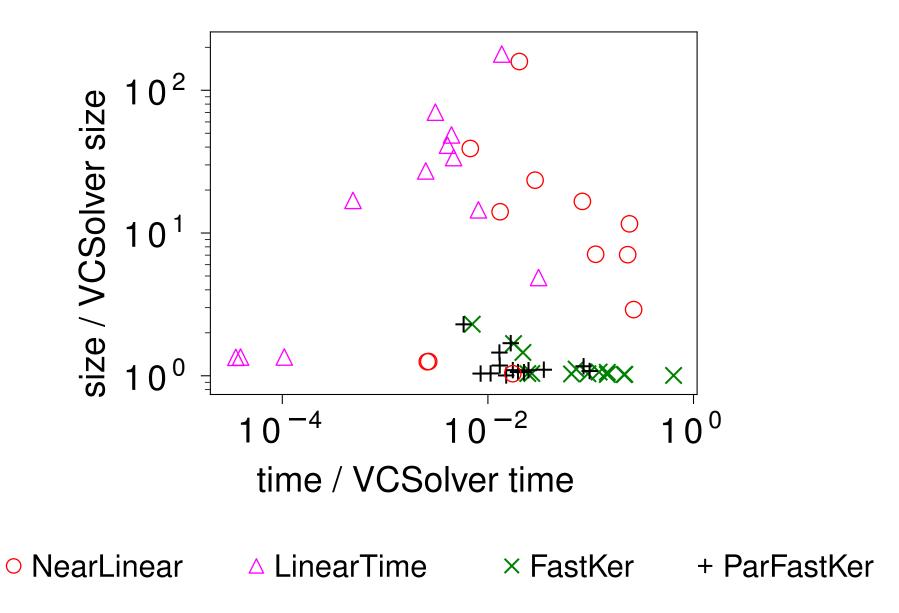
- Some blocks take significantly longer than others
- Few changes after a while



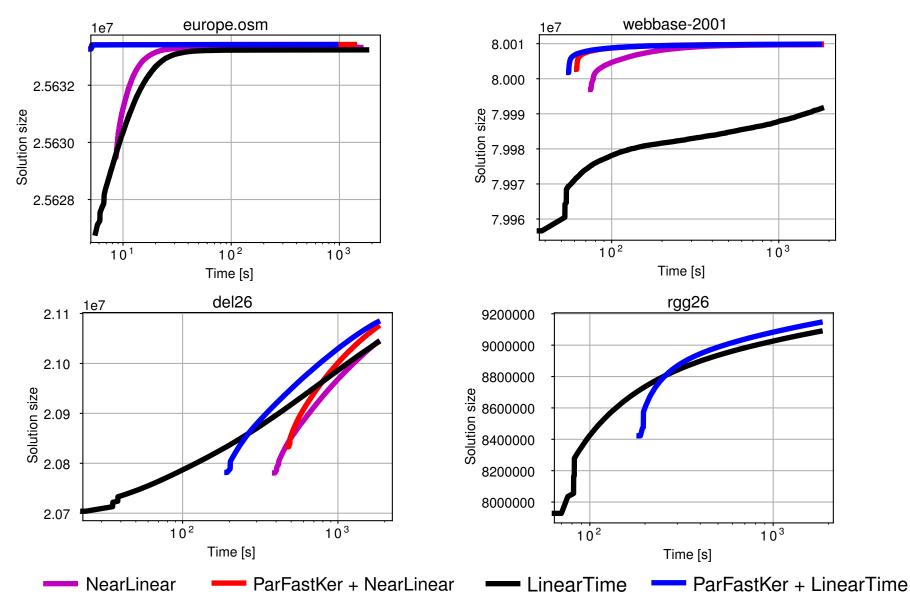
Experimental Setup

- Implemented in C++, OpenMP
- g++ 5.4 with -O3
- Machine:
 - 2 x Intel Xeon E5-2683 v4 processors (16 cores each)
 - 512 GB Memory
 - Ubuntu 14.04.5 LTS
- Different input graphs with > 10M vertices
 - Real world: Web graphs, road networks
 - Synthetic: RGG, RHG, delaunay triangulations
- Comparison with state of the art algorithms:
 - VCSolver [Akiba and Iwata, TCS'16]: Slow but small
 - LinearTime and NearLinear [Chang et al., MOD'17]: Fast but big
 - We use LinearTime as preprocessing step

Time vs. Kernel Size



Local Search



Conclusion

- Orders of magnitude smaller than fast methods
- Orders of magnitude faster than algorithms with similar sized kernels
- Local search shows: Small kernels matter!
 - We find *larger* independent sets *faster*

Future Work

- What about other MIS algorithms that use kernelization?
- Other problems that use kernelization
 - e.g. undirected feedback vertex set, graph coloring problems