
KARLSRUHE INSTITUTE OF TECHNOLOGY // UNIVERSITY GRENOBLE ALPES

Tree-REX: SAT-based Tree Exploration
For Efficient and High-Quality HTN Planning
29th International Conference on Automated Planning and Scheduling
Dominik Schreiber, Damien Pellier, Humbert Fiorino, Tomáš Balyo | July 13, 2019

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

www.kit.edu

http://www.kit.edu

Outline

Introduction
{Automated, Hierarchical, SAT-based} Planning

Related Work

Tree-REX Planning approach
Algorithm; Encoding; Plan length optimization

Evaluation

Conclusion

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 2/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

(World) State: Consistent set of boolean atoms;
e.g. at(ball,A), at(robot,B)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Action a: Has boolean preconditions and effects;
e.g. action move(robot,A,B) requires at(robot,A),
deletes at(robot,A), adds at(robot,B)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Goal g: Subset of possible states, e.g. at(ball,B) must hold

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π =

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π = 〈 pickup(robot,ball,A)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π = 〈 pickup(robot,ball,A), move(robot,A,B)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π = 〈 pickup(robot,ball,A), move(robot,A,B),

drop(robot,ball,B) 〉

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 3/17

Hierarchical Planning

Main idea: Share domain-specific expert knowledge with your planner.

Which tasks need to be achieved

How to directly achieve simple tasks

How to break down complex tasks into simpler ones

Most popular: Hierarchical Task Network (HTN) Planning [Erol et al., 1994]

Extension of classical planning (states, actions, plans)

More expressive than classical planning

More focused search, enables more efficient planning

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 4/17

Hierarchical Planning

Main idea: Share domain-specific expert knowledge with your planner.

Which tasks need to be achieved

How to directly achieve simple tasks

How to break down complex tasks into simpler ones

Most popular: Hierarchical Task Network (HTN) Planning [Erol et al., 1994]

Extension of classical planning (states, actions, plans)

More expressive than classical planning

More focused search, enables more efficient planning

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 4/17

Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 5/17

Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Root(s): Initial task(s), part of problem input

Abstract notion of what needs to be achieved

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 5/17

Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Directed edges: Subtask relationships

Totally ordered HTN planning⇒ Total order on subtasks

Span a tree of tasks

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 5/17

Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Inner nodes: Compound tasks

Can be achieved by picking a method and achieving each subtask

Example: Method move-ball(ball, to, r, x, y)

Preconditions { at(ball,x), at(r,y) },
Subtasks 〈 (1) navigate(r,y,x), (2) pickup(r,ball,x),

(3) navigate(r,x,to), (4) drop(r,ball,to) 〉

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 5/17

Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Leaf nodes: Primitive tasks

Directly correspond to applying a certain action

In-order traversal of all leaves⇒ Plan!

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 5/17

SAT-based (Classical) Planning

Iteratively encode planning problem into propositional logic
up to a certain number n of steps [Kautz and Selman, 1992]

SAT planner

Actions

Initial state

Goal(s)

Encoder
for n steps

n := 0

SAT
Solver

Result?

UNSAT:
 n++

Decoder
SAT: 1 -2 3
-4 -5 -6 7 8 -9 ...

Plan

1. ...
2. ...
3. ...
...

(1 2) ∨ ∧
(¬2 3 7) ∨ ∨

 ∧ ...

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 6/17

SAT-based Totally Ordered HTN Planning

1998: Inception of SAT-based HTN planning [Mali and Kambhampati, 1998]

Encodings do not address recursive task relationships
(fixed maximum amount of actions for each task)

Complexity of clauses and variables cubic in amount of steps

2018: totSAT [Behnke et al., 2018]

Encode problem’s hierarchy up to depth k until satisfiable for some k

Method preconditions compiled into “virtual actions”

2019: SAT-based Stack Machine Simulation [Schreiber et al., 2019]

Uses incremental SAT solving: Maintains a single logical formula

Requires hyperparameter (maximum stack size to encode)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 7/17

SAT-based Totally Ordered HTN Planning

1998: Inception of SAT-based HTN planning [Mali and Kambhampati, 1998]

Encodings do not address recursive task relationships
(fixed maximum amount of actions for each task)

Complexity of clauses and variables cubic in amount of steps

2018: totSAT [Behnke et al., 2018]

Encode problem’s hierarchy up to depth k until satisfiable for some k

Method preconditions compiled into “virtual actions”

2019: SAT-based Stack Machine Simulation [Schreiber et al., 2019]

Uses incremental SAT solving: Maintains a single logical formula

Requires hyperparameter (maximum stack size to encode)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 7/17

SAT-based Totally Ordered HTN Planning

1998: Inception of SAT-based HTN planning [Mali and Kambhampati, 1998]

Encodings do not address recursive task relationships
(fixed maximum amount of actions for each task)

Complexity of clauses and variables cubic in amount of steps

2018: totSAT [Behnke et al., 2018]

Encode problem’s hierarchy up to depth k until satisfiable for some k

Method preconditions compiled into “virtual actions”

2019: SAT-based Stack Machine Simulation [Schreiber et al., 2019]

Uses incremental SAT solving: Maintains a single logical formula

Requires hyperparameter (maximum stack size to encode)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 7/17

Tree-like Reduction Exploration

Explore hierarchy breadth-first (layer by layer)

Each layer contains potential abstract plans
Expand hierarchy until actual valid plan is found

Primitive subtasks only
All preconditions, effects, goals hold

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 8/17

Tree-like Reduction Exploration

Explore hierarchy breadth-first (layer by layer)

Each layer contains potential abstract plans
Expand hierarchy until actual valid plan is found

Primitive subtasks only
All preconditions, effects, goals hold

Layer 0:
3 initial tasks

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 8/17

Tree-like Reduction Exploration

Explore hierarchy breadth-first (layer by layer)

Each layer contains potential abstract plans
Expand hierarchy until actual valid plan is found

Primitive subtasks only
All preconditions, effects, goals hold

Layer 0:
3 initial tasks

Layer 1

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 8/17

Tree-like Reduction Exploration

Explore hierarchy breadth-first (layer by layer)

Each layer contains potential abstract plans
Expand hierarchy until actual valid plan is found

Primitive subtasks only
All preconditions, effects, goals hold

Layer 0:
3 initial tasks

Layer 1

Layer 2

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 8/17

Tree-like Reduction Exploration

Explore hierarchy breadth-first (layer by layer)

Each layer contains potential abstract plans
Expand hierarchy until actual valid plan is found

Primitive subtasks only
All preconditions, effects, goals hold

Layer 0:
3 initial tasks

Layer 1

Layer 2: Plan!

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 8/17

Tree-REX: Algorithm

Algorithm: Tree-REX Planning Procedure
1: Π := Preprocess and ground HTN planning problem;
2: C := ∅; // Logical clauses
3: nextLayer := GenerateFirstLayer(Π);
4: prevLayer := nextLayer ;
5: result := NONE;

6: while result = NONE do
7: prevLayer := nextLayer ;
8: nextLayer := Expand(nextLayer); // Create new hierarchical layer
9: C := C ∪ Encode(prevLayer, nextLayer); // Add clauses

10: result := Solve(C, AssumeAllPrimitive(nextLayer)); // SAT Solving
11: return Decode(Π, result). // Extract plan from sat. assignment

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 9/17

Tree-REX: Algorithm

Algorithm: Tree-REX Planning Procedure
1: Π := Preprocess and ground HTN planning problem;
2: C := ∅; // Logical clauses
3: nextLayer := GenerateFirstLayer(Π);
4: prevLayer := nextLayer ;
5: result := NONE;
6: while result = NONE do
7: prevLayer := nextLayer ;
8: nextLayer := Expand(nextLayer); // Create new hierarchical layer

9: C := C ∪ Encode(prevLayer, nextLayer); // Add clauses
10: result := Solve(C, AssumeAllPrimitive(nextLayer)); // SAT Solving
11: return Decode(Π, result). // Extract plan from sat. assignment

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 9/17

Tree-REX: Algorithm

Algorithm: Tree-REX Planning Procedure
1: Π := Preprocess and ground HTN planning problem;
2: C := ∅; // Logical clauses
3: nextLayer := GenerateFirstLayer(Π);
4: prevLayer := nextLayer ;
5: result := NONE;
6: while result = NONE do
7: prevLayer := nextLayer ;
8: nextLayer := Expand(nextLayer); // Create new hierarchical layer
9: C := C ∪ Encode(prevLayer, nextLayer); // Add clauses

10: result := Solve(C, AssumeAllPrimitive(nextLayer)); // SAT Solving

11: return Decode(Π, result). // Extract plan from sat. assignment

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 9/17

Tree-REX: Algorithm

Algorithm: Tree-REX Planning Procedure
1: Π := Preprocess and ground HTN planning problem;
2: C := ∅; // Logical clauses
3: nextLayer := GenerateFirstLayer(Π);
4: prevLayer := nextLayer ;
5: result := NONE;
6: while result = NONE do
7: prevLayer := nextLayer ;
8: nextLayer := Expand(nextLayer); // Create new hierarchical layer
9: C := C ∪ Encode(prevLayer, nextLayer); // Add clauses

10: result := Solve(C, AssumeAllPrimitive(nextLayer)); // SAT Solving
11: return Decode(Π, result). // Extract plan from sat. assignment

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 9/17

Tree-REX: Encoding into SAT

Boolean variables:

Variable for each possible fact/action/method at each position (l, i)

Variable indicating primitiveness of each position (l, i)

Clauses:

Initial layer: Enforce initial task network

Every layer: Classical planning clauses for occurring facts, actions
[Kautz and Selman, 1992]

In between layers: Propagation of facts, actions,
Reduction of methods into any of its possible children

Final layer: Enforce actions only (no methods!)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 10/17

Tree-REX: Encoding into SAT

Boolean variables:

Variable for each possible fact/action/method at each position (l, i)

Variable indicating primitiveness of each position (l, i)

Clauses:

Initial layer: Enforce initial task network

Every layer: Classical planning clauses for occurring facts, actions
[Kautz and Selman, 1992]

In between layers: Propagation of facts, actions,
Reduction of methods into any of its possible children

Final layer: Enforce actions only (no methods!)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 10/17

Tree-REX: Plan Length Optimization

Solution is found at layer m: Plan has some length n ≤ size(lastLayer)

⇒ Length of plan ≡ Amount of actual actions at final layer

⇒ No incentive for SAT solver to prefer solutions with fewer actions

Quality awareness: Use incremental SAT solving to find better plans

Encode simple plan length counter at final layer:
Boolean variable for “plan length is greater than or equal to x”

Enforce plan length smaller than n as an additional assumption

⇒ SAT: Better plan has been found (length < n)

⇒ UNSAT: Plan length n is already optimal at this layer

Anytime procedure: Better results the more resources are invested

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 11/17

Tree-REX: Plan Length Optimization

Solution is found at layer m: Plan has some length n ≤ size(lastLayer)

⇒ Length of plan ≡ Amount of actual actions at final layer

⇒ No incentive for SAT solver to prefer solutions with fewer actions

Quality awareness: Use incremental SAT solving to find better plans

Encode simple plan length counter at final layer:
Boolean variable for “plan length is greater than or equal to x”

Enforce plan length smaller than n as an additional assumption

⇒ SAT: Better plan has been found (length < n)

⇒ UNSAT: Plan length n is already optimal at this layer

Anytime procedure: Better results the more resources are invested

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 11/17

Tree-REX: Plan Length Optimization

Solution is found at layer m: Plan has some length n ≤ size(lastLayer)

⇒ Length of plan ≡ Amount of actual actions at final layer

⇒ No incentive for SAT solver to prefer solutions with fewer actions

Quality awareness: Use incremental SAT solving to find better plans

Encode simple plan length counter at final layer:
Boolean variable for “plan length is greater than or equal to x”

Enforce plan length smaller than n as an additional assumption

⇒ SAT: Better plan has been found (length < n)

⇒ UNSAT: Plan length n is already optimal at this layer

Anytime procedure: Better results the more resources are invested

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 11/17

Evaluations

PDDL benchmarks from previous HTN planning evaluations
[Behnke et al., 2018, Ramoul et al., 2017]

Competitors:
Tree-REX (no plan length optimization)
Tree-REX-o (with plan length optimization)
totSAT [Behnke et al., 2018] (AAAI-18 configuration)

SAT solver: MiniSat [Eén and Sörensson, 2003] for all competitors

Up to 5 minutes of total run time

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 12/17

Evaluations: Run Times

Domain #Inst. totSAT Tree-REX Tree-REX-o
Barman 20 5.00 20.00 9.19
Blocksworld 20 4.02 20.00 19.22
Childsnack 20 0.91 20.00 19.99
Depots 20 7.81 19.36 18.95
Entertainment 12 6.73 9.25 8.94
Gripper 20 2.92 20.00 19.85
Hiking 20 0.93 20.00 17.93
Rover 20 0.87 20.00 10.12
Satellite 20 1.23 16.00 8.62
Transport 30 3.77 30.00 21.51

Table: Run time IPC scores

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 13/17

Evaluations: Plan Quality

Domain #Inst. totSAT Tree-REX Tree-REX-o
Barman 20 19.67 18.67 20.00
Blocksworld 20 18.36 19.68 19.68
Childsnack 20 12.00 20.00 20.00
Depots 20 18.59 19.74 19.93
Entertainment 12 11.92 11.79 12.00
Gripper 20 20.00 20.00 20.00
Hiking 20 11.00 20.00 20.00
Rover 20 4.83 13.08 20.00
Satellite 20 9.80 9.66 16.00
Transport 30 23.71 26.04 30.00

Table: Plan length IPC scores

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 14/17

Conclusion

Tree-REX: SAT-based totally ordered HTN planning

Rapid encoding and solving through incremental SAT solving

Anytime plan length optimization
⇒ First quality-aware SAT-based HTN planner

Outperforms state-of-the-art SAT-based planning
regarding run times and/or plan quality

Future work

Integrate into framework with additional features
(disjunctive / ADL conditions, conditional effects, . . .)

Interleave expansion and resolution of hierarchical layers

Investigate (partially) lifted SAT encodings for HTN

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 15/17

Conclusion

Tree-REX: SAT-based totally ordered HTN planning

Rapid encoding and solving through incremental SAT solving

Anytime plan length optimization
⇒ First quality-aware SAT-based HTN planner

Outperforms state-of-the-art SAT-based planning
regarding run times and/or plan quality

Future work

Integrate into framework with additional features
(disjunctive / ADL conditions, conditional effects, . . .)

Interleave expansion and resolution of hierarchical layers

Investigate (partially) lifted SAT encodings for HTN

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 15/17

References I

Behnke, G., Höller, D., and Biundo, S. (2018).

totSAT–totally-ordered hierarchical planning through SAT.

In Proceedings of the 32th AAAI conference on AI (AAAI 2018). AAAI Press.

Eén, N. and Sörensson, N. (2003).

Temporal induction by incremental SAT solving.

Electronic Notes in Theoretical Computer Science, 89(4):543–560.

Erol, K., Hendler, J., and Nau, D. (1994).

UMCP: A sound and complete procedure for hierarchical task-network planning.

In Proceedings of the Artificial Intelligence Planning Systems, volume 94, pages
249–254.

Kautz, H. and Selman, B. (1992).

Planning as Satisfiability.

In Proceedings of the European Conference on Artificial Intelligence, pages
359–363.

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 16/17

References II

Mali, A. and Kambhampati, S. (1998).

Encoding HTN planning in propositional logic.

In Proceedings International Conference on Artificial Intelligence Planning and
Scheduling, pages 190–198.

Ramoul, A., Pellier, D., Fiorino, H., and Pesty, S. (2017).

Grounding of HTN planning domain.

International Journal on Artificial Intelligence Tools, 26(5):1–24.

Schreiber, D., Balyo, T., Pellier, D., and Fiorino, H. (2019).

Efficient SAT encodings for hierarchical planning.

In Proceedings of the 11th International Conference on Agents and Artificial
Intelligence, ICAART 2019, volume 2, pages 531–538.

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 17/17

Hierarchical Planning

Generally, can allow partially ordered and interleaving subtasks
(here: total order on subtasks)

Difficulty of HTN planning: Choosing the “right” method to fulfill a task
(non-deterministic / randomized choice, heuristics, . . .)

Compared to classical planning:

Smaller, more directed search space to find a plan

More expressive [Erol et al., 1994]

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 1/12

Tree-like Reduction Exploration (2/2)

Layer l : Array [0, . . . , sl − 1] of sets of facts, actions, and methods

Lookup for which objects need to be encoded where at layer l

(l, i) := i-th position of layer l

x ∈ (l, i) :⇔ encode method / action / fact x at position (l, i)

Inductive construction of layers:

Layer 0: Fully defined by initial state and initial task network

Layer n − 1 n: Propagate facts and actions, reduce methods,
add facts implied by new actions and methods

Each subtask may have many different realizations to choose from!

Example: walk(a,b) may be achieved by walking over c, over d, . . .

Encode all options – SAT solver will decide on which option to take

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 2/12

Tree-like Reduction Exploration (2/2)

Layer l : Array [0, . . . , sl − 1] of sets of facts, actions, and methods

Lookup for which objects need to be encoded where at layer l

(l, i) := i-th position of layer l

x ∈ (l, i) :⇔ encode method / action / fact x at position (l, i)

Inductive construction of layers:

Layer 0: Fully defined by initial state and initial task network

Layer n − 1 n: Propagate facts and actions, reduce methods,
add facts implied by new actions and methods

Each subtask may have many different realizations to choose from!

Example: walk(a,b) may be achieved by walking over c, over d, . . .

Encode all options – SAT solver will decide on which option to take

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 2/12

Tree-like Reduction Exploration (2/2)

Layer l : Array [0, . . . , sl − 1] of sets of facts, actions, and methods

Lookup for which objects need to be encoded where at layer l

(l, i) := i-th position of layer l

x ∈ (l, i) :⇔ encode method / action / fact x at position (l, i)

Inductive construction of layers:

Layer 0: Fully defined by initial state and initial task network

Layer n − 1 n: Propagate facts and actions, reduce methods,
add facts implied by new actions and methods

Each subtask may have many different realizations to choose from!

Example: walk(a,b) may be achieved by walking over c, over d, . . .

Encode all options – SAT solver will decide on which option to take

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 2/12

Tree-like Reduction Exploration (3/2)

Example: Rover planning problem with one initial task,
showing only one of the possible actions/methods at each position

get_soil_data(w0) navigate(w0)

empty_store()

send_soil_data(w0)

sample_soil(w0)

do_navigate(w1,w0)

visit(w1)

unvisit(w1)

nop()

sample_soil(w0)

communicate(w0,w1)

visit(w1)

unvisit(w1)

nop()

sample_soil(w0)

communicate(w0,w1)

move(w1,w0)

Fact constraint

Reduction

Action

Layer 0 Layer 1 Layer 2 Layer 3

Expansion

Propagation

Layer 3: Valid sequence of primitive actions⇒ Finished plan!

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 3/12

Tree-like Reduction Exploration (3/2)

Example: Rover planning problem with one initial task,
showing only one of the possible actions/methods at each position

get_soil_data(w0) navigate(w0)

empty_store()

send_soil_data(w0)

sample_soil(w0)

do_navigate(w1,w0)

visit(w1)

unvisit(w1)

nop()

sample_soil(w0)

communicate(w0,w1)

visit(w1)

unvisit(w1)

nop()

sample_soil(w0)

communicate(w0,w1)

move(w1,w0)

Fact constraint

Reduction

Action

Layer 0 Layer 1 Layer 2 Layer 3

Expansion

Propagation

Layer 3: Valid sequence of primitive actions⇒ Finished plan!

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 3/12

Tree-REX: Encoding into SAT (1/2)

Boolean variables:

Variable for each possible fact/action/method at each position (l, i)

Variable indicating primitiveness of each position (l, i)

Classical planning clauses: mostly from [Kautz and Selman, 1992]
1 The initial state holds at (l, 0) and the goals hold at (l, sl).
2 An action at (l, i) implies its preconditions at (l, i)

and its effects at (l, i + 1).
3 At most one action occurs at each position (l, i).
4 A fact changes its value from (l, i) to (l, i + 1) only if some action

supporting the fact change occurs at (l, i) or (l, i) is not primitive.

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 4/12

Tree-REX: Encoding into SAT (1/2)

Boolean variables:

Variable for each possible fact/action/method at each position (l, i)

Variable indicating primitiveness of each position (l, i)

Classical planning clauses: mostly from [Kautz and Selman, 1992]
1 The initial state holds at (l, 0) and the goals hold at (l, sl).
2 An action at (l, i) implies its preconditions at (l, i)

and its effects at (l, i + 1).
3 At most one action occurs at each position (l, i).
4 A fact changes its value from (l, i) to (l, i + 1) only if some action

supporting the fact change occurs at (l, i) or (l, i) is not primitive.

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 4/12

Tree-REX: Encoding into SAT (2/2)

Primitiveness and method preconditions:
5 An action (method) at position p implies that p is (not) primitive.
6 A method at (l, i) implies its preconditions at (l, i).

Transitions from layer l to layer l + 1, former position i shifted to i ′ ≥ i :
7 A fact holds at (l, i) iff it holds at (l + 1, i ′).
8 An action at (l, i) implies the same action at (l + 1, i ′).
9 A method at (l, i) implies any of its valid children at

(l + 1, i ′), . . . , (l + 1, i ′ + k).

Initial and final layer:
10 Each initial task ti implies some according method/action at (0, i).
11 Each position of the final layer is primitive. (Goal assumptions)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 5/12

Tree-REX: Encoding into SAT (2/2)

Primitiveness and method preconditions:
5 An action (method) at position p implies that p is (not) primitive.
6 A method at (l, i) implies its preconditions at (l, i).

Transitions from layer l to layer l + 1, former position i shifted to i ′ ≥ i :
7 A fact holds at (l, i) iff it holds at (l + 1, i ′).
8 An action at (l, i) implies the same action at (l + 1, i ′).
9 A method at (l, i) implies any of its valid children at

(l + 1, i ′), . . . , (l + 1, i ′ + k).

Initial and final layer:
10 Each initial task ti implies some according method/action at (0, i).
11 Each position of the final layer is primitive. (Goal assumptions)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 5/12

Tree-REX: Encoding into SAT (2/2)

Primitiveness and method preconditions:
5 An action (method) at position p implies that p is (not) primitive.
6 A method at (l, i) implies its preconditions at (l, i).

Transitions from layer l to layer l + 1, former position i shifted to i ′ ≥ i :
7 A fact holds at (l, i) iff it holds at (l + 1, i ′).
8 An action at (l, i) implies the same action at (l + 1, i ′).
9 A method at (l, i) implies any of its valid children at

(l + 1, i ′), . . . , (l + 1, i ′ + k).

Initial and final layer:
10 Each initial task ti implies some according method/action at (0, i).
11 Each position of the final layer is primitive. (Goal assumptions)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 5/12

Tree-REX: Realization

Encoding

Enforce virtual “blank” actions where positions should remain empty

Additional (redundant) clauses: Backwards propagation –
Necessary conditions for an action / method to occur somewhere

Various optimizations reducing clauses and/or variables

Implementation

Preprocessing and grounding from [Ramoul et al., 2017]

Separate interpreter application
– Receives abstract encoding “blueprint”
– Instantiates clauses as necessary

IPASIR as generic incremental SAT interface
⇒ Plug in any modern incremental SAT solver

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 6/12

Tree-REX: Realization

Encoding

Enforce virtual “blank” actions where positions should remain empty

Additional (redundant) clauses: Backwards propagation –
Necessary conditions for an action / method to occur somewhere

Various optimizations reducing clauses and/or variables

Implementation

Preprocessing and grounding from [Ramoul et al., 2017]

Separate interpreter application
– Receives abstract encoding “blueprint”
– Instantiates clauses as necessary

IPASIR as generic incremental SAT interface
⇒ Plug in any modern incremental SAT solver

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 6/12

Tree-REX

Expansion of Methods.
Consider the l-th and (l + 1)-th hierarchical layers of an HTN planning
problem. For some i ≥ 0, all facts and actions at (l, i) are propagated to
(l + 1, i ′), where i ′ ≥ i . Let method r occur at (l, i).

If the k -th subtask tk of r is primitive, the corresponding action atk is
added to (l + 1, i ′).

If tk is compound, each possible corresponding method r ′ ∈ R(tk) is
added to (l + 1, i ′ + k).

How to incrementally build formula layer by layer?

Add clauses (9) once, clauses (1-8) for each new layer l

Assume clauses (10) before each solving attempt (drop afterwards)

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 7/12

Evaluation Plots I

0 25 50 75 100 125 150 175 200

Number of solved instances

100

101

102

Ti
m

e
lim

it
/s

Tree-REX
Tree-REX-o
totSAT

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 8/12

Evaluation Plots II

0 25 50 75 100 125 150 175 200

Number of solved instances

0

100

200

300

400

500

600
Pl

an
le

ng
th

Tree-REX
Tree-REX-o
totSAT

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 9/12

Evaluation Plots III

0 3 6 9 12 15 18 21
0

20

40

60

Ti
m

e
lim

it
/s

Barman

Tree-REX
Tree-REX-o
totSAT

0 3 6 9 12 15 18 21
0

25

50

75

Blocksworld

0 3 6 9 12 15 18 21
0

25

50

75

Childsnack

0 3 6 9 12 15 18 21
0

10

20

Depots

0 2 4 6 8 10 12
0

10

20

Entertainment

0 3 6 9 12 15 18 21

Solved instances

0

2

4

Ti
m

e
lim

it
/s

Gripper

0 3 6 9 12 15 18 21

Solved instances

0

20

40

60

Hiking

0 3 6 9 12 15 18 21

Solved instances

0

100

200

300

Rover

0 2 4 6 8 10 12 14 16

Solved instances

0

100

200

300

Satellite

0 4 8 12 16 20 24 28

Solved instances

0

100

200

Transport

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 10/12

Evaluation Plots IV

0 3 6 9 12 15 18 21
0

100

200

Pl
an

le
ng

th

Barman

Tree-REX
Tree-REX-o
totSAT

0 3 6 9 12 15 18 21
0

100

200
Blocksworld

0 3 6 9 12 15 18 21
0

50

100

Childsnack

0 3 6 9 12 15 18 21
0

25

50

75

Depots

0 2 4 6 8 10 12
0

5

10

Entertainment

0 3 6 9 12 15 18 21

Solved instances

0

50

100

Pl
an

le
ng

th

Gripper

0 3 6 9 12 15 18 21

Solved instances

0

50

100
Hiking

0 3 6 9 12 15 18 21

Solved instances

0

200

400

600

Rover

0 2 4 6 8 10 12 14 16

Solved instances

0

200

400

600

Satellite

0 4 8 12 16 20 24 28

Solved instances

0

100

200

Transport

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 11/12

Evaluations: Insights

Tree-REX dominates run times, Tree-REX-o dominates plan quality
Plan length optimization heavily domain-dependent

Not improvable due to rigid hierarchy (e.g. Childsnack, Gripper):
instant termination after initial plan is found
Slightly improvable (e.g. Barman): quick optimization process
Highly improvable (e.g. Rover, Satellite): long optimization process
with many little improvements

Bottleneck for large instances: Grounding, SAT solving

Schreiber et al. – SAT-based Tree-Exploration for HTN Planning July 13, 2019 12/12

	Appendix

