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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.
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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

(World) State: Consistent set of boolean atoms;
e.g. at(ball,A), at(robot,B)
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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Action a: Has boolean preconditions and effects;
e.g. action move(robot,A,B) requires at(robot,A),
deletes at(robot,A), adds at(robot,B)
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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Goal g: Subset of possible states, e.g. at(ball,B) must hold
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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π =
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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π = 〈 pickup(robot,ball,A)
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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π = 〈 pickup(robot,ball,A), move(robot,A,B)
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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π = 〈 pickup(robot,ball,A), move(robot,A,B),

drop(robot,ball,B) 〉
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Hierarchical Planning

Main idea: Share domain-specific expert knowledge with your planner.

Which tasks need to be achieved

How to directly achieve simple tasks

How to break down complex tasks into simpler ones

Most popular: Hierarchical Task Network (HTN) Planning [Erol et al., 1994]

Extension of classical planning (states, actions, plans)

More expressive than classical planning

More focused search, enables more efficient planning
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Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)
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Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Root(s): Initial task(s), part of problem input

Abstract notion of what needs to be achieved
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Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Directed edges: Subtask relationships

Totally ordered HTN planning⇒ Total order on subtasks

Span a tree of tasks
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Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Inner nodes: Compound tasks

Can be achieved by picking a method and achieving each subtask

Example: Method move-ball(ball, to, r, x, y)

Preconditions { at(ball,x), at(r,y) },
Subtasks 〈 (1) navigate(r,y,x), (2) pickup(r,ball,x),

(3) navigate(r,x,to), (4) drop(r,ball,to) 〉
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Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Leaf nodes: Primitive tasks

Directly correspond to applying a certain action

In-order traversal of all leaves⇒ Plan!
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SAT-based (Classical) Planning

Iteratively encode planning problem into propositional logic
up to a certain number n of steps [Kautz and Selman, 1992]

SAT planner

Actions

Initial state

Goal(s)

Encoder
for n steps

n := 0

SAT
Solver

Result?

UNSAT: 
           n++

Decoder
SAT: 1 -2 3 
-4 -5 -6 7 8 -9 ...

Plan

1. ...
2. ...
3. ...
...

(1  2)  ∨ ∧
(¬2  3  7) ∨ ∨

 ∧ ...
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SAT-based Totally Ordered HTN Planning

1998: Inception of SAT-based HTN planning [Mali and Kambhampati, 1998]

Encodings do not address recursive task relationships
(fixed maximum amount of actions for each task)

Complexity of clauses and variables cubic in amount of steps

2018: totSAT [Behnke et al., 2018]

Encode problem’s hierarchy up to depth k until satisfiable for some k

Method preconditions compiled into “virtual actions”

2019: SAT-based Stack Machine Simulation [Schreiber et al., 2019]

Uses incremental SAT solving: Maintains a single logical formula

Requires hyperparameter (maximum stack size to encode)
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Tree-like Reduction Exploration

Explore hierarchy breadth-first (layer by layer)

Each layer contains potential abstract plans
Expand hierarchy until actual valid plan is found

Primitive subtasks only
All preconditions, effects, goals hold
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Tree-like Reduction Exploration

Explore hierarchy breadth-first (layer by layer)

Each layer contains potential abstract plans
Expand hierarchy until actual valid plan is found

Primitive subtasks only
All preconditions, effects, goals hold

Layer 0:
3 initial tasks
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Tree-like Reduction Exploration

Explore hierarchy breadth-first (layer by layer)

Each layer contains potential abstract plans
Expand hierarchy until actual valid plan is found

Primitive subtasks only
All preconditions, effects, goals hold

Layer 0:
3 initial tasks

Layer 1
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Tree-like Reduction Exploration

Explore hierarchy breadth-first (layer by layer)

Each layer contains potential abstract plans
Expand hierarchy until actual valid plan is found

Primitive subtasks only
All preconditions, effects, goals hold

Layer 0:
3 initial tasks

Layer 1

Layer 2
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Tree-like Reduction Exploration

Explore hierarchy breadth-first (layer by layer)

Each layer contains potential abstract plans
Expand hierarchy until actual valid plan is found

Primitive subtasks only
All preconditions, effects, goals hold

Layer 0:
3 initial tasks

Layer 1

Layer 2: Plan!
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Tree-REX: Algorithm

Algorithm: Tree-REX Planning Procedure
1: Π := Preprocess and ground HTN planning problem;
2: C := ∅; // Logical clauses
3: nextLayer := GenerateFirstLayer(Π);
4: prevLayer := nextLayer ;
5: result := NONE;

6: while result = NONE do
7: prevLayer := nextLayer ;
8: nextLayer := Expand(nextLayer ); // Create new hierarchical layer
9: C := C ∪ Encode(prevLayer, nextLayer ); // Add clauses

10: result := Solve(C, AssumeAllPrimitive(nextLayer )); // SAT Solving
11: return Decode(Π, result). // Extract plan from sat. assignment
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Tree-REX: Encoding into SAT

Boolean variables:

Variable for each possible fact/action/method at each position (l, i)

Variable indicating primitiveness of each position (l, i)

Clauses:

Initial layer: Enforce initial task network

Every layer: Classical planning clauses for occurring facts, actions
[Kautz and Selman, 1992]

In between layers: Propagation of facts, actions,
Reduction of methods into any of its possible children

Final layer: Enforce actions only (no methods!)
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Tree-REX: Plan Length Optimization

Solution is found at layer m: Plan has some length n ≤ size(lastLayer )

⇒ Length of plan ≡ Amount of actual actions at final layer

⇒ No incentive for SAT solver to prefer solutions with fewer actions

Quality awareness: Use incremental SAT solving to find better plans

Encode simple plan length counter at final layer:
Boolean variable for “plan length is greater than or equal to x”

Enforce plan length smaller than n as an additional assumption

⇒ SAT: Better plan has been found (length < n)

⇒ UNSAT: Plan length n is already optimal at this layer

Anytime procedure: Better results the more resources are invested
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Evaluations

PDDL benchmarks from previous HTN planning evaluations
[Behnke et al., 2018, Ramoul et al., 2017]

Competitors:
Tree-REX (no plan length optimization)
Tree-REX-o (with plan length optimization)
totSAT [Behnke et al., 2018] (AAAI-18 configuration)

SAT solver: MiniSat [Eén and Sörensson, 2003] for all competitors

Up to 5 minutes of total run time
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Evaluations: Run Times

Domain #Inst. totSAT Tree-REX Tree-REX-o
Barman 20 5.00 20.00 9.19
Blocksworld 20 4.02 20.00 19.22
Childsnack 20 0.91 20.00 19.99
Depots 20 7.81 19.36 18.95
Entertainment 12 6.73 9.25 8.94
Gripper 20 2.92 20.00 19.85
Hiking 20 0.93 20.00 17.93
Rover 20 0.87 20.00 10.12
Satellite 20 1.23 16.00 8.62
Transport 30 3.77 30.00 21.51

Table: Run time IPC scores
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Evaluations: Plan Quality

Domain #Inst. totSAT Tree-REX Tree-REX-o
Barman 20 19.67 18.67 20.00
Blocksworld 20 18.36 19.68 19.68
Childsnack 20 12.00 20.00 20.00
Depots 20 18.59 19.74 19.93
Entertainment 12 11.92 11.79 12.00
Gripper 20 20.00 20.00 20.00
Hiking 20 11.00 20.00 20.00
Rover 20 4.83 13.08 20.00
Satellite 20 9.80 9.66 16.00
Transport 30 23.71 26.04 30.00

Table: Plan length IPC scores
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Conclusion

Tree-REX: SAT-based totally ordered HTN planning

Rapid encoding and solving through incremental SAT solving

Anytime plan length optimization
⇒ First quality-aware SAT-based HTN planner

Outperforms state-of-the-art SAT-based planning
regarding run times and/or plan quality

Future work

Integrate into framework with additional features
(disjunctive / ADL conditions, conditional effects, . . . )

Interleave expansion and resolution of hierarchical layers

Investigate (partially) lifted SAT encodings for HTN
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Hierarchical Planning

Generally, can allow partially ordered and interleaving subtasks
(here: total order on subtasks)

Difficulty of HTN planning: Choosing the “right” method to fulfill a task
(non-deterministic / randomized choice, heuristics, . . . )

Compared to classical planning:

Smaller, more directed search space to find a plan

More expressive [Erol et al., 1994]
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Tree-like Reduction Exploration (2/2)

Layer l : Array [0, . . . , sl − 1] of sets of facts, actions, and methods

Lookup for which objects need to be encoded where at layer l

(l, i) := i-th position of layer l

x ∈ (l, i) :⇔ encode method / action / fact x at position (l, i)

Inductive construction of layers:

Layer 0: Fully defined by initial state and initial task network

Layer n − 1 n: Propagate facts and actions, reduce methods,
add facts implied by new actions and methods

Each subtask may have many different realizations to choose from!

Example: walk(a,b) may be achieved by walking over c, over d, . . .

Encode all options – SAT solver will decide on which option to take
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Tree-like Reduction Exploration (3/2)

Example: Rover planning problem with one initial task,
showing only one of the possible actions/methods at each position

get_soil_data(w0) navigate(w0)

empty_store()

send_soil_data(w0)

sample_soil(w0)

do_navigate(w1,w0)

visit(w1)

unvisit(w1)

nop()

sample_soil(w0)

communicate(w0,w1)

visit(w1)

unvisit(w1)

nop()

sample_soil(w0)

communicate(w0,w1)

move(w1,w0)

Fact constraint

Reduction

Action

Layer 0       Layer 1      Layer 2    Layer 3

Expansion

Propagation

Layer 3: Valid sequence of primitive actions⇒ Finished plan!
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Tree-REX: Encoding into SAT (1/2)

Boolean variables:

Variable for each possible fact/action/method at each position (l, i)

Variable indicating primitiveness of each position (l, i)

Classical planning clauses: mostly from [Kautz and Selman, 1992]
1 The initial state holds at (l, 0) and the goals hold at (l, sl).
2 An action at (l, i) implies its preconditions at (l, i)

and its effects at (l, i + 1).
3 At most one action occurs at each position (l, i).
4 A fact changes its value from (l, i) to (l, i + 1) only if some action

supporting the fact change occurs at (l, i) or (l, i) is not primitive.
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Tree-REX: Encoding into SAT (2/2)

Primitiveness and method preconditions:
5 An action (method) at position p implies that p is (not) primitive.
6 A method at (l, i) implies its preconditions at (l, i).

Transitions from layer l to layer l + 1, former position i shifted to i ′ ≥ i :
7 A fact holds at (l, i) iff it holds at (l + 1, i ′).
8 An action at (l, i) implies the same action at (l + 1, i ′).
9 A method at (l, i) implies any of its valid children at

(l + 1, i ′), . . . , (l + 1, i ′ + k).

Initial and final layer:
10 Each initial task ti implies some according method/action at (0, i).
11 Each position of the final layer is primitive. (Goal assumptions)
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Tree-REX: Realization

Encoding

Enforce virtual “blank” actions where positions should remain empty

Additional (redundant) clauses: Backwards propagation –
Necessary conditions for an action / method to occur somewhere

Various optimizations reducing clauses and/or variables

Implementation

Preprocessing and grounding from [Ramoul et al., 2017]

Separate interpreter application
– Receives abstract encoding “blueprint”
– Instantiates clauses as necessary

IPASIR as generic incremental SAT interface
⇒ Plug in any modern incremental SAT solver
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Tree-REX

Expansion of Methods.
Consider the l-th and (l + 1)-th hierarchical layers of an HTN planning
problem. For some i ≥ 0, all facts and actions at (l, i) are propagated to
(l + 1, i ′), where i ′ ≥ i . Let method r occur at (l, i).

If the k -th subtask tk of r is primitive, the corresponding action atk is
added to (l + 1, i ′).

If tk is compound, each possible corresponding method r ′ ∈ R(tk ) is
added to (l + 1, i ′ + k).

How to incrementally build formula layer by layer?

Add clauses (9) once, clauses (1-8) for each new layer l

Assume clauses (10) before each solving attempt (drop afterwards)
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Evaluation Plots I
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Evaluation Plots II
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Evaluation Plots III
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Evaluation Plots IV
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Evaluations: Insights

Tree-REX dominates run times, Tree-REX-o dominates plan quality
Plan length optimization heavily domain-dependent

Not improvable due to rigid hierarchy (e.g. Childsnack, Gripper):
instant termination after initial plan is found
Slightly improvable (e.g. Barman): quick optimization process
Highly improvable (e.g. Rover, Satellite): long optimization process
with many little improvements

Bottleneck for large instances: Grounding, SAT solving
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