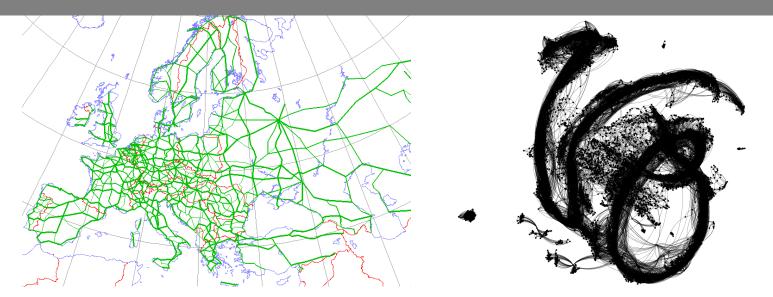


Fundamental Graph Algorithms

KSETA · March 9, 2020 Demian Hespe, Tobias Heuer and Sebastian Lamm

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP



KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Outline

Foundations
Complexity Theory
Graph Notation/Properties
Graph Representation
Graph Exploration
The Good, Bad & Ugly
Network Analysis
Case Studies in Physics

Network Analysis Tutorial

1. Session

2. Session

3. Session

4. Session

The Good, Bad & Ugly

The Good

- Shortest Paths
- Minimum Spanning Trees
- Maximum Flows
- Maximum Matchings

The Bad & Ugly

- Coloring
- Traveling Salesman
- Independent Sets
- (Hyper-)graph Partitioning

The Good, Bad & Ugly

The Good

- Shortest Paths
- Minimum Spanning Trees
- Maximum Flows
- Maximum Matchings

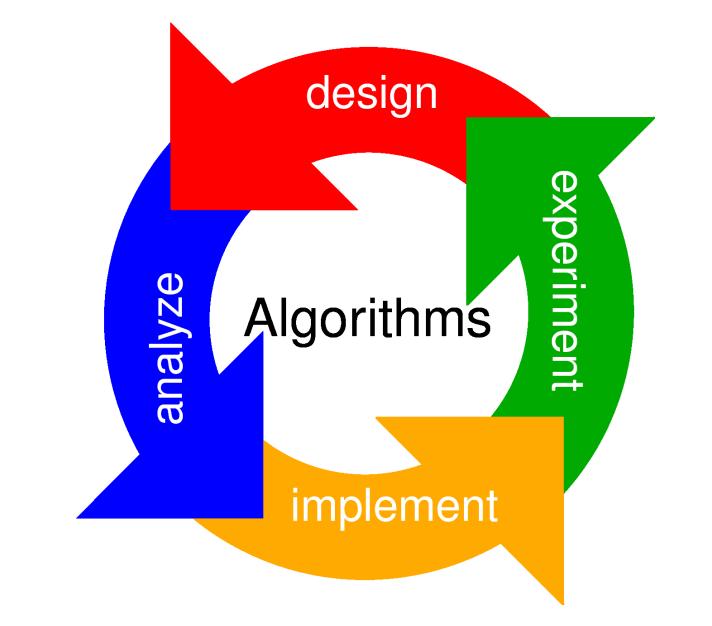
The Bad & Ugly

- Coloring
- Traveling Salesman
- Independent Sets
- (Hyper-)graph Partitioning

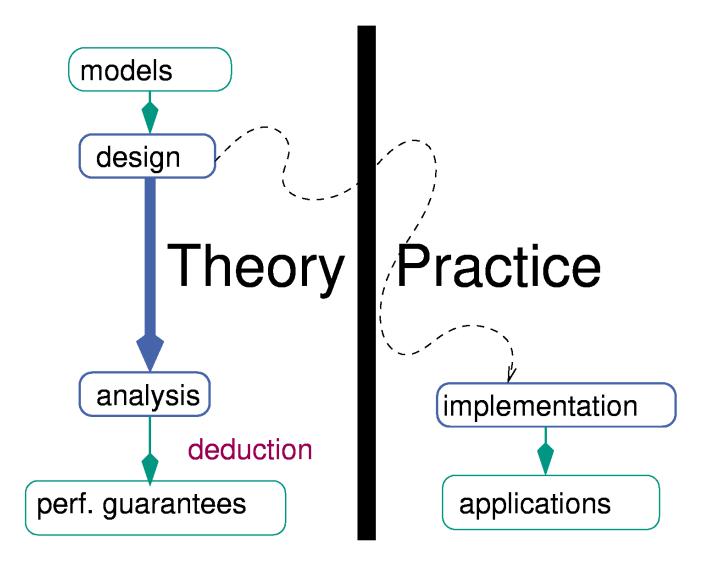
slides available at: http://algo2.iti.kit.edu/documents/graph_theory.pdf

Algorithm Engineering

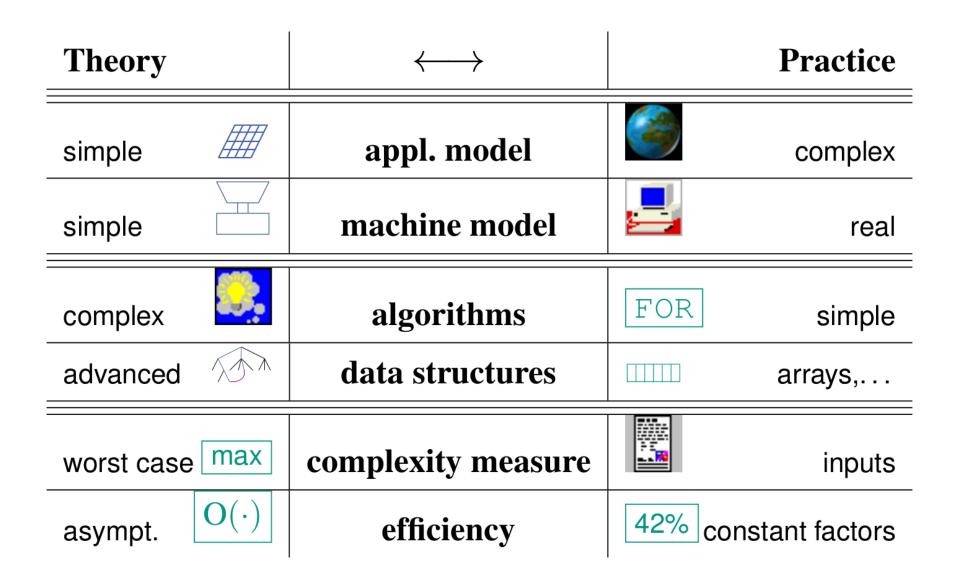
Algorithm Engineering

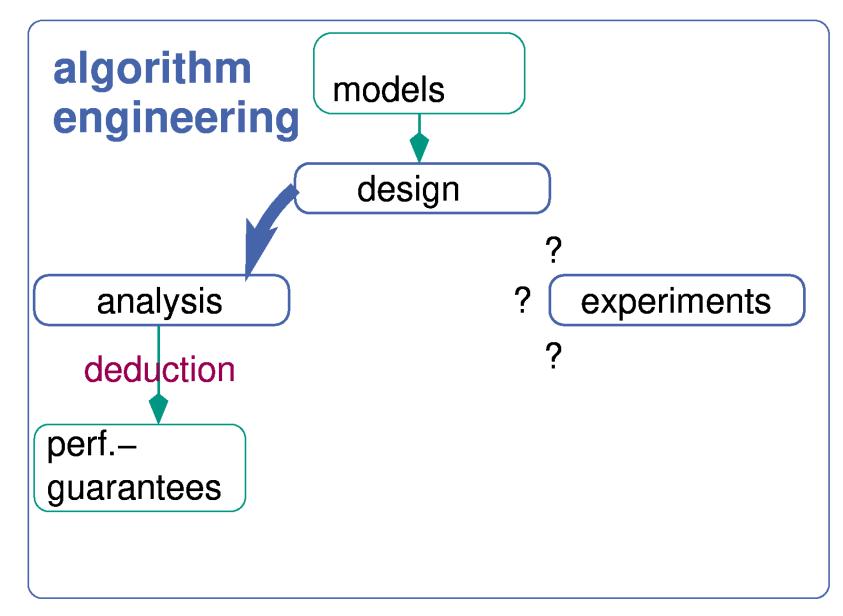


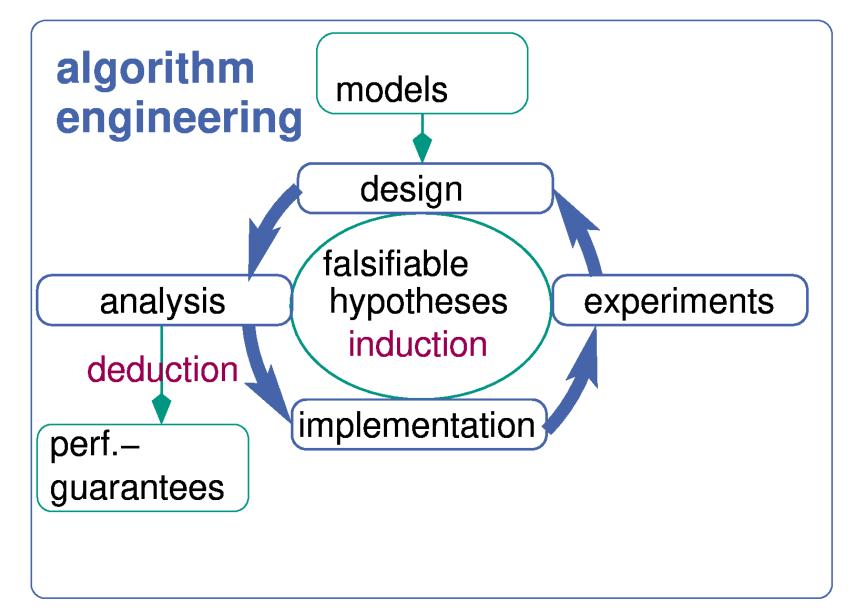
(Caricatured) Traditional View: Algorithm Theory

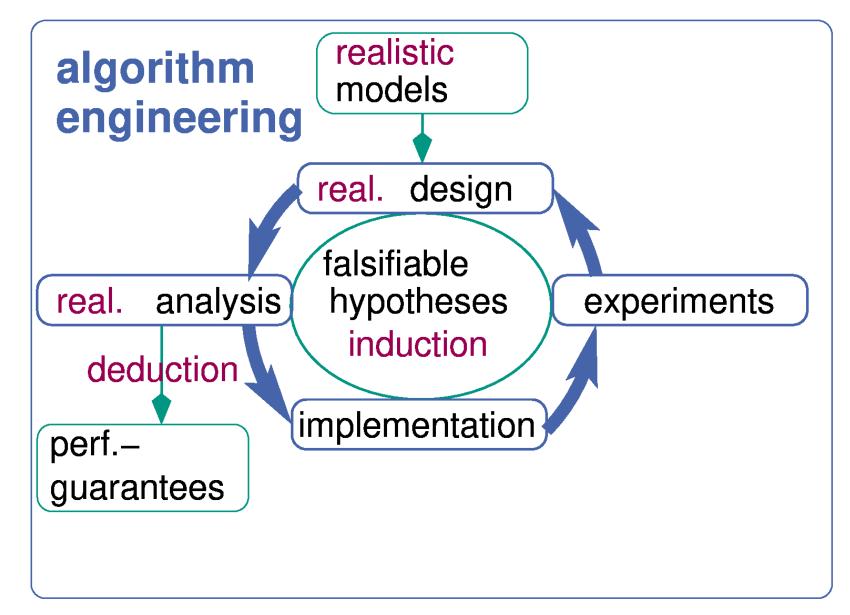


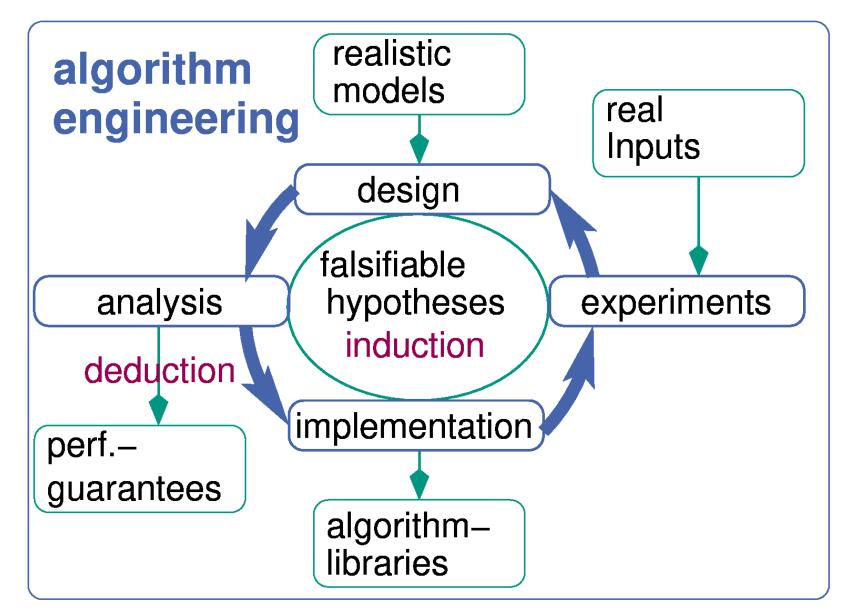
Karlsruhe Institut

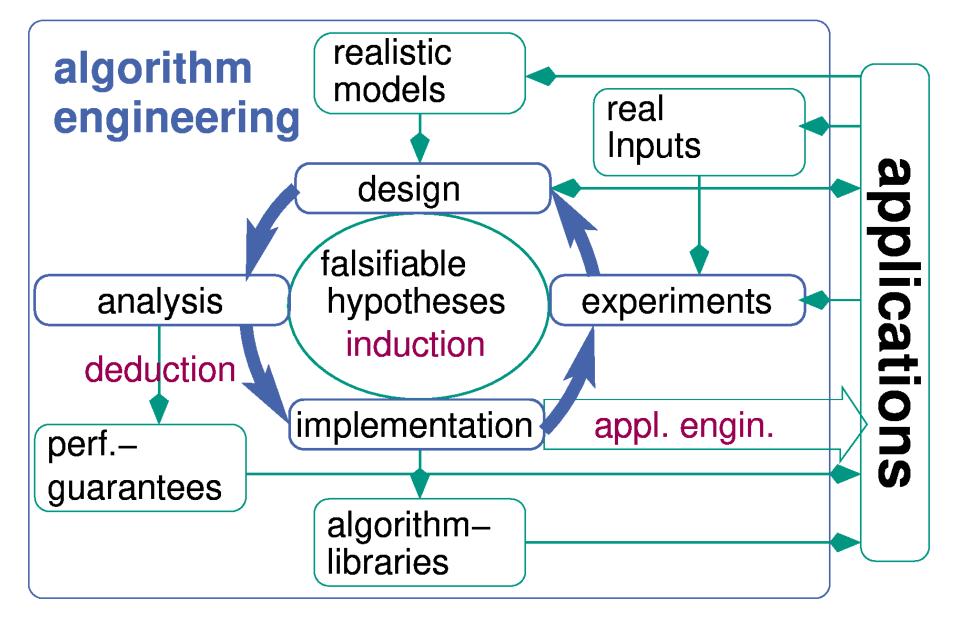












Algorithm Engineering \leftrightarrow Algorithm Theory

Conclusion:

- algorithm engineering is a wider view on algorithmics (but no revolution. None of the ingredients is really new)
- rich methodology
- better coupling to applications
- experimental algorithmics << algorithm engineering</p>
- sometimes different theoretical questions
- algorithm theory may still yield the strongest, deepest and most persistent results within algorithm engineering

Theoretical Foundations

An algorithm can be characterized by:

- runtime behaviour
- (main) memory consumption
- I/O operations (e.g. hard drive)
- number and size of messages sent/received over network

Given input \mathcal{I} , we assume the runtime depends only on the size $|\mathcal{I}| =: n$

 $T(n) := \ldots$

Given input \mathcal{I} , we assume the runtime depends only on the size $|\mathcal{I}| =: n$

 $T(n) := \ldots$

Examples

$$m \leftarrow \frac{1}{2} \left(\mathcal{I}_0 + \mathcal{I}_{n-1} \right)$$

return m

$$T(n) = 3$$

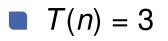
• Output: undef.

Given input \mathcal{I} , we assume the runtime depends only on the size $|\mathcal{I}| =: n$

 $T(n) := \ldots$

Examples

Require: \mathcal{I} sorted $m \leftarrow \frac{1}{2} \left(\mathcal{I}_0 + \mathcal{I}_{n-1} \right)$ **return** m



$$T(n) := \ldots$$

Examples

Require: \mathcal{I} sorted $m \leftarrow \frac{1}{2} \left(\mathcal{I}_0 + \mathcal{I}_{n-1} \right)$ **return** m

$$T(n) = 3$$

• Output: $avg(\mathcal{I})$

$$a \leftarrow \infty, b \leftarrow 0$$

for $i \in \mathcal{I}$ do
if $i < a$ then $a \leftarrow i$
if $i > b$ then $b \leftarrow i$
 $m \leftarrow \frac{a+b}{2}$
return m

T(n) = 2n + 2

• Output: $avg(\mathcal{I})$

$$T(n) := \dots$$

Examples

Require: \mathcal{I} sorted $m \leftarrow \frac{1}{2} \left(\mathcal{I}_0 + \mathcal{I}_{n-1} \right)$ **return** m

T(n) = 3

• Output: $avg(\mathcal{I})$

for
$$i \in [0, |\mathcal{I}| - 1)$$
 do
for $j \in [0, |\mathcal{I}| - i - 1)$ do
if $\mathcal{I}_j > \mathcal{I}_{j+1}$ then
swap $(\mathcal{I}_j, \mathcal{I}_{j+1})$
 $m \leftarrow \frac{1}{2} (\mathcal{I}_0 + \mathcal{I}_{n-1})$
return m

- **T**(*n*) = $3n^2 + 3$
- Output: $avg(\mathcal{I})$
- **Side effect:** sorted \mathcal{I}

$$T(n) := \ldots$$

Examples

Require: \mathcal{I} sorted $m \leftarrow \frac{1}{2} \left(\mathcal{I}_0 + \mathcal{I}_{n-1} \right)$ **return** m

T(*n*) = 3

• Output: $avg(\mathcal{I})$

for
$$i \in [0, |\mathcal{I}| - 1)$$
 do
for $j \in [0, |\mathcal{I}| - i - 1)$ do
if $\mathcal{I}_j > \mathcal{I}_{j+1}$ then
swap $(\mathcal{I}_j, \mathcal{I}_{j+1})$
 $m \leftarrow \mathcal{I}_{n-1}$
for $i \in \mathcal{I}$ do
 $\mathcal{I}_i \leftarrow \frac{\mathcal{I}_i}{m}$

$$T(n) = 3n^2 + 2n + 1$$

Side effect: norm., sort. \mathcal{I}



Consider $T(n) = 3n^2 + 2n + 1$:

- counting constant factors is tidious and can be architecture-dependent
- n^2 term clearly dominates lower order terms for sufficiently large *n*

Consider $T(n) = 3n^2 + 2n + 1$:

- counting constant factors is tidious and can be architecture-dependent
- **n**² term clearly dominates lower order terms for sufficiently large n

Enter Big-O notation

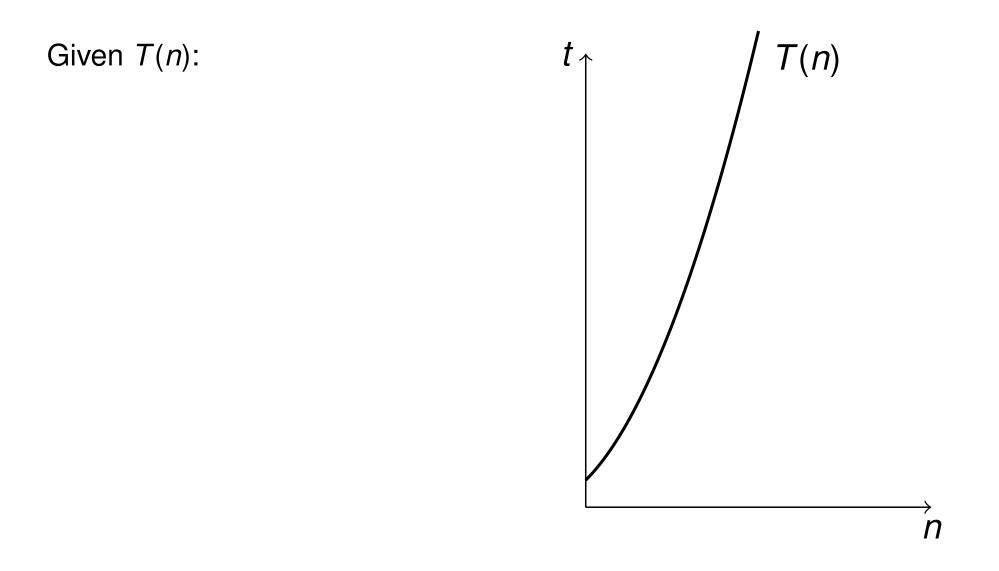
For upper bounds: $f(n) \in O(g(n))$

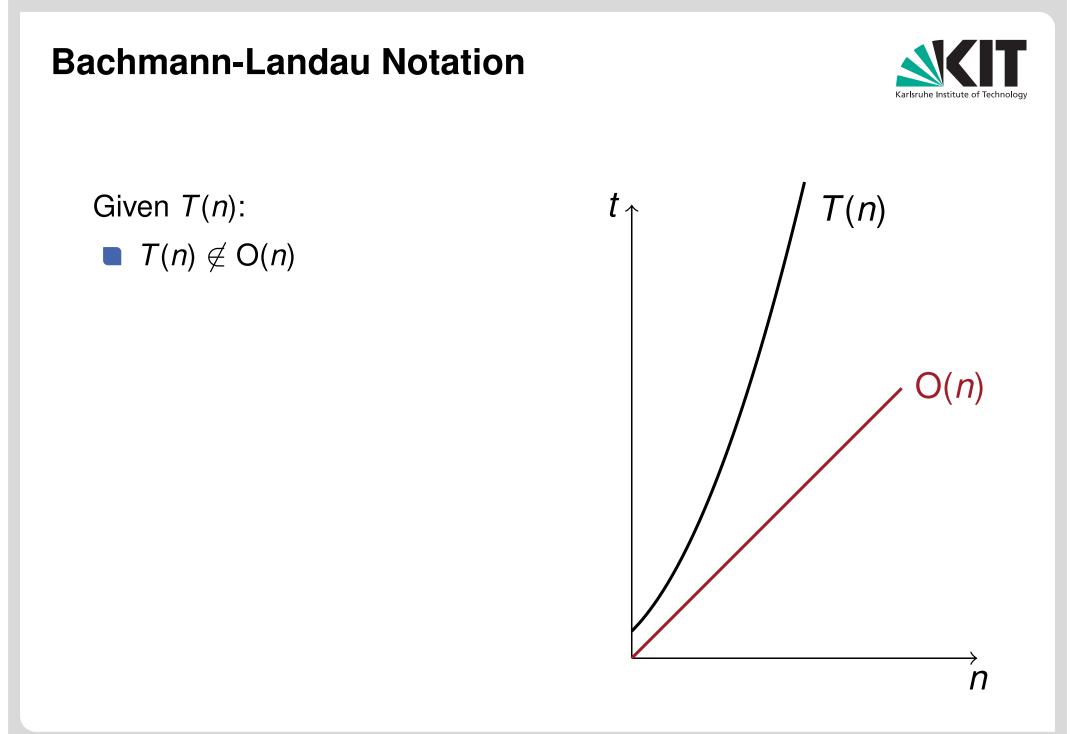
|f| is bounded above by g asymptotically (up to a constant factor)

• "g(n) grows at least as fast as f(n)"

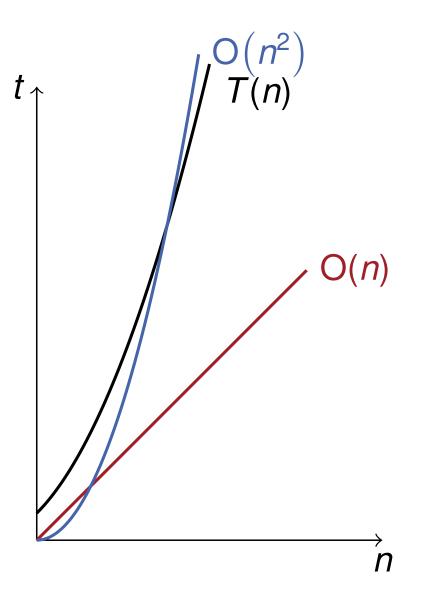
Formally,

$$\exists k > 0 : \exists n_0 : \forall n > n_0 : |f(n)| \le k \cdot g(n)$$



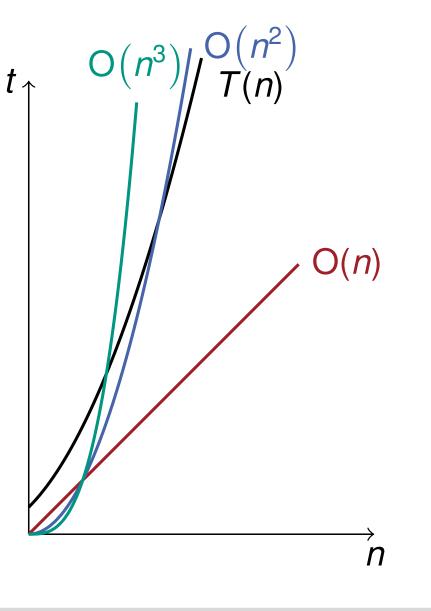


Given T(n): $T(n) \notin O(n)$ $T(n) \in O(n^2)$



Given T(n):

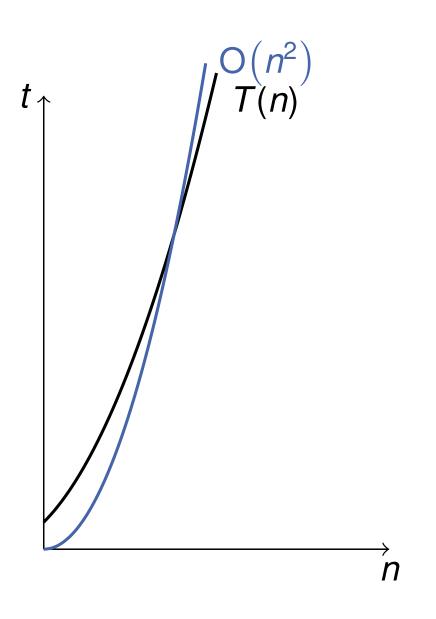
T(n) $\notin O(n)$ T(n) $\in O(n^2)$ T(n) $\in O(n^3)$



Given T(n):

T(n) \not O(n)
T(n) \in O(n^2)
T(n) \in O(n^3)

Tight bounds are preferred

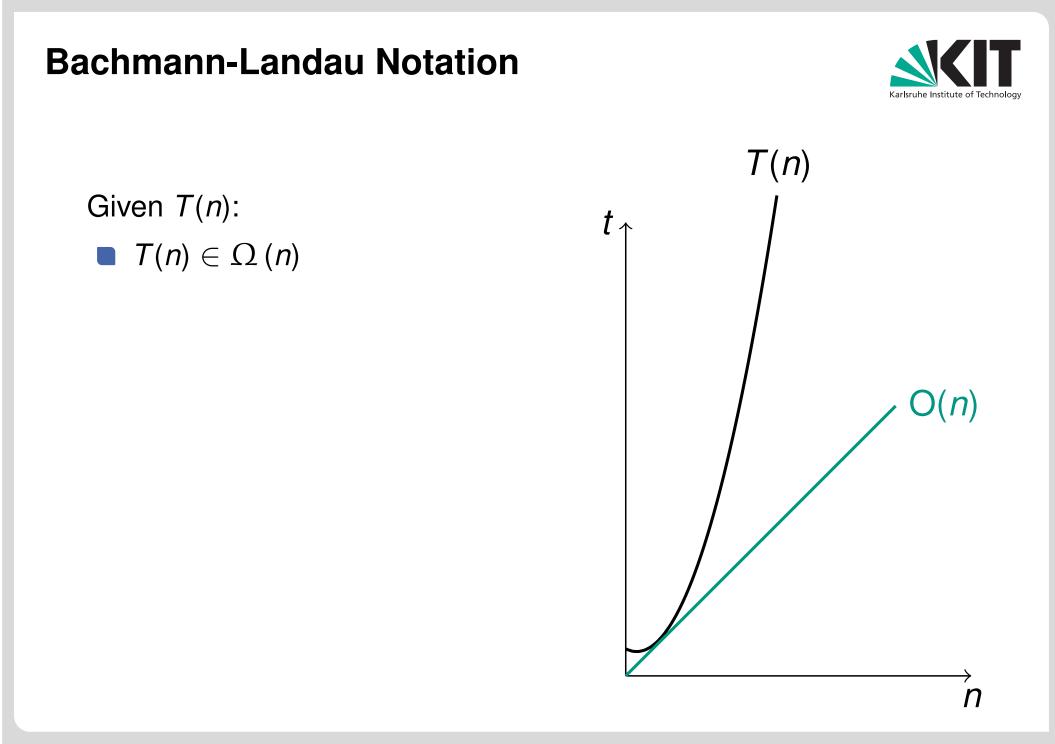


For lower bounds: $f(n) \in \Omega(g(n))$

- |f| is bounded below by g asymptotically (up to a constant factor)
- "g(n) grows at most as fast as f(n)"
- Formally,

 $\exists k > 0 : \exists n_0 : \forall n > n_0 : f(n) \ge k \cdot g(n)$

Bachmann-Landau Notation Karlsruhe Institute T(n)Given T(n): t 1 n



Institute of Theoretical Informatics Algorithmics Group

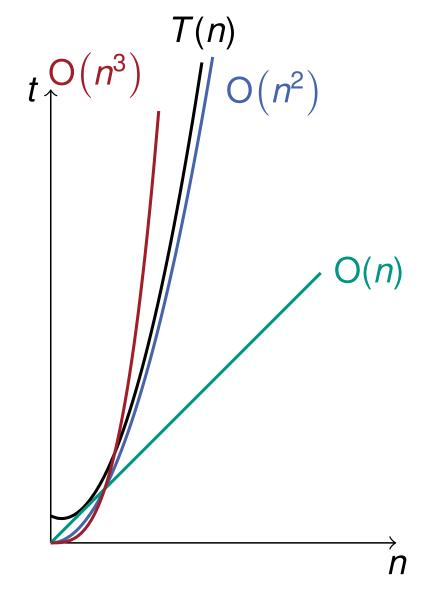
Bachmann-Landau Notation Karlsruhe Institute T(n)Given T(n): t 1 T(n) $\in \Omega(n)$ $\bullet T(n) \in \Omega(n^2)$)(*n*) n

$T(n) \in \Omega(n)$

Bachmann-Landau Notation

T(n) $\in \Omega(n^2)$ T(n) $\notin \Omega(n^3)$

Given T(n):

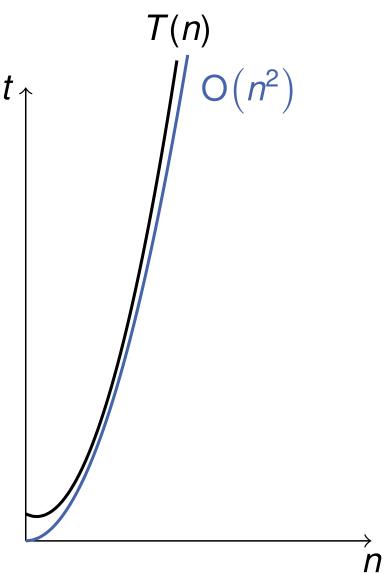


Tight bounds are preferred

Given T(n):

T(n) $\in \Omega$ (n)

T(n) $\in \Omega(n^2)$ T(n) $\notin \Omega(n^3)$



For tight bounds: $f(n) \in \Theta(g(n))$

- |f| is bounded both above and below by g asymptotically
- "g(n) grows at as fast as f(n)"
- Formally,

 $\exists k_1, k_2 > 0 : \exists n_0 : \forall n > n_0 : k_1 \cdot g(n) \leq f(n) \geq k_2 \cdot g(n)$

• $f(n) \in O(g(n))$ & $f(n) \in \Omega(g(n)) \Leftrightarrow f(n) \in \Theta(g(n))$

Given input \mathcal{I} , we assume the runtime depends only on the size $|\mathcal{I}| =: n$

```
sorted \leftarrow true, i \leftarrow 0
while i < |\mathcal{I}| - 1 & sorted do
     if \mathcal{I}_i > \mathcal{I}_{i+1} then
           sorted ← false
      inc(i)
if ¬sorted then
     for i \in [0, |\mathcal{I}| - 1) do
           for j \in [0, |\mathcal{I}| - i - 1) do
                 if \mathcal{I}_i > \mathcal{I}_{i+1} then
                       swap(\mathcal{I}_i, \mathcal{I}_{i+1})
```


Given input \mathcal{I} , we assume the runtime depends only on the size $|\mathcal{I}| =: n$

```
sorted \leftarrow true, i \leftarrow 0
while i < |\mathcal{I}| - 1 & sorted do
     if \mathcal{I}_i > \mathcal{I}_{i+1} then
           sorted ← false
      inc(i)
if ¬sorted then
     for i \in [0, |\mathcal{I}| - 1) do
           for j \in [0, |\mathcal{I}| - i - 1) do
                 if \mathcal{I}_i > \mathcal{I}_{i+1} then
                       swap(\mathcal{I}_i, \mathcal{I}_{i+1})
```

sorted input:

$$\mathcal{I}_{sorted} = \{1, 2, 3, 4, 5, 6\}$$

 $T(n) = 2n + 2 \in O(n)$

Given input \mathcal{I} , we assume the runtime depends only on the size $|\mathcal{I}| =: n$

```
sorted \leftarrow true, i \leftarrow 0
while i < |\mathcal{I}| - 1 & sorted do
     if \mathcal{I}_i > \mathcal{I}_{i+1} then
           sorted ← false
      inc(i)
if ¬sorted then
     for i \in [0, |\mathcal{I}| - 1) do
           for j \in [0, |\mathcal{I}| - i - 1) do
                 if \mathcal{I}_i > \mathcal{I}_{i+1} then
                       swap(\mathcal{I}_i, \mathcal{I}_{i+1})
```

sorted input:

 $\mathcal{I}_{sorted} = \{1, 2, 3, 4, 5, 6\}$ $T(n) = 2n + 2 \in O(n)$ descending input:

$$\mathcal{I}_{desc} = \{6, 5, 4, 3, 2, 1\}$$
$$T(n) = 3n^2 + 5 \in O(n^2)$$

Given input \mathcal{I} , we assume the runtime depends only on the size $|\mathcal{I}| =: n$

sorted \leftarrow true, $i \leftarrow 0$ while $i < |\mathcal{I}| - 1$ & sorted do if $\mathcal{I}_i > \mathcal{I}_{i+1}$ then sorted \leftarrow false inc(i) if \neg sorted then for $i \in [0, |\mathcal{I}| - 1)$ do for $j \in [0, |\mathcal{I}| - i - 1)$ do if $\mathcal{I}_j > \mathcal{I}_{j+1}$ then swap($\mathcal{I}_j, \mathcal{I}_{j+1}$) sorted input:

 $\mathcal{I}_{sorted} = \{1, 2, 3, 4, 5, 6\}$ $T(n) = 2n + 2 \in O(n)$ descending input:

 $\mathcal{I}_{desc} = \{6, 5, 4, 3, 2, 1\}$ $T(n) = 3n^2 + 5 \in O(n^2)$ almost sorted input:

 $\begin{aligned} \mathcal{I}_{\text{worst}} &= \{1, 2, 3, 4, 6, 5\} \\ T(n) &= 3n^2 + 2n + 2 \\ &\in \mathsf{O}\big(n^2 + n\big) \in \mathsf{O}\big(n^2\big) \end{aligned}$

Given input \mathcal{I} , we assume the runtime depends only on the size $|\mathcal{I}| =: n$

- To characterize an algorithm in theory:
- consider the worst case input
- determine tight upper bounds

Given input \mathcal{I} , we assume the runtime depends only on the size $|\mathcal{I}| =: n$

- To characterize an algorithm in theory:
- consider the worst case input
- determine tight upper bounds

To characterize an algorithm in practice:

- consider the instances at hand, often average case inputs
- determine bounds for the expected running time

In general we consider algorithms for two kinds of problems:

In general we consider algorithms for two kinds of problems:

Decision Problem:

Given an input \mathcal{I} , decide whether it belongs to a well-defined set \mathbb{M} .

In general we consider algorithms for two kinds of problems:

Decision Problem:

Given an input \mathcal{I} , decide whether it belongs to a well-defined set \mathbb{M} .

Example: Boolean Satisfiability Problem (SAT)

Given a propositional logic formula

 $\phi [\mathbf{X}, \{\lor, \land, \neg\}]$ with variables $\mathbf{X} = \{x_1, x_2, \ldots, x_n\},\$

In general we consider algorithms for two kinds of problems:

Decision Problem:

Given an input \mathcal{I} , decide whether it belongs to a well-defined set \mathbb{M} .

Example: Boolean Satisfiability Problem (SAT)

Given a propositional logic formula

$$\Phi$$
 [**X**, { \lor , \land , \neg }] with variables **X** = { x_1, x_2, \ldots, x_n },

$$\phi_1 := (x_1 \vee \neg x_2 \vee \neg x_3) \land (\neg x_1 \vee x_2 \vee \neg x_3) \land (\neg x_1 \vee \neg x_2 \vee x_3)$$

In general we consider algorithms for two kinds of problems:

Decision Problem:

Given an input \mathcal{I} , decide whether it belongs to a well-defined set \mathbb{M} .

Example: Boolean Satisfiability Problem (SAT)

Given a propositional logic formula

$$\phi$$
 [**X**, { \lor , \land , \neg }] with variables **X** = { x_1, x_2, \ldots, x_n },

$$\begin{aligned} &\varphi_1 \coloneqq (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (\neg x_1 \vee x_2 \vee \neg x_3) \wedge (\neg x_1 \vee \neg x_2 \vee x_3) \\ &\chi_1 \coloneqq \mathbf{X} \to \mathbf{true}^n \quad \Rightarrow \quad \varphi_1 \to \mathbf{true} \end{aligned}$$

In general we consider algorithms for two kinds of problems:

Decision Problem:

Given an input \mathcal{I} , decide whether it belongs to a well-defined set \mathbb{M} .

Example: Boolean Satisfiability Problem (SAT)

Given a propositional logic formula

$$\varphi \left[\mathbf{X}, \{ \lor, \land, \neg \} \right] \text{ with variables } \mathbf{X} = \{ x_1, x_2, \ldots, x_n \},$$

$$\begin{aligned} &\varphi_2 := (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \\ &\land (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \\ &\land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \end{aligned}$$

In general we consider algorithms for two kinds of problems:

Decision Problem:

Given an input \mathcal{I} , decide whether it belongs to a well-defined set \mathbb{M} .

Example: Boolean Satisfiability Problem (SAT)

Given a propositional logic formula

$$\varphi \left[\mathbf{X}, \{ \lor, \land, \neg \} \right] \text{ with variables } \mathbf{X} = \{ x_1, x_2, \ldots, x_n \},$$

$$\begin{array}{ll} \varphi_2 \coloneqq (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \\ & \land (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \\ & \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \\ & \Rightarrow \varphi_2 \text{ not satisfiable} \qquad \text{e.g. } \chi_2 \coloneqq \mathbf{X} \rightarrow \mathbf{true}^n \end{array}$$

In general we consider algorithms for two kinds of problems:

Optimization Problem:

Given a set \mathcal{L} of feasible solutions and cost function $f : \mathcal{L} \to \mathbb{R}$, find $x^* \in \mathcal{L}$ such that

 $f(x^*) \leq f(x) \quad \forall x \in \mathcal{L}.$

In general we consider algorithms for two kinds of problems:

Optimization Problem:

Given a set \mathcal{L} of feasible solutions and cost function $f : \mathcal{L} \to \mathbb{R}$, find $x^* \in \mathcal{L}$ such that

 $f(x^*) \leq f(x) \quad \forall x \in \mathcal{L}.$

Example: Max-SAT

Given a propositional logic formula ϕ with variables \mathbf{X} , which assigment χ maximizes the number of satisifed clauses # (ϕ, χ) ?

In general we consider algorithms for two kinds of problems:

Optimization Problem:

Given a set \mathcal{L} of feasible solutions and cost function $f : \mathcal{L} \to \mathbb{R}$, find $x^* \in \mathcal{L}$ such that

 $f(x^*) \leq f(x) \quad \forall x \in \mathcal{L}.$

Example: Max-SAT

Given a propositional logic formula ϕ with variables **X**, which assigment χ maximizes the number of satisifed clauses $#(\phi, \chi)$?

$$\begin{aligned} \varphi &:= (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \\ &\land (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \\ &\land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \end{aligned}$$

In general we consider algorithms for two kinds of problems:

Optimization Problem:

Given a set \mathcal{L} of feasible solutions and cost function $f : \mathcal{L} \to \mathbb{R}$, find $x^* \in \mathcal{L}$ such that

 $f(x^*) \leq f(x) \quad \forall x \in \mathcal{L}.$

Example: Max-SAT

Given a propositional logic formula ϕ with variables **X**, which assigment χ maximizes the number of satisifed clauses $#(\phi, \chi)$?

$$\begin{aligned} \varphi &:= (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \\ &\land (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \\ &\land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \\ &\chi_t : \mathbf{X} \to \mathbf{true}^n \quad \Rightarrow \quad \#(\varphi, \chi_t) = 7 \end{aligned}$$

In general we consider algorithms for two kinds of problems:

Optimization Problem:

Given a set \mathcal{L} of feasible solutions and cost function $f : \mathcal{L} \to \mathbb{R}$, find $x^* \in \mathcal{L}$ such that

 $f(x^*) \leq f(x) \quad \forall x \in \mathcal{L}.$

Example: Max-SAT

Given a propositional logic formula ϕ with variables **X**, which assigment χ maximizes the number of satisifed clauses $#(\phi, \chi)$?

$$\begin{split} \varphi &:= (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \\ &\land (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \\ &\land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \\ &\chi_f : \mathbf{X} \to \mathbf{false}^n \quad \Rightarrow \quad \#(\varphi, \chi_f) = 7 \end{split}$$

In general we consider algorithms for two kinds of problems:

Optimization Problem:

Given a set \mathcal{L} of feasible solutions and cost function $f : \mathcal{L} \to \mathbb{R}$, find $x^* \in \mathcal{L}$ such that

 $f(x^*) \leq f(x) \quad \forall x \in \mathcal{L}.$

Example: Max-SAT

Given a propositional logic formula ϕ with variables **X**, which assigment χ maximizes the number of satisifed clauses $#(\phi, \chi)$?

 $\begin{aligned} \varphi &:= (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \\ &\land (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_3) \\ &\land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \\ &\chi_m : \mathbf{X} \to \{ \mathbf{true}, \mathbf{false}, \mathbf{false} \} \quad \Rightarrow \quad \#(\varphi, \chi_m) = 7 \end{aligned}$

In general we consider algorithms for two kinds of problems:

1. Optimization Problem:

asks for the minimum cost solution $x^* \in \mathcal{L}$

2. Optimal Value Problem: asks for minimal cost function value $f(\cdot)$

3. Decision Problem:

given a parameter $k \in \mathbb{R}$, asks $\exists x \in \mathcal{L}$ with $f(x) \leq k$?

solve

solves

In general we consider algorithms for two kinds of problems:

1. Optimization Problem:

asks for the minimum cost solution $x^* \in \mathcal{L}$

2. Optimal Value Problem:

asks for minimal cost function value $f(\cdot)$

B. Decision Problem:

given a parameter $k \in \mathbb{R}$, asks $\exists x \in \mathcal{L}$ with $f(x) \leq k$?

Complexity Classes

Complexity classes group problems of similar characteristics

- algorithm characeterized by its upper bound
- problem characterized by its lower bound, i.e.

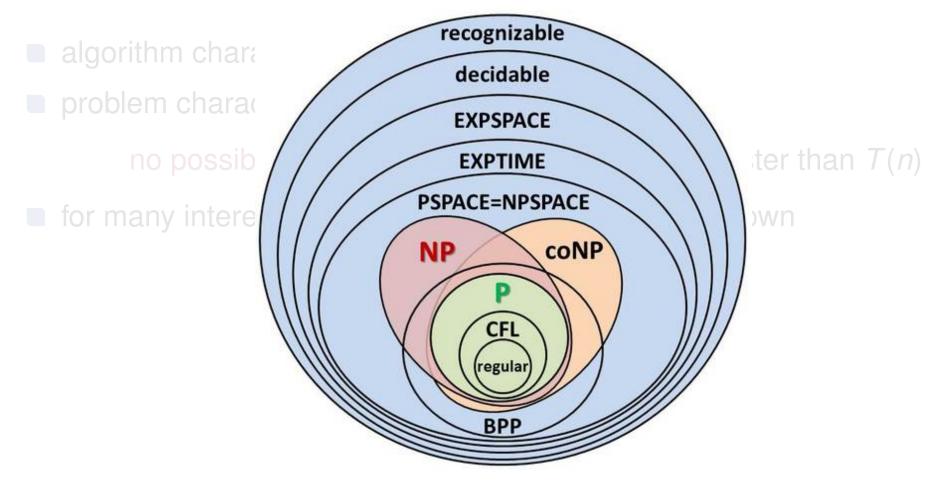
no possible algorithm can solve the problem faster than T(n)

for many interesting problems lower bounds still unkown

 $\mathbf{P} \subset \mathbf{NP}$? $\mathbf{P} = \mathbf{NP}$

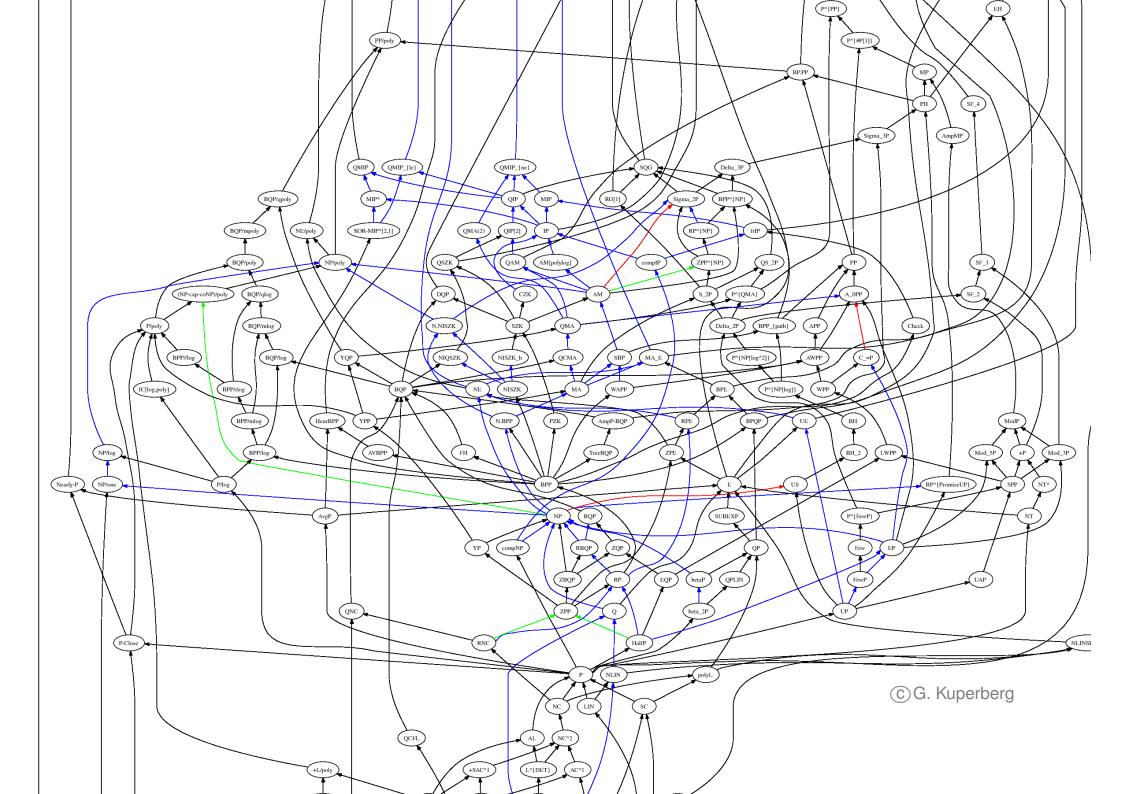
Complexity Classes

Complexity classes group problems of similar characteristics



© S. Raskhodnikova

Institute of Theoretical Informatics Algorithmics Group



Complexity Class P:

Problems decidable by a deterministic machine in polynomial time

 $T(n) \in O(n^d)$ for constant d.

Complexity Class P:

Problems decidable by a deterministic machine in polynomial time

 $T(n) \in O(n^d)$ for constant d.

Examples:

- Circuit Value Problem (CVP)
- Linear programming
- Primality testing

Complexity Class P:

Problems decidable by a deterministic machine in polynomial time

 $T(n) \in O(n^d)$ for constant d.

Remarks:

- polynomial time algorithms are considered efficient
- in practice, algorithms $\in O(n^2)$ infeasible for large inputs
- algorithms $\in O(n \log n)$ desirable

Complexity Class P:

Problems decidable by a deterministic machine in polynomial time

 $T(n) \in O(n^d)$ for constant d.

Complexity Class NP:

Problems decidable by a non-deterministic machine in polynomial time.

or

Set of decison problems with efficiently verifiable-proof for "yes" instances.

Complexity Class P:

Problems decidable by a deterministic machine in polynomial time

 $T(n) \in O(n^d)$ for constant d.

Complexity Class NP:

Problems decidable by a non-deterministic machine in polynomial time.

or

Set of decison problems with efficiently verifiable-proof for "yes" instances.

Examples

- Boolean Satisfiability Problem (SAT)
- Knapsack Problem
- Subset sum problem

NP-complete: Problem *L* is NP-complete iff

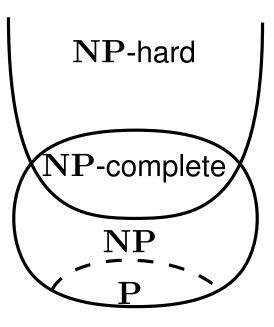
- 1. $L \in \mathbf{NP}$
- 2. L is NP-hard:

every problem $G \in \mathbf{NP}$ can be reduced in polynomial time to L $\Leftrightarrow \mathbf{NP}$ -complete problem G can be reduced in polynomial time to L.

NP-complete: Problem *L* is NP-complete iff

- 1. $L \in \mathbf{NP}$
- 2. L is NP-hard:

every problem $G \in \mathbf{NP}$ can be reduced in polynomial time to L $\Leftrightarrow \mathbf{NP}$ -complete problem G can be reduced in polynomial time to L.



Many interesting optimization problems are \mathbf{NP} -hard

Approximation algorithms:

Instead of exact solution x^* , compute approximate solution \tilde{x} in polynomial time with provable goodness guarantee f(n)

$$rac{\tilde{x}}{x^*} \leq f(n).$$

Complexity Class \mathbf{APX} :

GOOD BAD BAD C PEA C PEA

Problems approximable to a constant factor c in polynomial time,

f(n) = c.

Complexity Class \mathbf{APX} :

Problems approximable to a constant factor c in polynomial time,

f(n)=c.

Complexity Class \mathbf{PTAS} :

Problems approximable to any factor 1 + ε

 $f(n) = 1 + \epsilon \quad \forall \epsilon > 0,$

with runtime polynomial in *n* but possibly exponential in $\frac{1}{\epsilon}$.

Complexity Class \mathbf{APX} :

Problems approximable to a constant factor c in polynomial time,

f(n)=c.

Complexity Class \mathbf{PTAS} :

Problems approximable to any factor 1 + ε

 $f(n) = 1 + \epsilon \quad \forall \epsilon > 0,$

with runtime polynomial in *n* but possibly exponential in $\frac{1}{\epsilon}$.

Complexity Class FPTAS: PTAS with runtime polynomial in *n* and $\frac{1}{\epsilon}$.

Many interesting optimization problems are \mathbf{NP} -hard

Instead of exact solution x^* , compute approximate solution \tilde{x} in polynomial time with provable goodness guarantee f(n)

$$\frac{x}{x^*} \leq f(n).$$

~

The Ugly

Some problems cannot be approximated efficiently

The Ugly

Some problems cannot be approximated efficiently

Example: Minimum Set Cover

Given a universe $\mathbb{U} = \{1, 2, ..., n\}$ and a collection *S* of *m* subsets of \mathbb{U} , with $\bigcup_{s \in S} = \mathbb{U}$, find a minimal subfamily $C \subseteq S$ with $\bigcup_{c \in C} = \mathbb{U}$

Min set cover cannot be approximated to $(1 - o(1)) \cdot \log n$, unless $\mathbf{P} = \mathbf{NP}$.

The Ugly

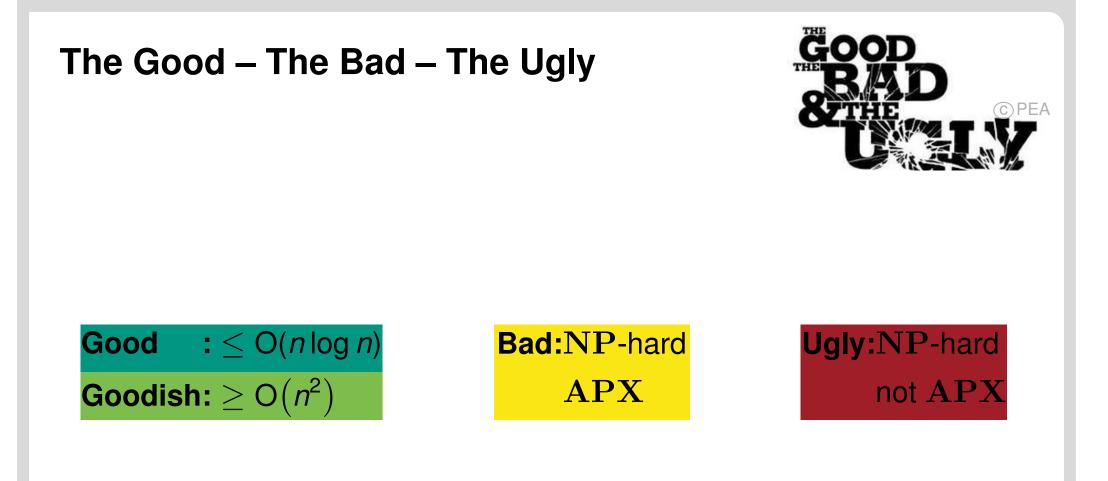
Some problems cannot be approximated efficiently

Example: Minimum Set Cover

Given a universe $\mathbb{U} = \{1, 2, ..., n\}$ and a collection *S* of *m* subsets of \mathbb{U} , with $\bigcup_{s \in S} = \mathbb{U}$, find a minimal subfamily $C \subseteq S$ with $\bigcup_{c \in C} = \mathbb{U}$

Min set cover cannot be approximated to $(1 - o(1)) \cdot \log n$, unless $\mathbf{P} = \mathbf{NP}$.

- there can be polynomial time heuristics for these problems
- work good in practice, but without proven guarantee

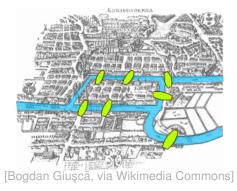


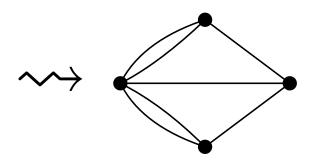
Graph Theory

Institute of Theoretical Informatics Algorithmics Group

Graph Theory

Foundation: 7 Bridges of Köngisberg (L. Euler, 1736) Problem: Walk through Königsberg crossing each bridge exacly once



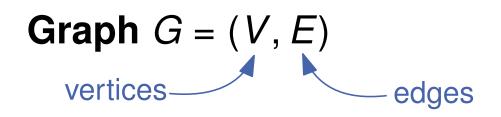


- Today: widely used to model relationships between objects
 - Social Networks
 - Transportation
 - Internet
 - Protein Interaction²

[Barrett Lyon / The Opte Project]

Institute of Theoretical Informatics Algorithmics Group

[sayasaya2011.wordpress.com]

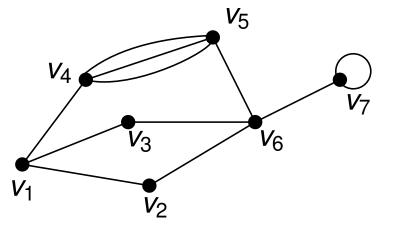


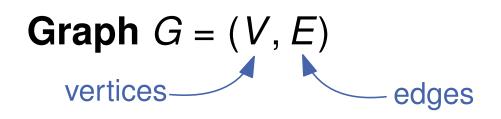
$$V = \{ V_1, V_2, V_3, V_4, V_5, V_6, V_7 \}$$

$$E = \{ (V_1, V_2), (V_1, V_3), (V_1, V_4), \dots \}$$

$$n = |V|$$

$$m = |E|$$





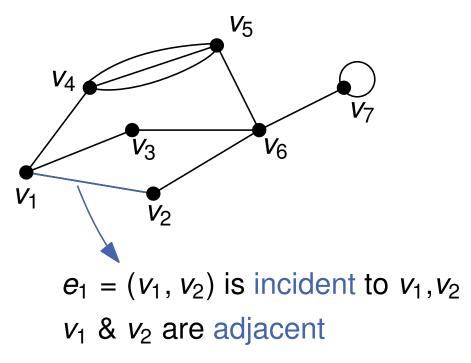
$$V = \{ v_1, v_2, v_3, v_4, v_5, v_6, v_7 \}$$

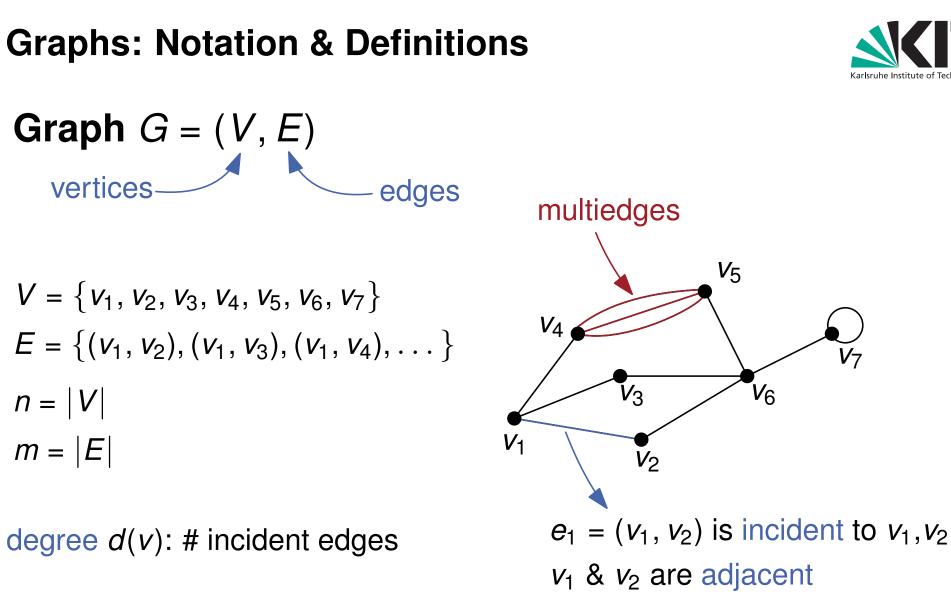
$$E = \{ (v_1, v_2), (v_1, v_3), (v_1, v_4), \dots \}$$

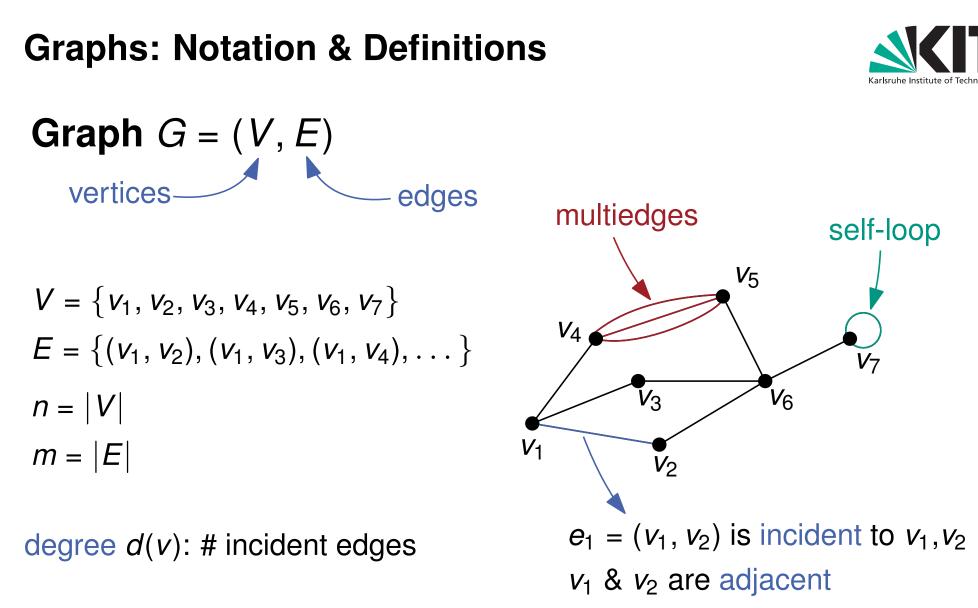
$$n = |V|$$

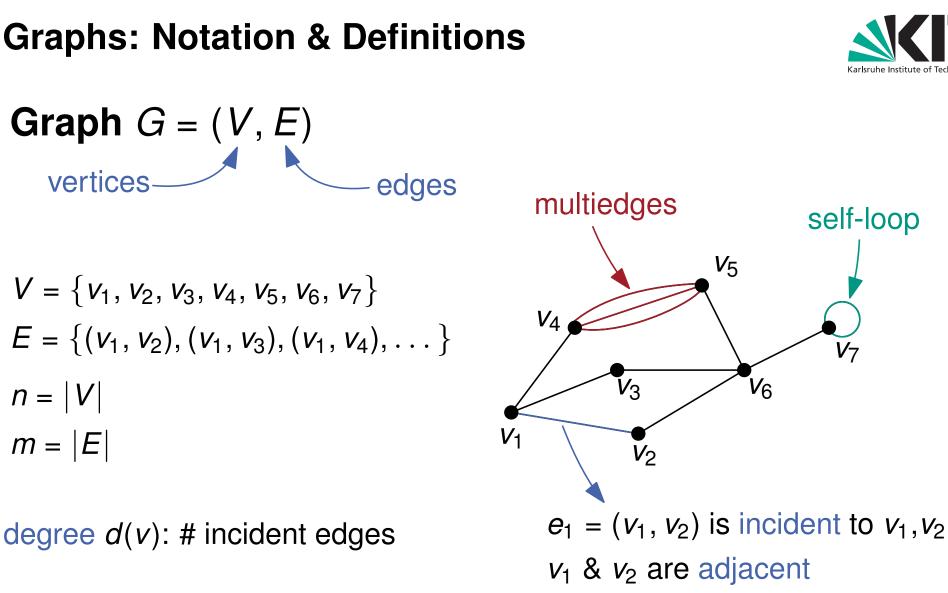
$$m = |E|$$

degree d(v): # incident edges





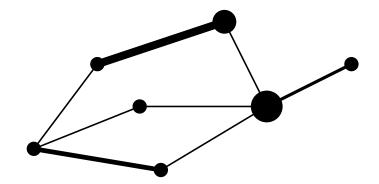




simple graph: no self-loops & multiedges

Weighted Graphs:

- vertex weights $c: V \to \mathbb{R}$
- edge weights $\omega: E \to \mathbb{R}$

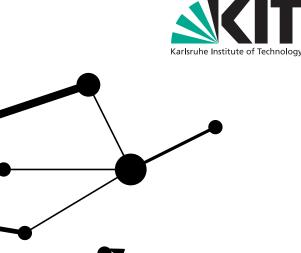


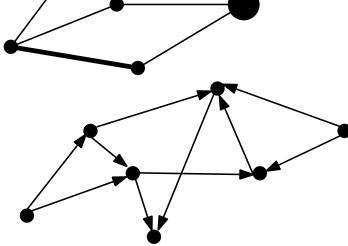
Weighted Graphs:

- vertex weights $c: V
 ightarrow \mathbb{R}$
- edge weights $\omega: E \to \mathbb{R}$

Directed Graphs:

- in-degree $d_{in}(v)$
- out-degree $d_{out}(v)$



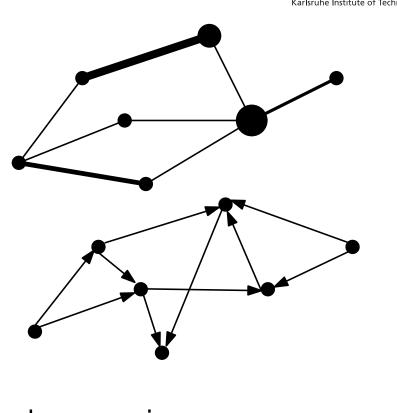


Weighted Graphs:

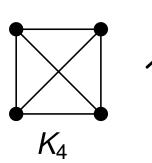
- vertex weights $c: V
 ightarrow \mathbb{R}$
- edge weights $\omega: E
 ightarrow \mathbb{R}$

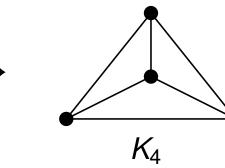
Directed Graphs:

- in-degree $d_{in}(v)$
- out-degree $d_{out}(v)$



Planar Graphs: can be drawn without edge crossings

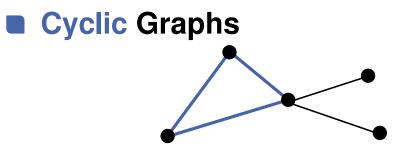


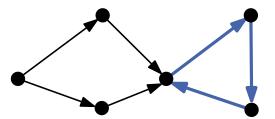


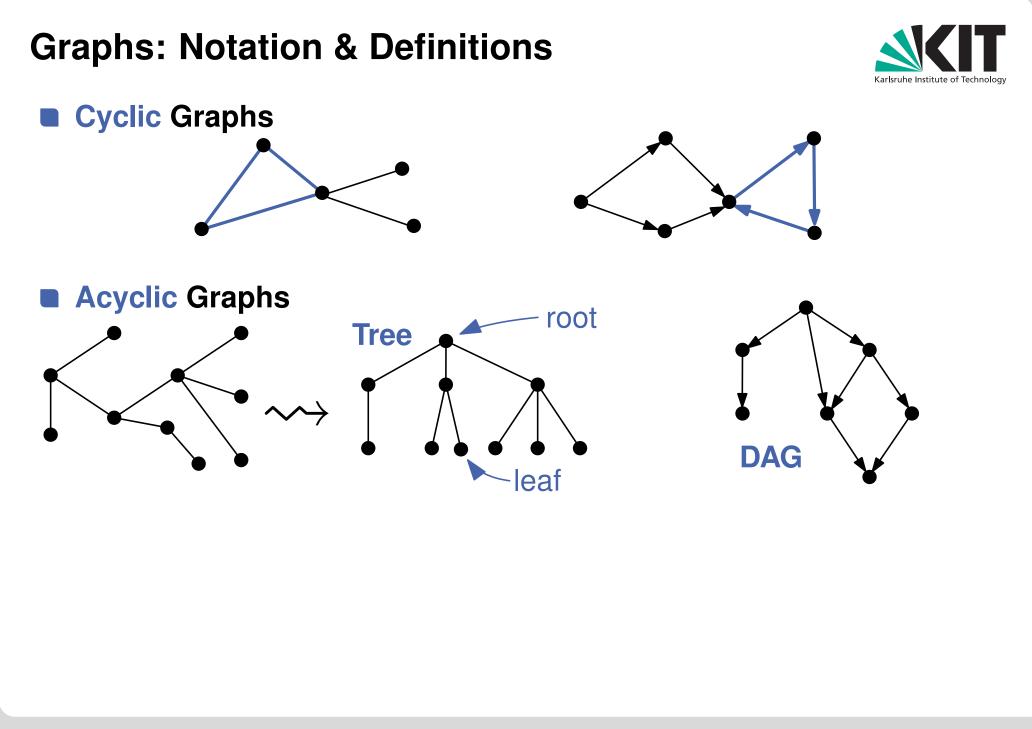
34 Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms

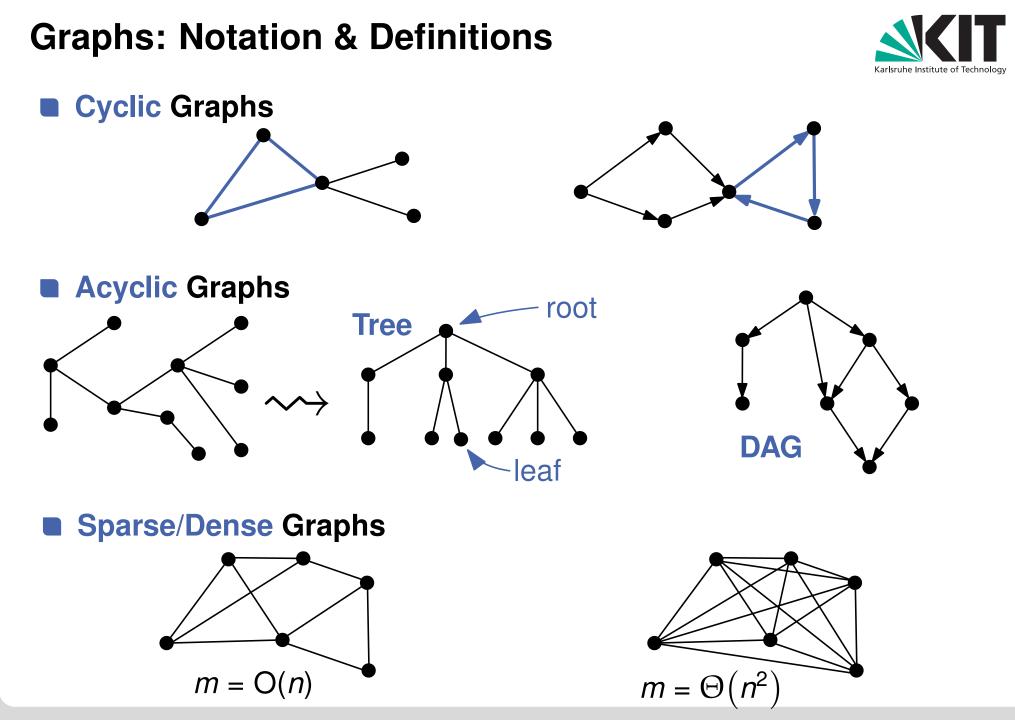
 K_5 not planar

Institute of Theoretical Informatics Algorithmics Group







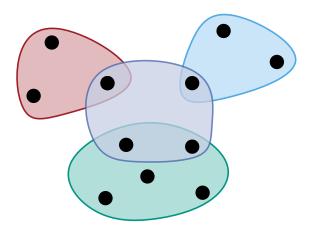


35 Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms

Institute of Theoretical Informatics Algorithmics Group

Hypergraphs: generalization of graphs

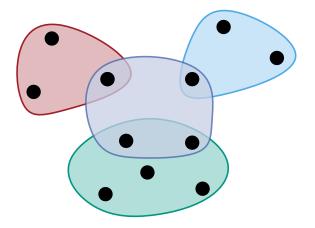
- hyperedges connect ≥ 2 vertices
- can represent **d-ary** relationships
- $E \subseteq \mathcal{P}(V) \setminus \emptyset$



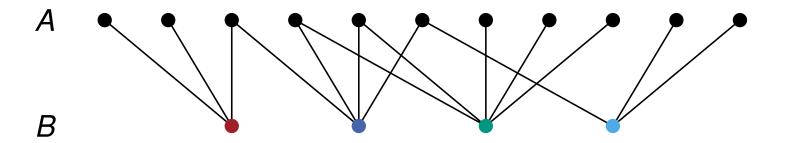
Hypergraphs: generalization of graphs

- hyperedges connect ≥ 2 vertices
- can represent d-ary relationships

• $E \subseteq \mathcal{P}(V) \setminus \emptyset$



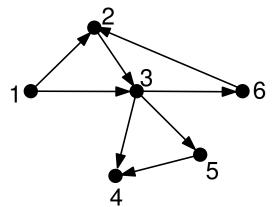
Bipartite Graphs: $\forall (u, v) \in E : (u \in A \land v \in B) \lor (v \in A \land u \in B)$

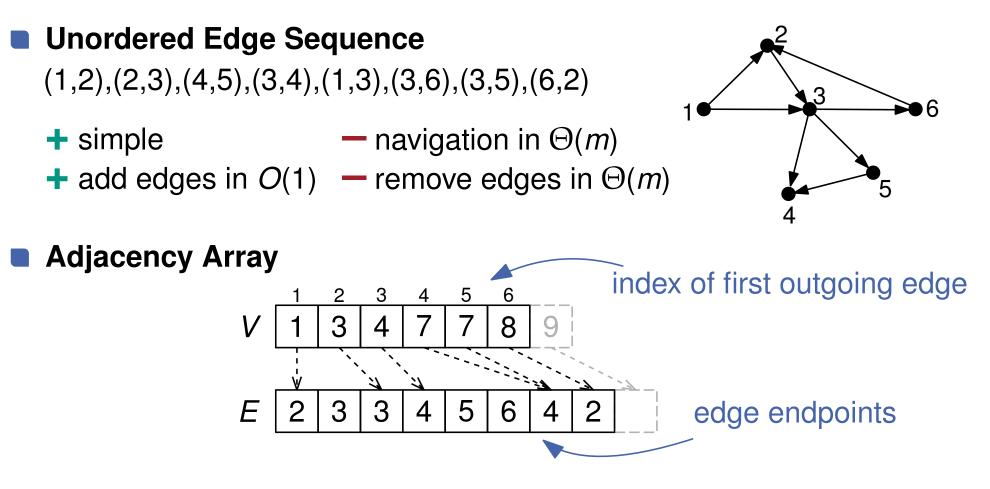


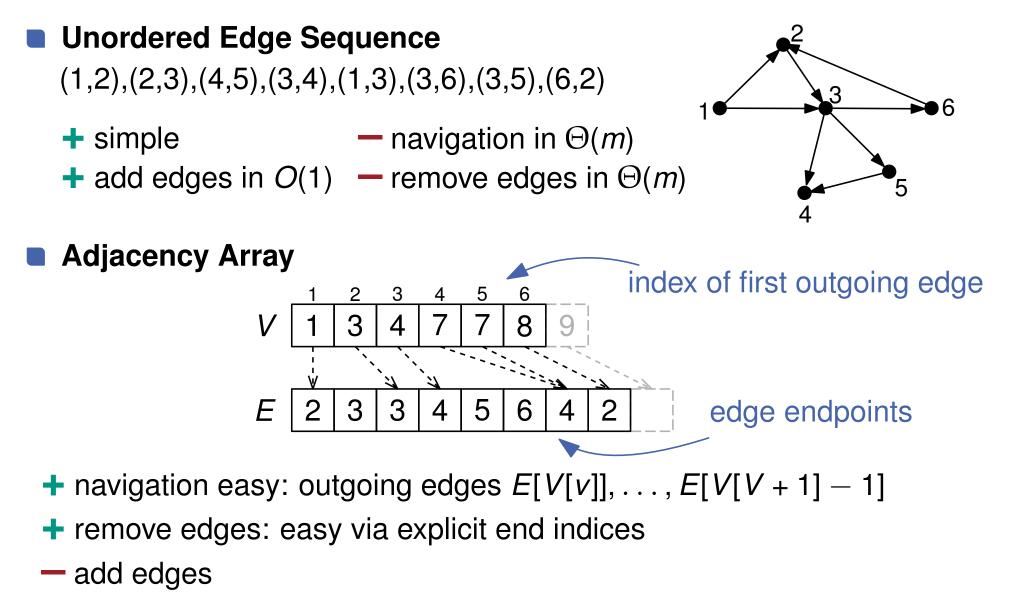
Unordered Edge Sequence

(1,2),(2,3),(4,5),(3,4),(1,3),(3,6),(3,5),(6,2)

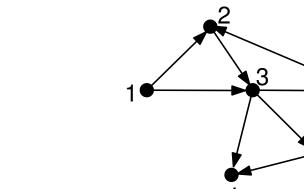
- + simple navigation in $\Theta(m)$
- + add edges in O(1) remove edges in $\Theta(m)$

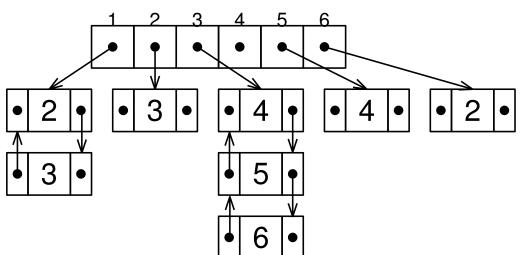






6





- adding edges: easy
 up to 3x more space + removing edges: easy - slower (more cache misses) + navigation: easy

Adjacency Matrix

 $A \in \{0, 1\}^{n \times n}$ with $A(i, j) = [(i, j) \in E]$

 $A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$

+ space efficient for very dense graphs - space inefficient otherwise

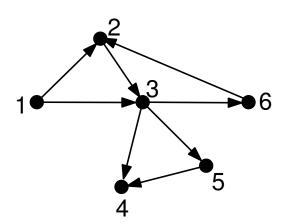
+ query $(u, v) \in E$? easy

+ edge insertions/deletions in O(1)

+ connects graph theory with linear algebra

Example: $C = A^k \Rightarrow C_{ij} = \#$ paths of length k from i to j

ohs — space inefficient otherwise
— navigation in O(n)



Summary:

- edge sequence
- adjacency array
- adjacency list
- adjacency matrix

Summary:

- edge sequence
- adjacency array
- adjacency list
- adjacency matrix

Key Takeaways:

- Choice of DS depends on
 - operations needed
 - frequency of operations
 - static or dynamic?
- Adjacency Array \rightarrow best DS for static graphs
- Matrices rarely used in practice

no data structure fits all needs!

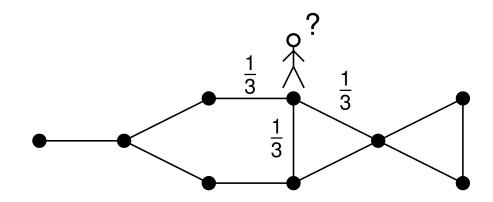
Graph Traversal

Random Walks

Given undirected Graph G = (V, E)

Random walk in G

- Random walker that stands at one vertex at each point in time
- Each edge is taken with same probability

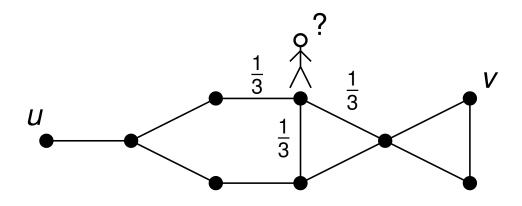


Random Walks

Given undirected Graph G = (V, E)

Random walk in G

- Random walker that stands at one vertex at each point in time
- Each edge is taken with same probability



Interesting properties

- m_{uv} := expected number of steps from vertex *u* to *v*
- C_{uv} := expected number of steps from vertex *u* to *u* via *v*

Applications

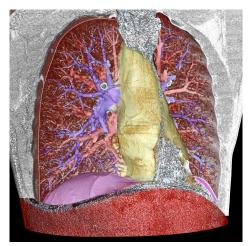
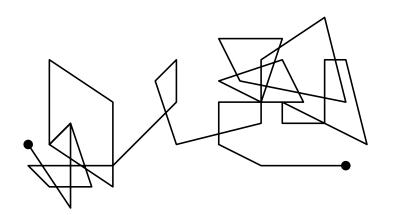
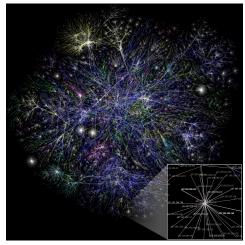


Image segmentation



Model Brownian motion and diffusion

Model share prices in economics



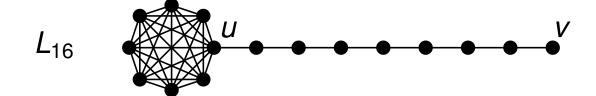
Estimate size of WWW

By Katrina.Tuliao - https://www.tradergroup.org, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=12262407 By The Opte Project - Originally from the English Wikipedia; CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1538544

Institute of Theoretical Informatics Algorithmics Group

Example

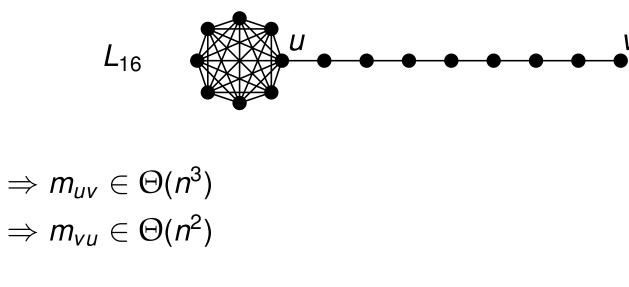
- Lollipop graph *L_n*
 - First $\frac{n}{2}$ vertices form clique
 - Second $\frac{n}{2}$ vertices form path "glued" to clique



Example

Lollipop graph *L_n*

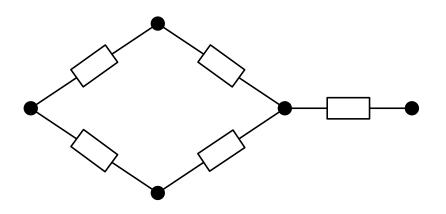
- First $\frac{n}{2}$ vertices form clique
- Second $\frac{n}{2}$ vertices form path "glued" to clique



How to efficiently model this problem?

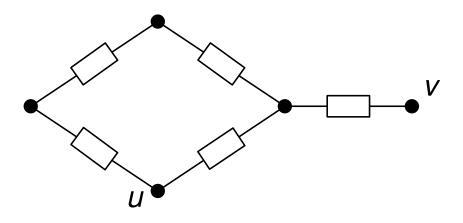
Resistance Networks

- Model graph as network N(G) of electrical resistors
 - Graph has to be undirected, connected and loop-free
 - Replace each edge with resistor of 1Ω



Resistance Networks

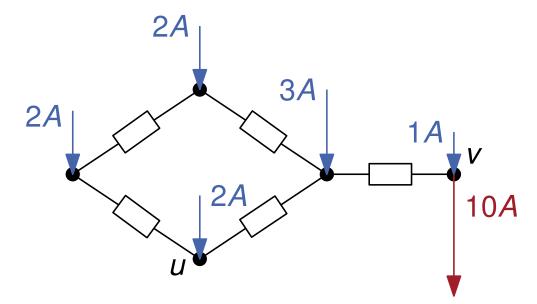
- Model graph as network N(G) of electrical resistors
 - Graph has to be undirected, connected and loop-free
 - Replace each edge with resistor of 1Ω



- \Rightarrow We can measure the effective resistance R_{uv} between u and v
- \Rightarrow We now proof that $C_{uv} = 2mR_{uv}$

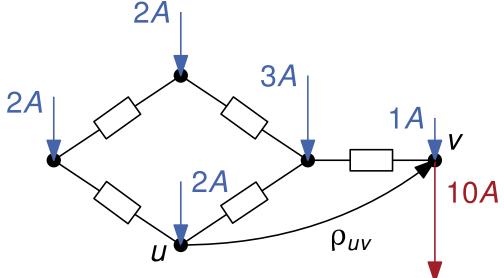
Lemma: $m_{uv} = \rho_{uv}$

- Add electric current d(x) to every vertex $x \in V$
- Remove total current of 2*m* at vertex *v*



Lemma: $m_{uv} = \rho_{uv}$

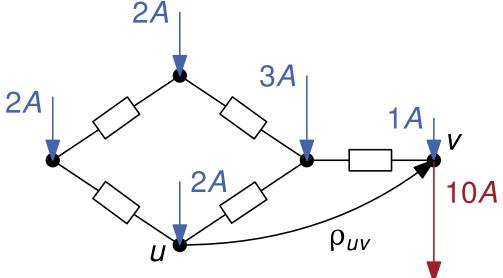
- Add electric current d(x) to every vertex $x \in V$
- Remove total current of 2*m* at vertex *v*



• Kirchoff's law: $d(u) = \sum_{w \in \Gamma(u)} (\rho_{uv} - \rho_{wv}) \Leftrightarrow d(u) + \sum_{w \in \Gamma(u)} \rho_{wv} = d(u)\rho_{uv}$

Lemma: $m_{uv} = \rho_{uv}$

- Add electric current d(x) to every vertex $x \in V$
- Remove total current of 2*m* at vertex *v*



Kirchoff's law:

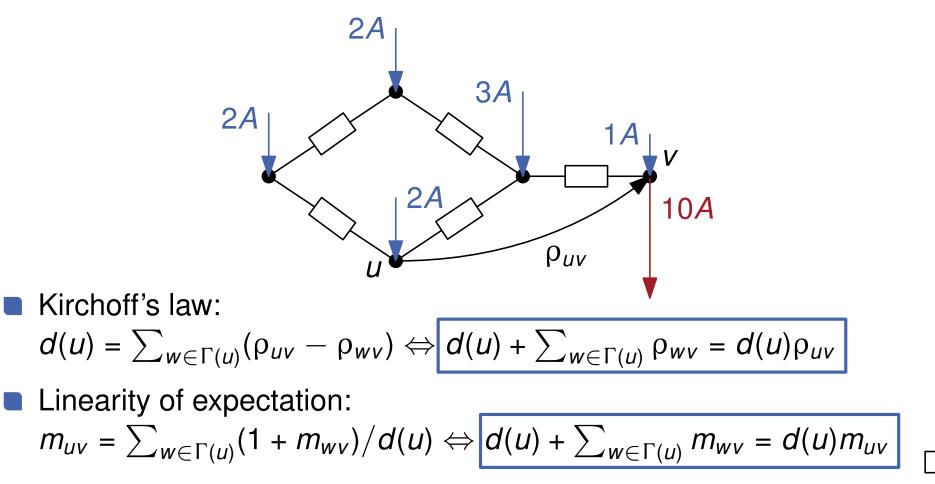
 $d(u) = \sum_{w \in \Gamma(u)} (\rho_{uv} - \rho_{wv}) \Leftrightarrow d(u) + \sum_{w \in \Gamma(u)} \rho_{wv} = d(u)\rho_{uv}$

Linearity of expectation:

$$m_{uv} = \sum_{w \in \Gamma(u)} (1 + m_{wv}) / d(u) \Leftrightarrow d(u) + \sum_{w \in \Gamma(u)} m_{wv} = d(u) m_{uv}$$

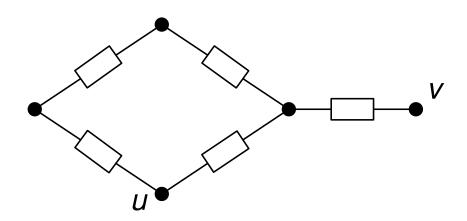
Lemma: $m_{uv} = \rho_{uv}$

- Add electric current d(x) to every vertex $x \in V$
- Remove total current of 2*m* at vertex *v*



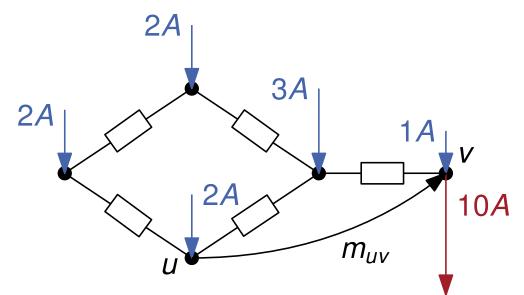
Proof: $C_{uv} = 2mR_{uv}$

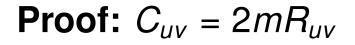
$$\Box C_{uv} = m_{uv} + m_{vu} = \rho_{uv} + \rho_{vu}$$



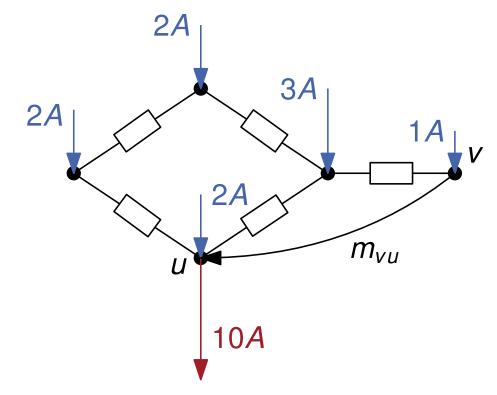
Proof: $C_{uv} = 2mR_{uv}$

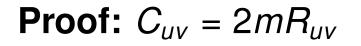
$$\Box C_{uv} = m_{uv} + m_{vu} = \rho_{uv} + \rho_{vu}$$



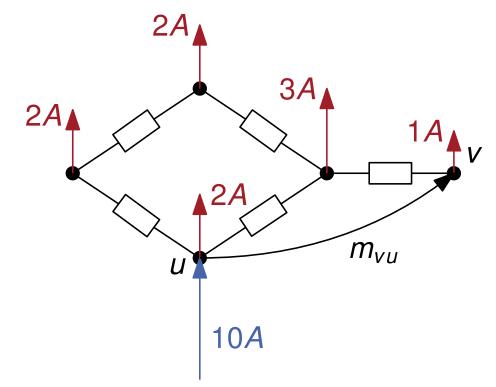


$$\Box C_{uv} = m_{uv} + m_{vu} = \rho_{uv} + \rho_{vu}$$



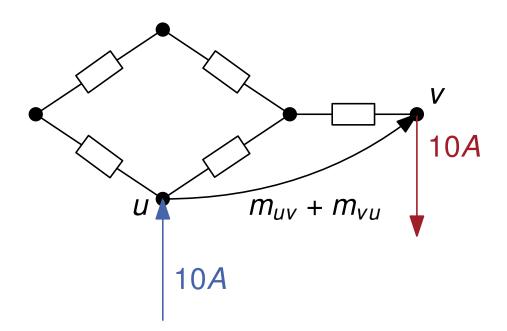


$$C_{uv} = m_{uv} + m_{vu} = \rho_{uv} + \rho_{vu}$$



Proof: $C_{uv} = 2mR_{uv}$

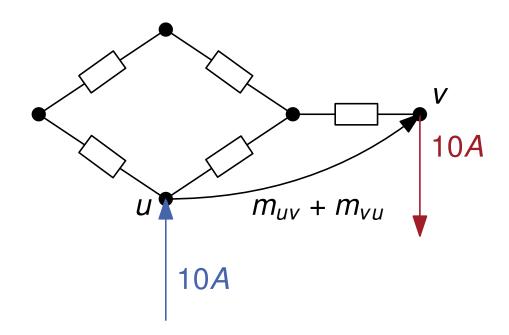
$$\Box C_{uv} = m_{uv} + m_{vu} = \rho_{uv} + \rho_{vu}$$



Proof: $C_{uv} = 2mR_{uv}$

• Use $m_{uv} = \rho_{uv}$ and linearity of resistor network

$$\Box C_{uv} = m_{uv} + m_{vu} = \rho_{uv} + \rho_{vu}$$

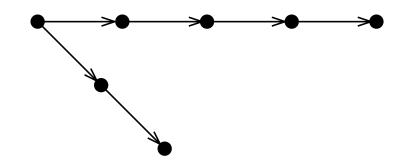


 \Rightarrow Ohm's law: $C_{uv} = 2mR_{uv}$

Systematic Graph Exploration

- basis of almost all nontrivial graph algorithms
- goal: inspect each edge exactly once
- 2 Algorithms
 - Breadth-First Search
 - Depth-First Search

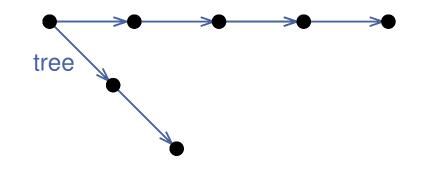
Both construct forests & partition edges into one of 4 classes:



Systematic Graph Exploration

- basis of almost all nontrivial graph algorithms
- goal: inspect each edge exactly once
- 2 Algorithms
 - Breadth-First Search
 - Depth-First Search

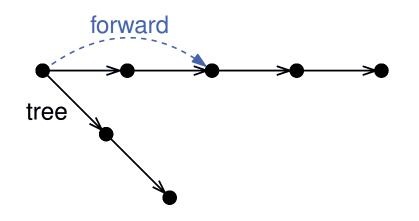
Both construct forests & partition edges into one of 4 classes:



Systematic Graph Exploration

- basis of almost all nontrivial graph algorithms
- goal: inspect each edge exactly once
- 2 Algorithms
 - Breadth-First Search
 - Depth-First Search

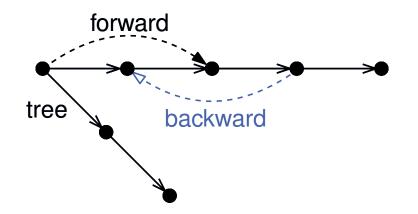
Both construct forests & partition edges into one of 4 classes:



Systematic Graph Exploration

- basis of almost all nontrivial graph algorithms
- goal: inspect each edge exactly once
- 2 Algorithms
 - Breadth-First Search
 - Depth-First Search

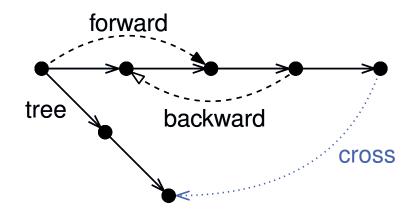
Both construct forests & partition edges into one of 4 classes:



Systematic Graph Exploration

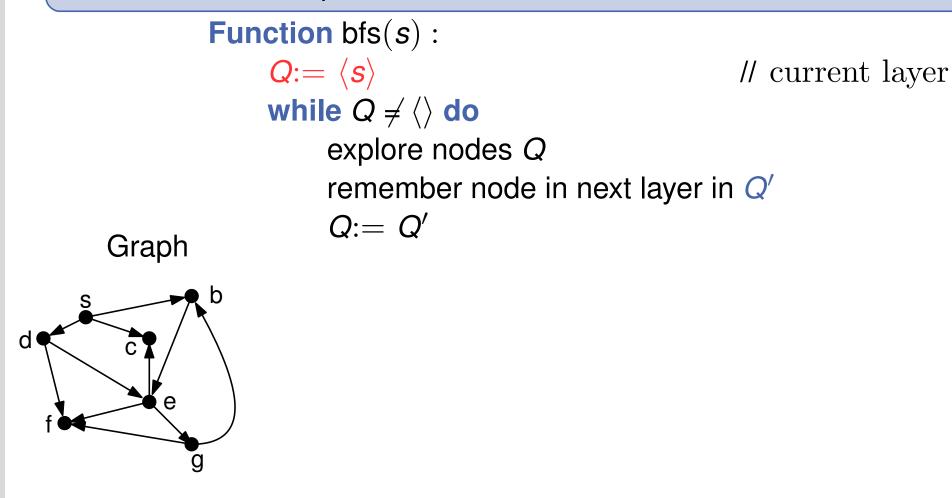
- basis of almost all nontrivial graph algorithms
- goal: inspect each edge exactly once
- 2 Algorithms
 - Breadth-First Search
 - Depth-First Search

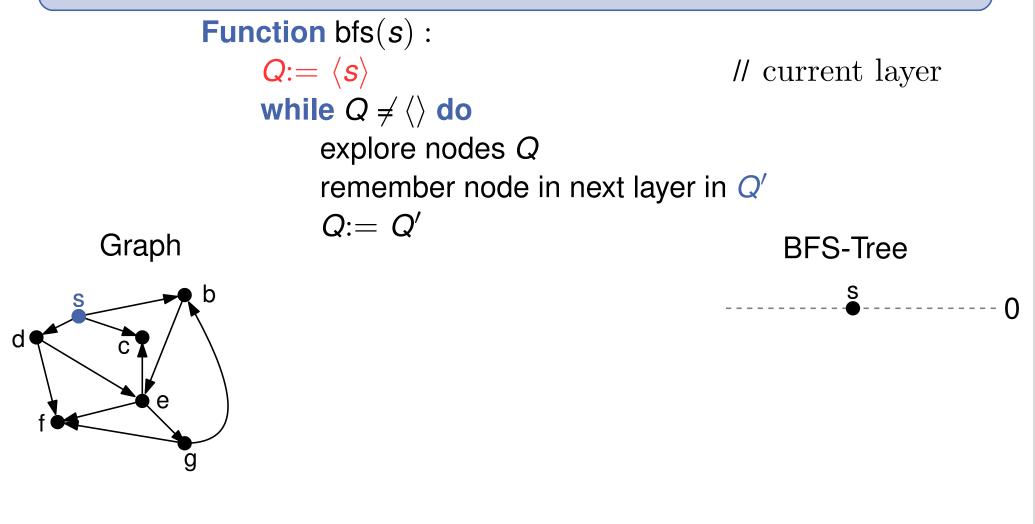
Both construct forests & partition edges into one of 4 classes:



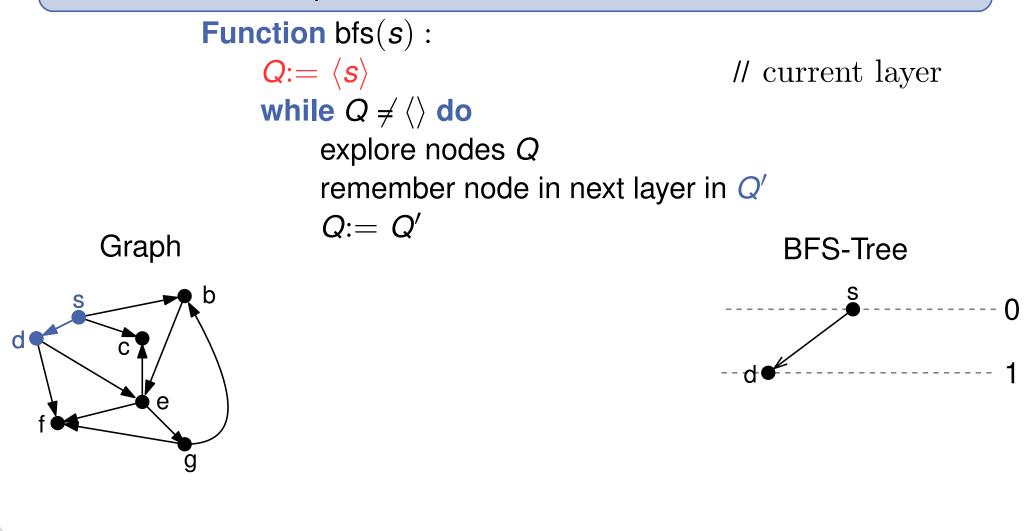
Build tree starting from **root node** *s* that connects all nodes reachable from *s* via **shortest** paths.

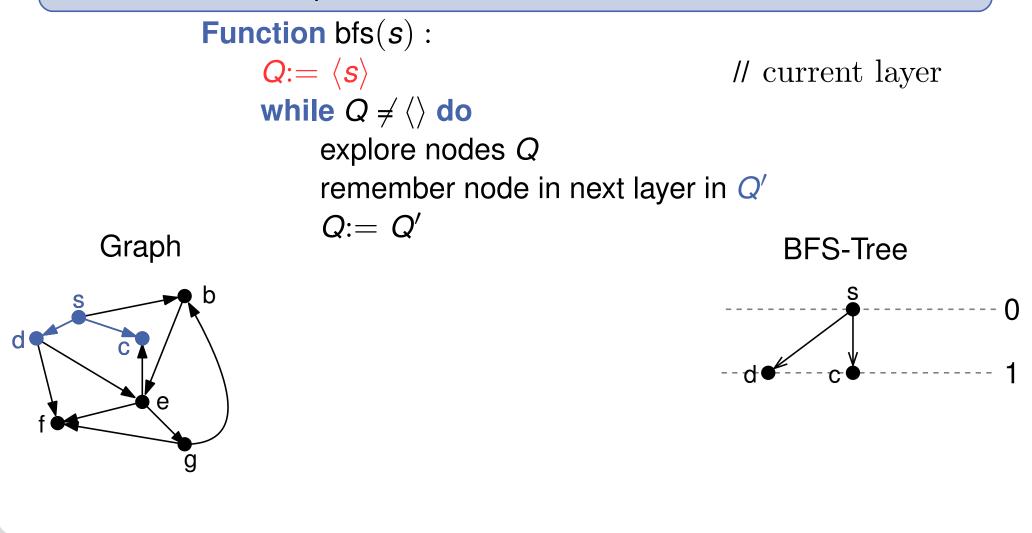
Function bfs(s): $Q:= \langle s \rangle$ // current layer while $Q \neq \langle \rangle$ do explore nodes Q remember node in next layer in Q' Q:= Q'



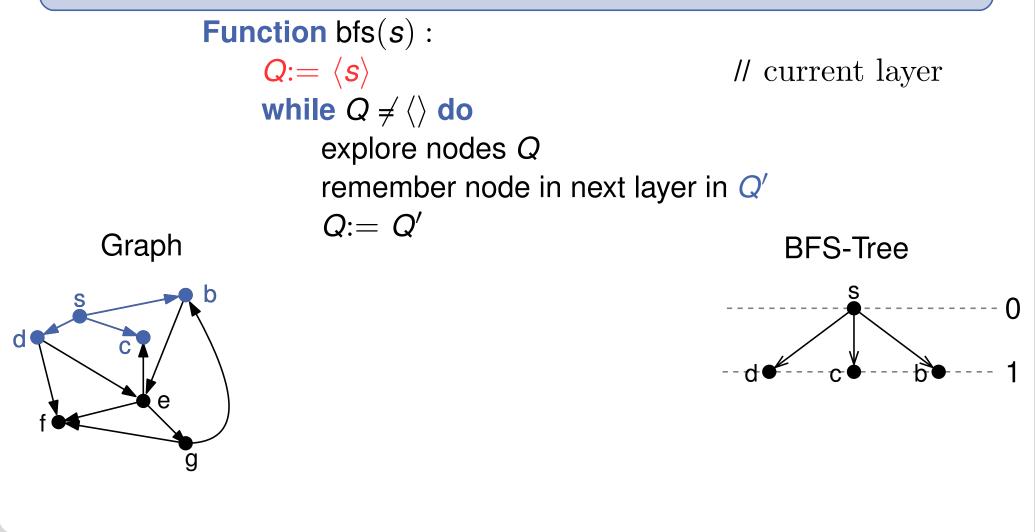


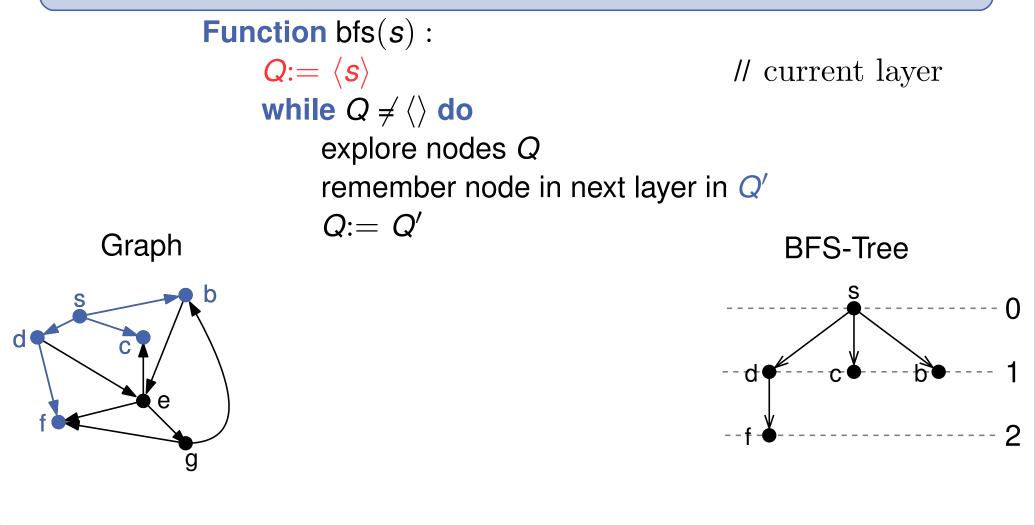
Build tree starting from **root node** *s* that connects all nodes reachable from *s* via **shortest** paths.

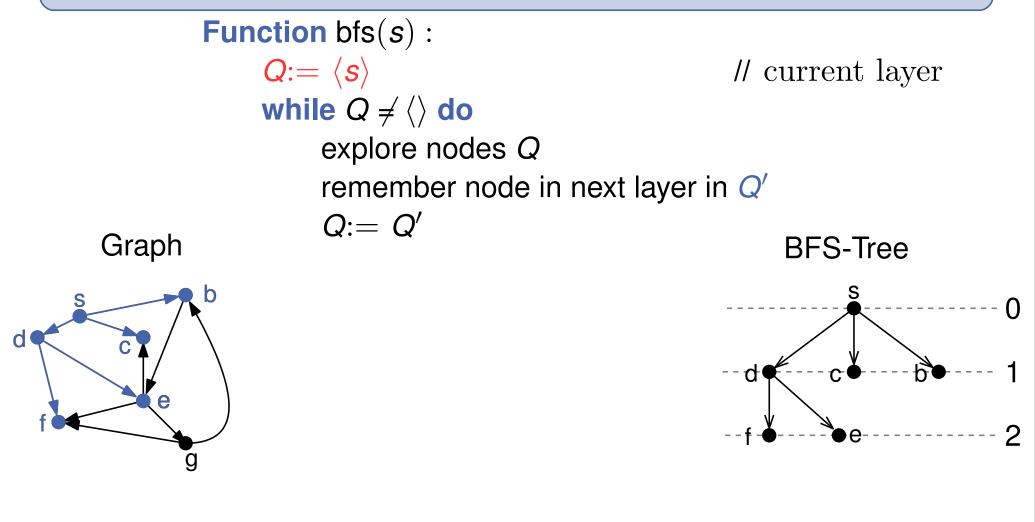


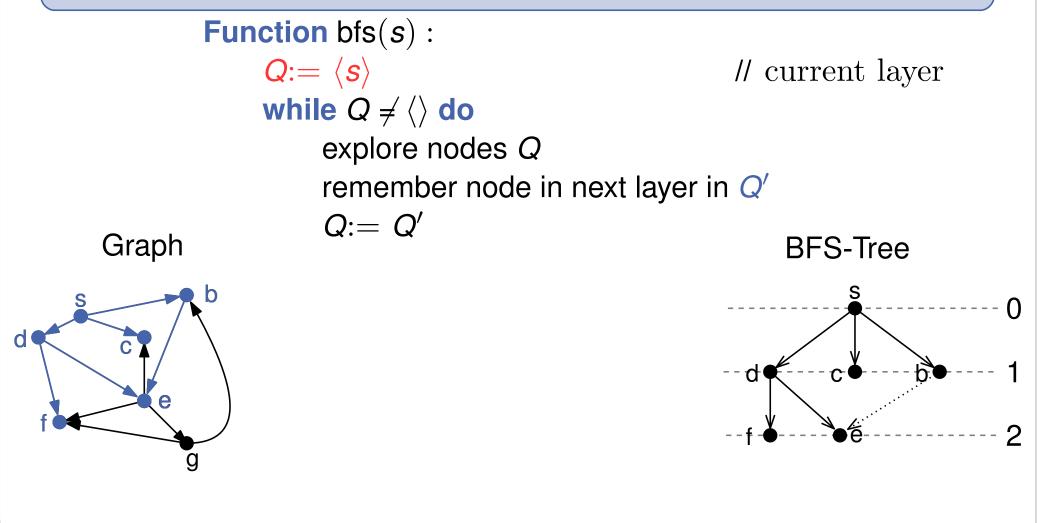


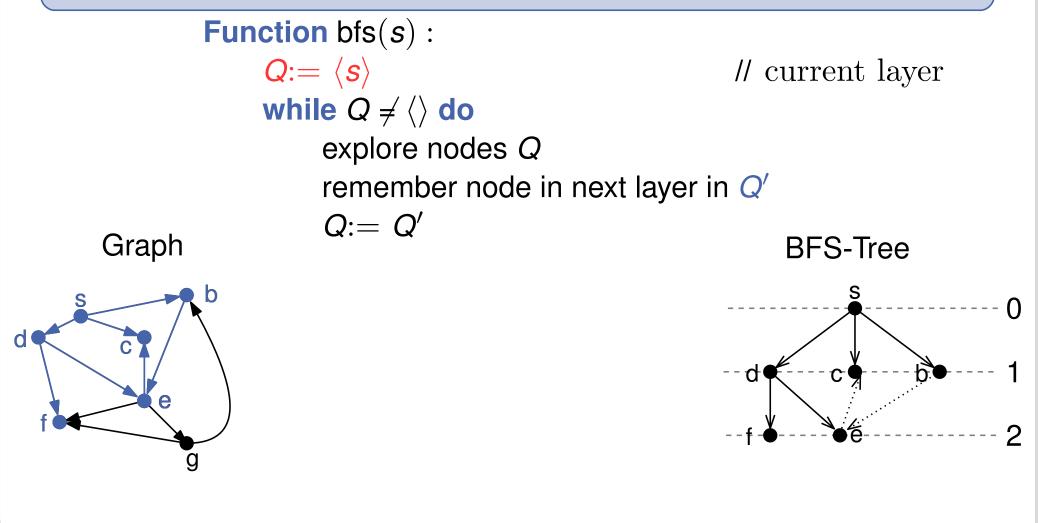
Build tree starting from **root node** *s* that connects all nodes reachable from *s* via **shortest** paths.

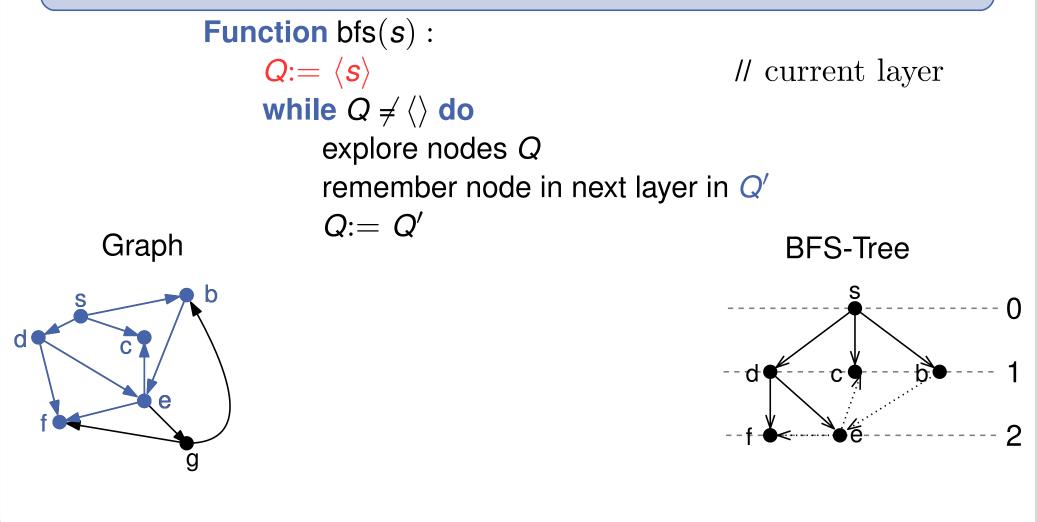




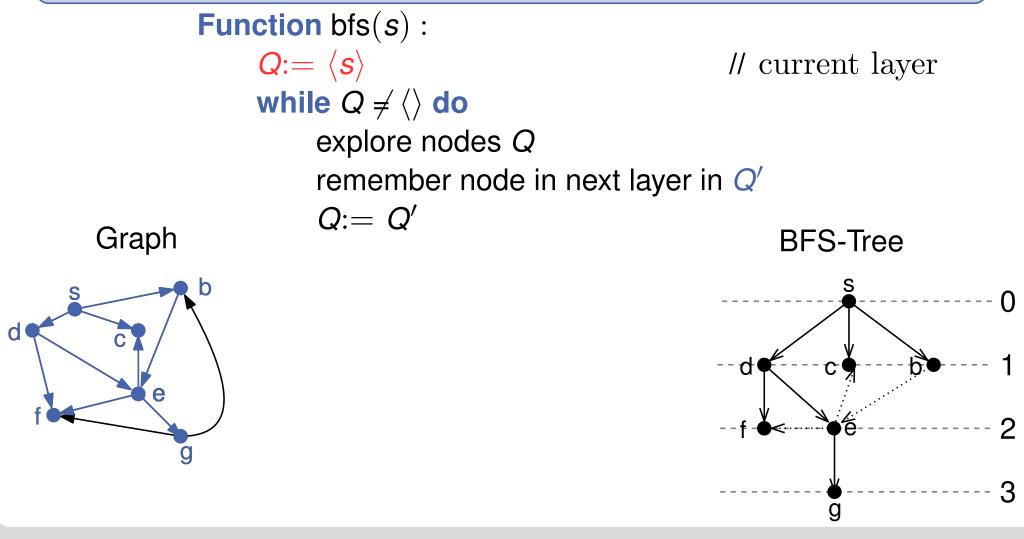




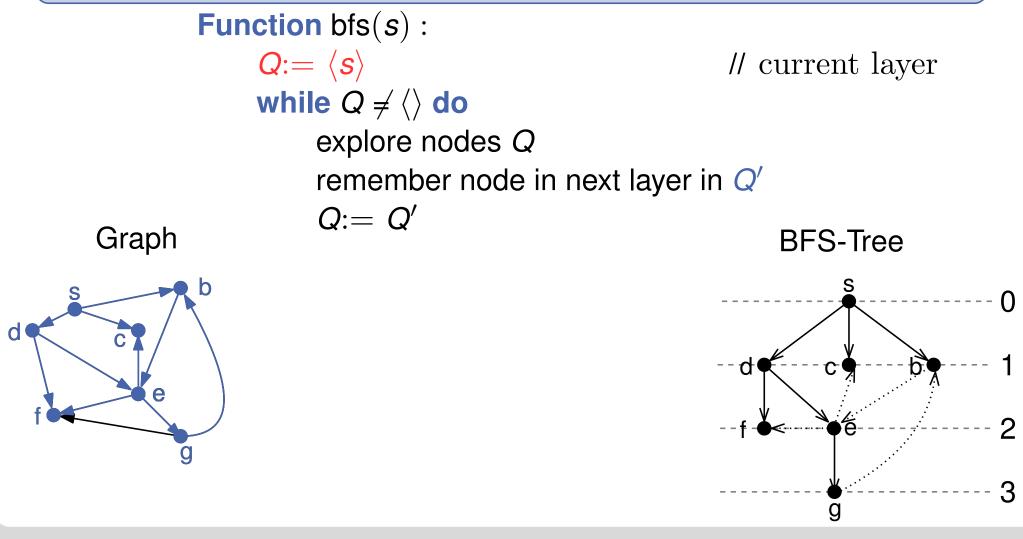




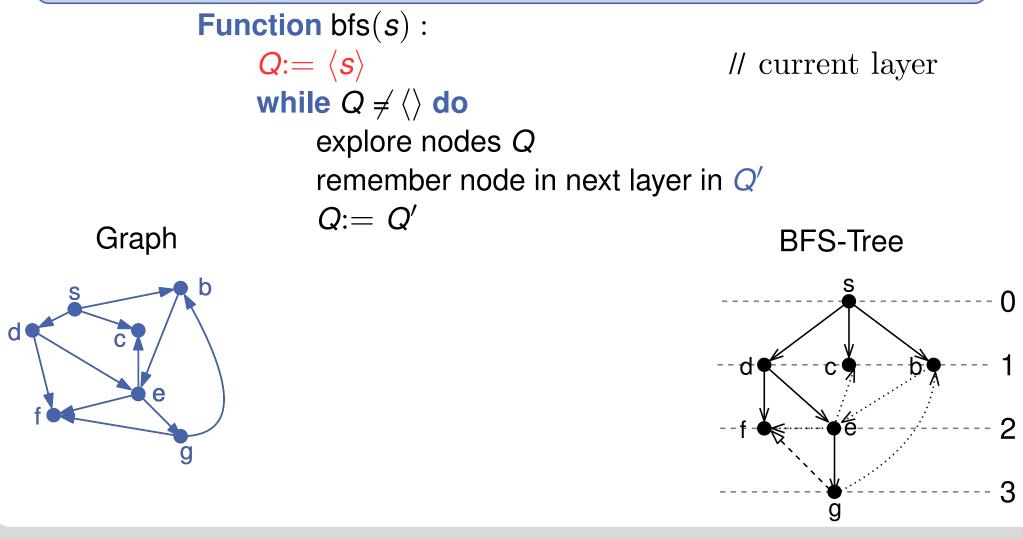
Build tree starting from **root node** *s* that connects all nodes reachable from *s* via **shortest** paths.



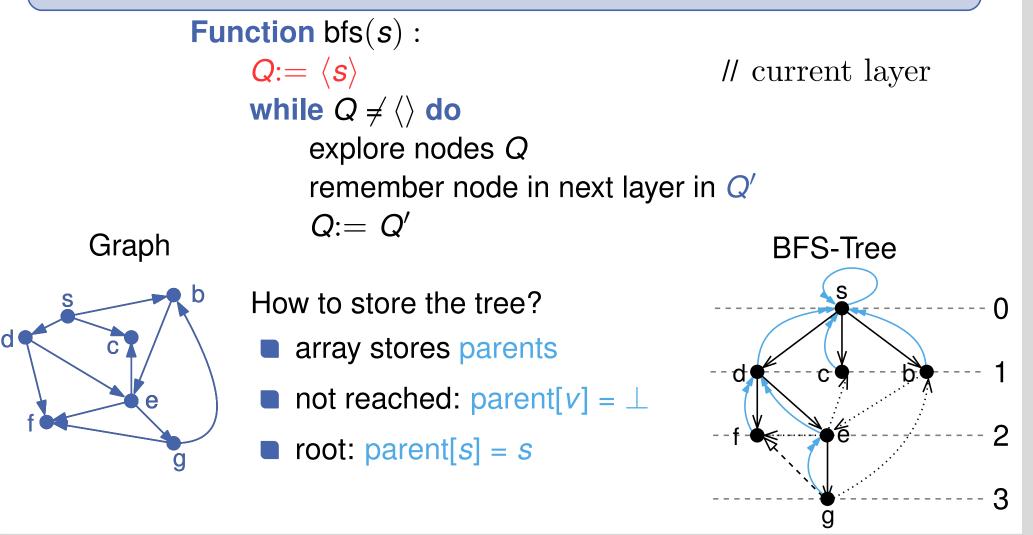
Build tree starting from **root node** *s* that connects all nodes reachable from *s* via **shortest** paths.



Build tree starting from **root node** *s* that connects all nodes reachable from *s* via **shortest** paths.



Build tree starting from **root node** *s* that connects all nodes reachable from *s* via **shortest** paths.



49 Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms

Explore the graph as far as possible along each branch and return only if you run out of options.

init foreach $s \in V$ do if s is not marked then mark s // make **s** a root and grow // a new DFS tree rooted at s root(*s*) DFS(s, s)init: root(*s*): dfsPos=1 : 1..*n* dfsNum[s]:= dfsPos++ finishingTime=1 : 1..n


```
Procedure DFS(u, v: Nodeld)

foreach (v, w) \in E do

if w is marked then

traverseNonTreeEdge(v, w)

else

traverseTreeEdge(v, w)

mark w

DFS(v, w)

backtrack(u, v)
```

```
Procedure DFS(u, v: Nodeld)

foreach (v, w) \in E do

if w is marked then

traverseNonTreeEdge(v, w)

else

traverseTreeEdge(v, w)

mark w

DFS(v, w)

backtrack(u, v)
```



```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

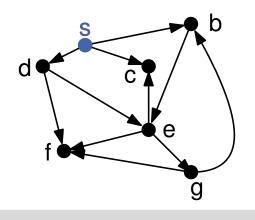
```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```



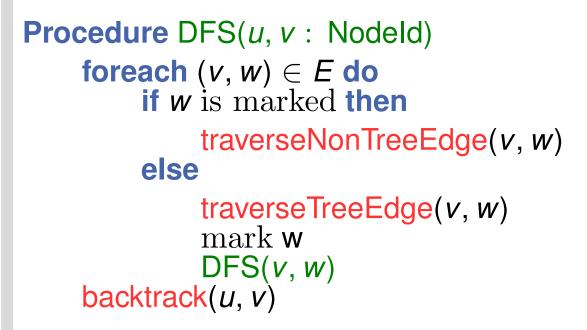
```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

DFS-Tree

S

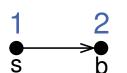


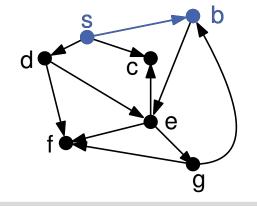

```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

DFS-Tree

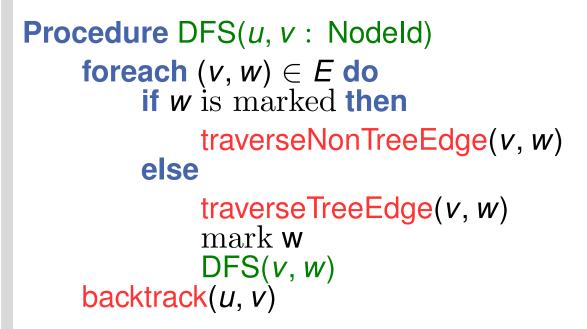
```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph





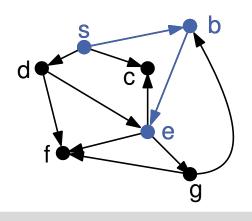
51 Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms



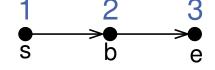

```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

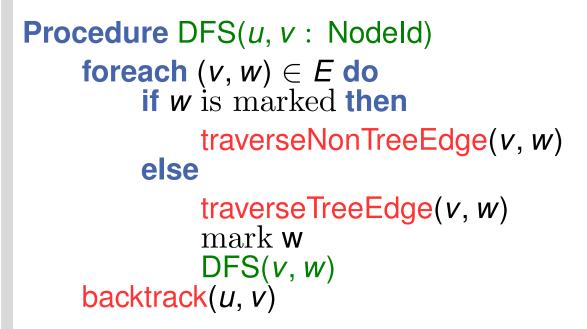
```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph



DFS-Tree

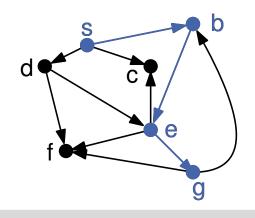


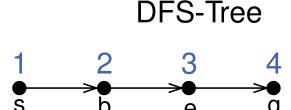



```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph





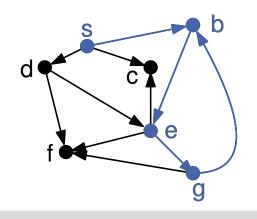
```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```

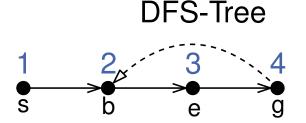


```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph





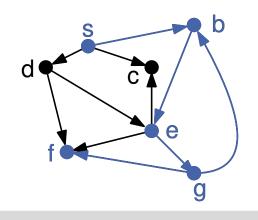
```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```

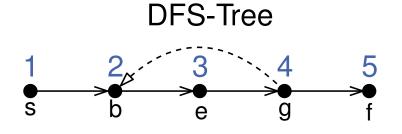


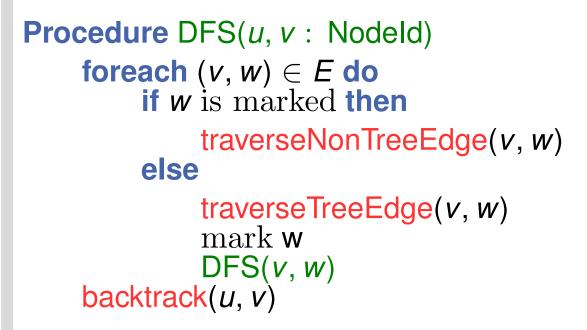
```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph



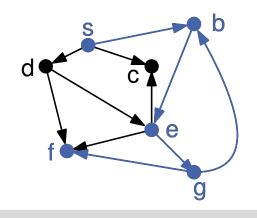


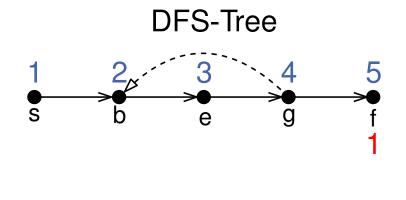



```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph





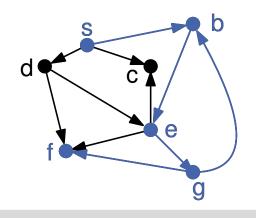
```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```

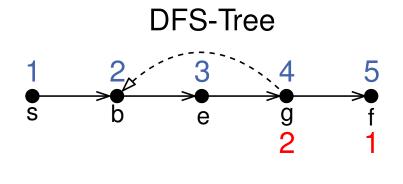


```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph





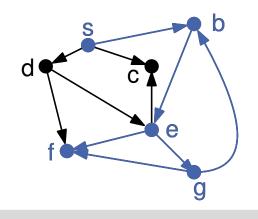
```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```

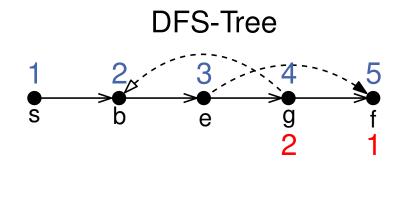


```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph





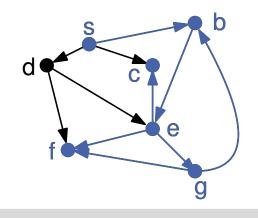
```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```



```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph



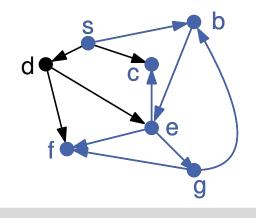
DFS-Tree 1 2 3 4 5 s b e g f 2 1 6 c

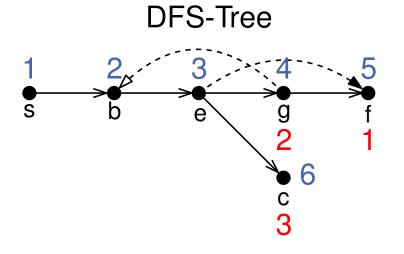
```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```



```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```



```
Procedure DFS(u, v: Nodeld)

foreach (v, w) \in E do

if w is marked then

traverseNonTreeEdge(v, w)

else

traverseTreeEdge(v, w)

mark w

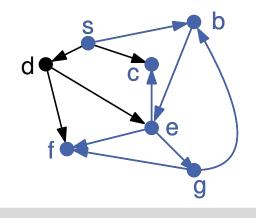
DFS(v, w)

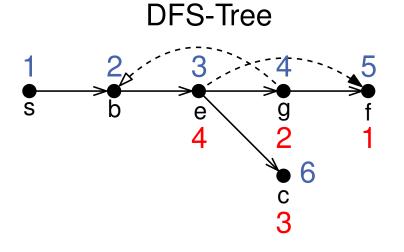
backtrack(u, v)
```



```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```



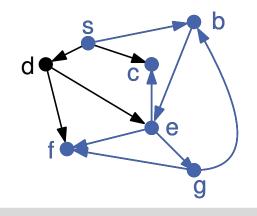
```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```



```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph



DFS-Tree 1 2 3 4 5 s b e g f 5 4 2 1 63

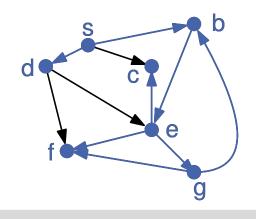
```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```



```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph



DFS-Tree 1 2 3 4 5 5 4 2 1 6 7 6 3

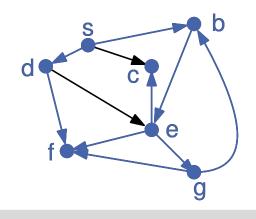
```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```

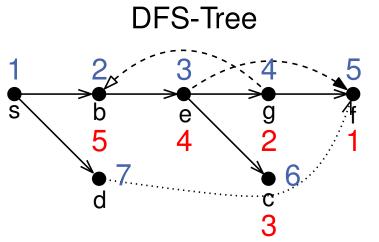


```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph





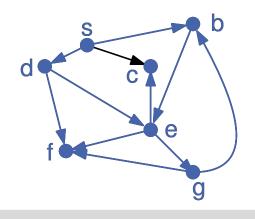
```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```



```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph



DFS-Tree 1 2 3 4 5 5 4 2 1 6 4 3

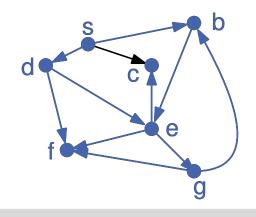
```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```

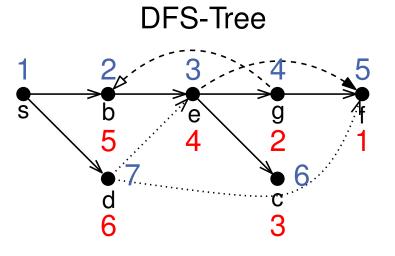


```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph





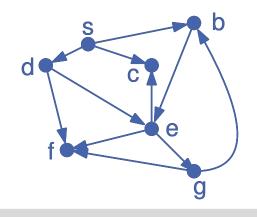
```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```

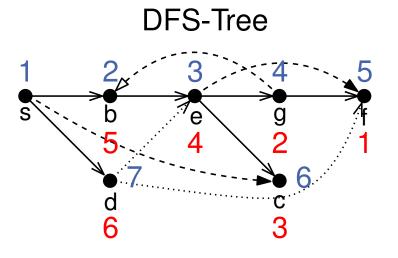


```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph





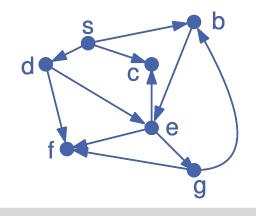
```
Procedure DFS(u, v: Nodeld)
foreach (v, w) \in E do
if w is marked then
traverseNonTreeEdge(v, w)
else
traverseTreeEdge(v, w)
mark w
DFS(v, w)
backtrack(u, v)
```

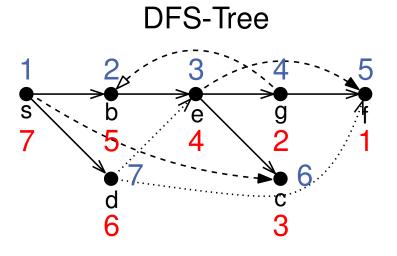


```
traverseTreeEdge(v, w):
    dfsNum[w]:= dfsPos++
```

```
backtrack(u, v):
    finishTime[v]:= finishingTime++
```

Graph

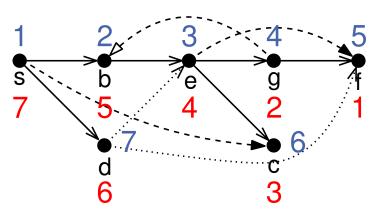




DFS: Edge Classification

type	dfsNum[v] <	finishTime[<i>w</i>] <	w is
(V, W)	dfsNum[<i>w</i>]	finishTime[<i>v</i>]	marked
tree	yes	yes	no
forward	yes	yes	yes
backward	no	no	yes
cross	no	yes	yes

DFS-Tree

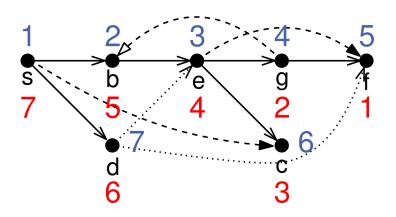


DFS: Edge Classification

Lemma:

The following properties are equivalent:(i) G is an acyclic directed graph (DAG)(ii) DFS on G produces no backward edges(iii) All edges of G go from larger to smaller finishing times

- \Rightarrow Cycle Detection
- \Rightarrow Topological Sorting



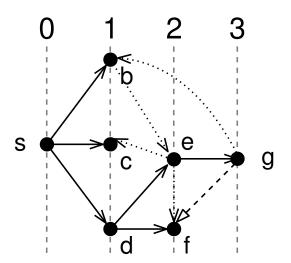
DFS-Tree

Graph Problems

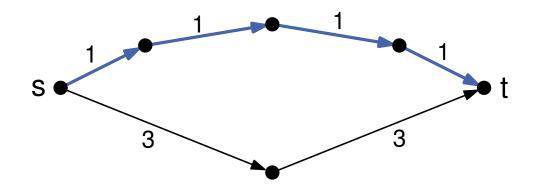
Finding Shortest Paths in Graphs

Unweighted Graphs ($\forall e \in E : \omega(e) = 1$):

- use BFS
- O(*n* + *m*) time



What about weighted graphs?



Shortest Paths

• Graph G = (V, E)

start node s

• Edge weights $\omega : E \to \mathbb{R}$

Input:

Karlsruhe Institute of Technology

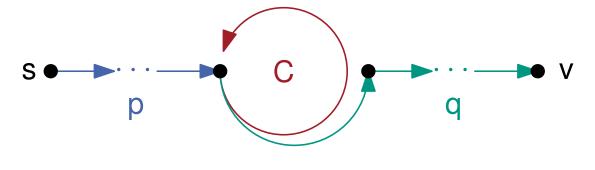
Output: $\forall v \in V$: Length $\mu(v)$ of shortest path from *s* to *v*

 $\mu(v) := \min\{\omega(p) : p \text{ is path from } s \text{ to } v\}$ $\omega(\langle e_1, \dots, e_k \rangle) := \sum_{i=1}^k \omega(e_i)$

Applications: Route planning, DNA sequencing, production planning,...

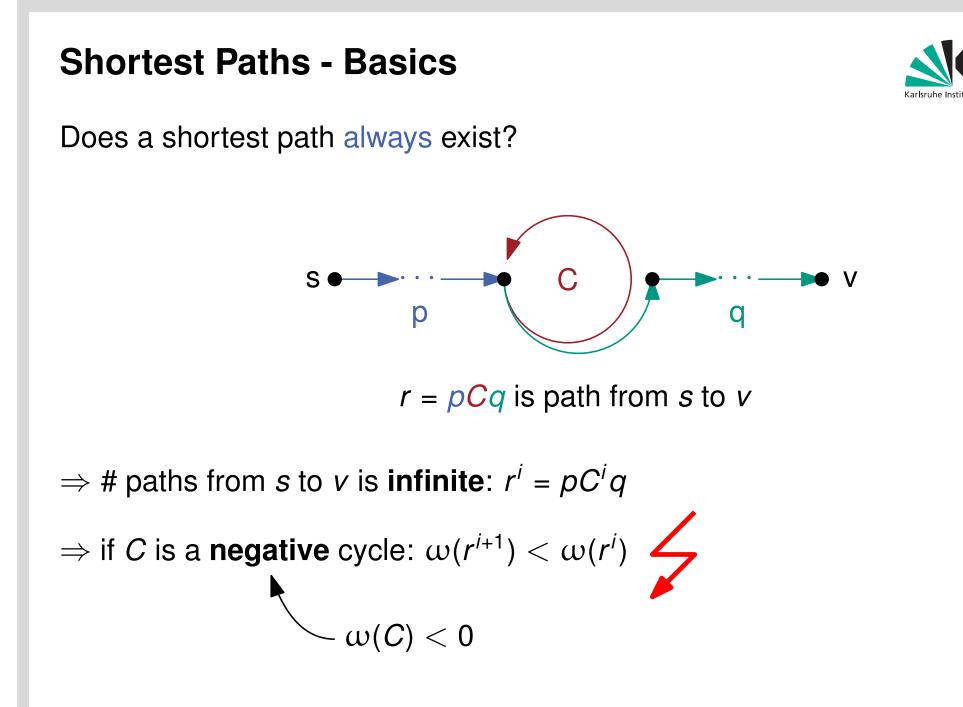
Shortest Paths - Basics

Does a shortest path always exist?



r = pCq is path from s to v

 \Rightarrow # paths from *s* to *v* is **infinite**: $r^i = pC^iq$



Shortest Paths - Basic Definitions

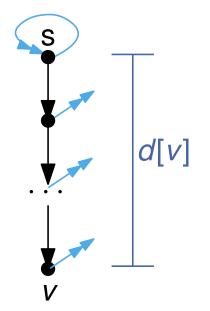
Karlsruhe Institute of Technology

Assumption: **nonnegative** edge weights ~> no negative cycles

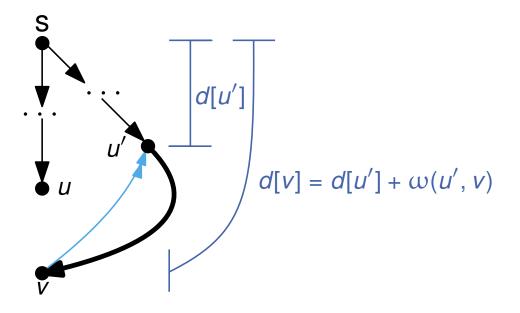
We use 2 Arrays (like in BFS):

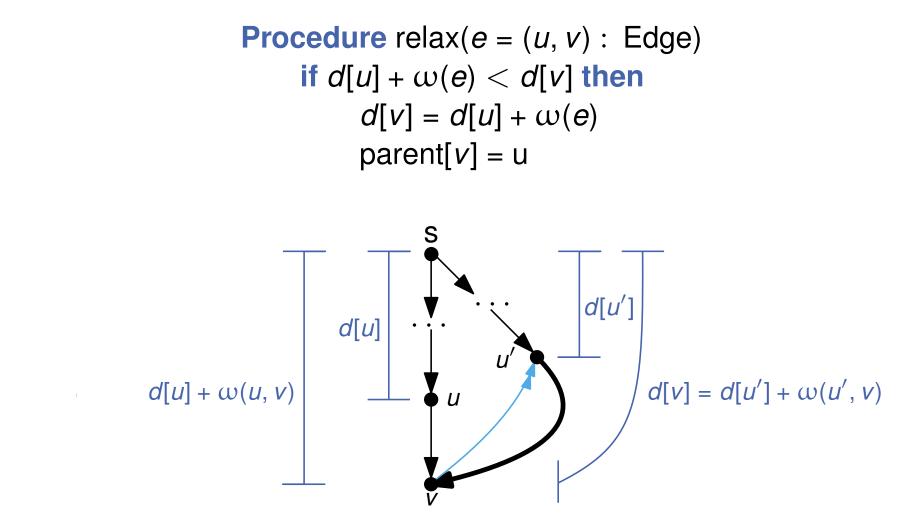
- d[v]: current (tentative) distance from *s* to *v* Invariant: $d[v] \ge \mu(v)$
- **a** parent[v]: predecessor of v on (temp.) path from $s \rightsquigarrow v$
- Initialization: $d[s] = 0 \quad \text{parent}[s] = s$ $d[v] = \infty \quad \text{parent}[v] = \bot$

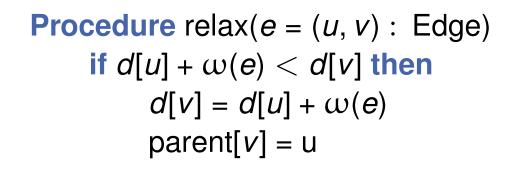
How to **improve** tentative distance values?

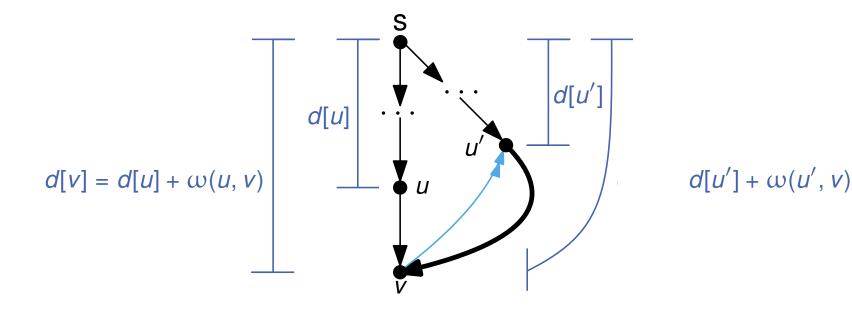


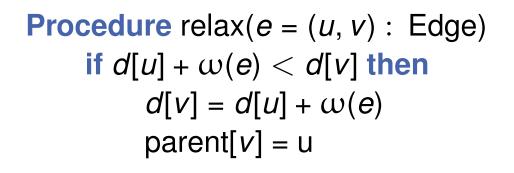
Procedure relax(e = (u, v) : Edge) if $d[u] + \omega(e) < d[v]$ then $d[v] = d[u] + \omega(e)$ parent[v] = u

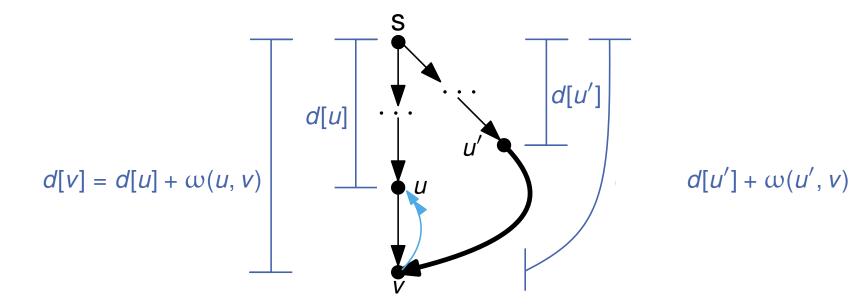








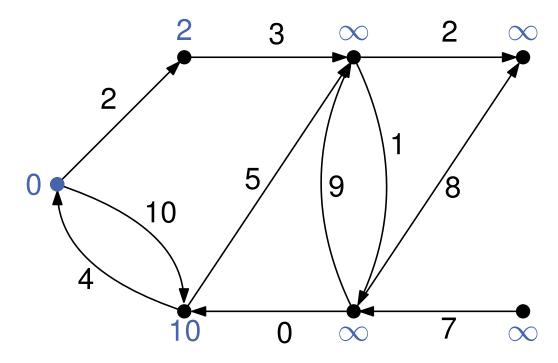




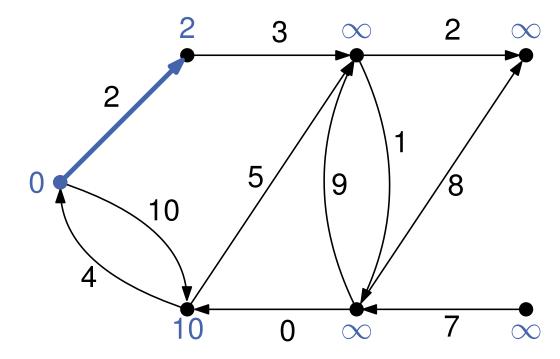
initialize *d*, parent all nodes are non-scanned while \exists non-scanned node *u* with $d[u] < \infty$ u := non-scanned node *v* with minimal d[v]relax all edges (u, v) out of *u u* is scanned now

Karlsruhe Institute of Technology

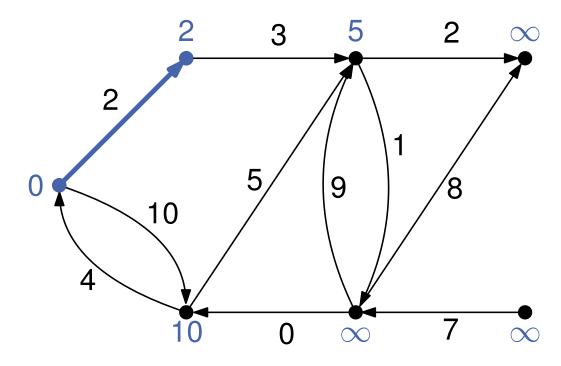
initialize *d*, parent all nodes are non-scanned while \exists non-scanned node *u* with $d[u] < \infty$ u := non-scanned node *v* with minimal d[v]relax all edges (u, v) out of *u u* is scanned now



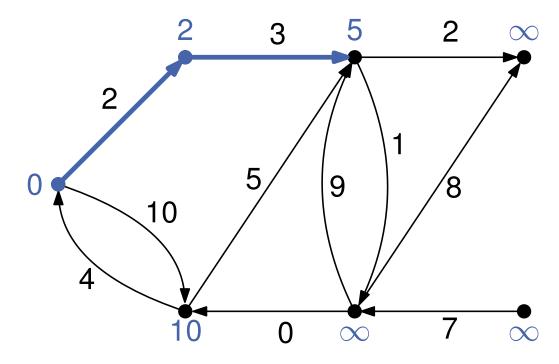
initialize *d*, parent all nodes are non-scanned while \exists non-scanned node *u* with $d[u] < \infty$ u := non-scanned node *v* with minimal d[v]relax all edges (u, v) out of *u u* is scanned now

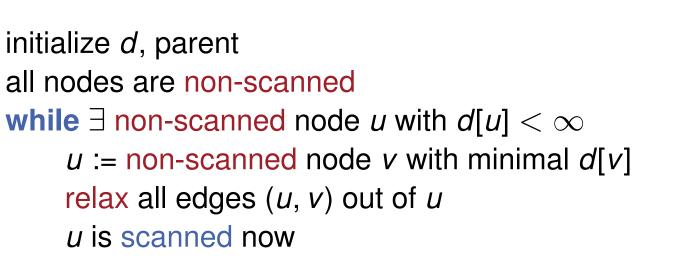


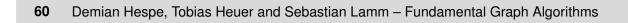
initialize *d*, parent all nodes are non-scanned while \exists non-scanned node *u* with $d[u] < \infty$ u := non-scanned node *v* with minimal d[v]relax all edges (u, v) out of *u u* is scanned now



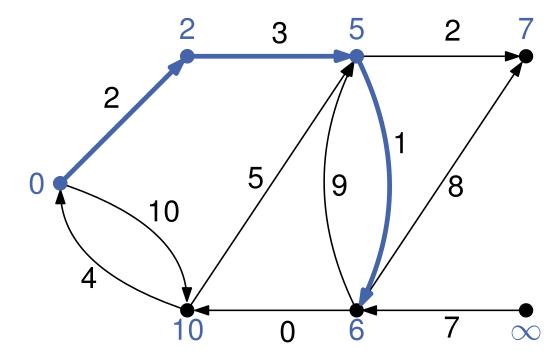
initialize *d*, parent all nodes are non-scanned while \exists non-scanned node *u* with $d[u] < \infty$ u := non-scanned node *v* with minimal d[v]relax all edges (u, v) out of *u u* is scanned now

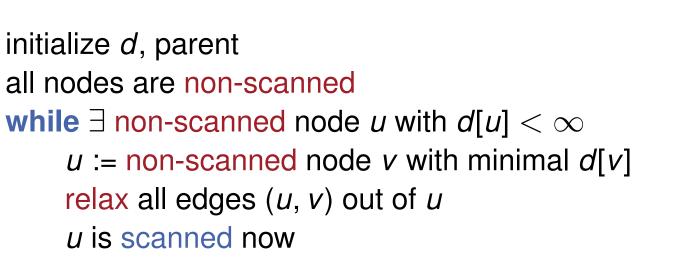


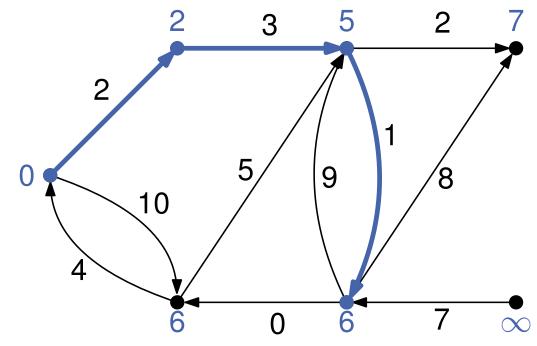




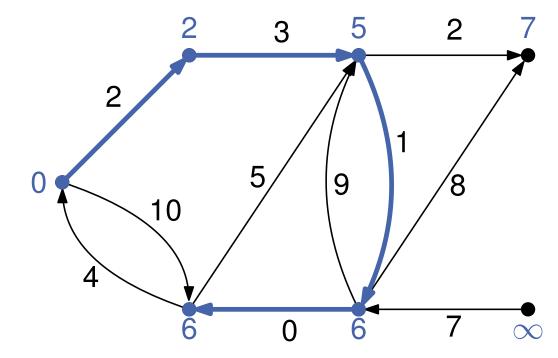
initialize *d*, parent all nodes are non-scanned while \exists non-scanned node *u* with $d[u] < \infty$ u := non-scanned node *v* with minimal d[v]relax all edges (u, v) out of *u u* is scanned now

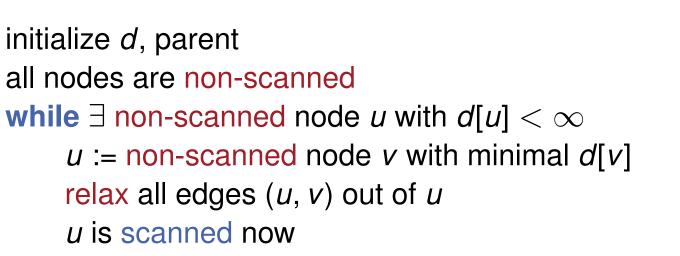


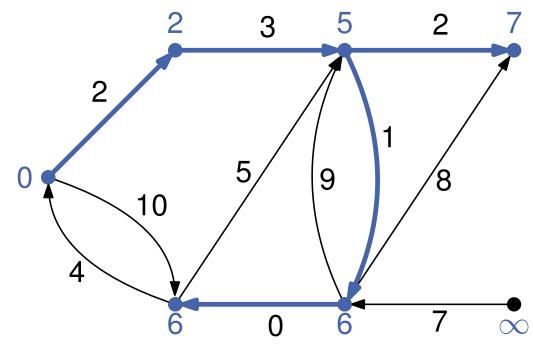




initialize *d*, parent all nodes are non-scanned while \exists non-scanned node *u* with $d[u] < \infty$ u := non-scanned node *v* with minimal d[v]relax all edges (u, v) out of *u u* is scanned now





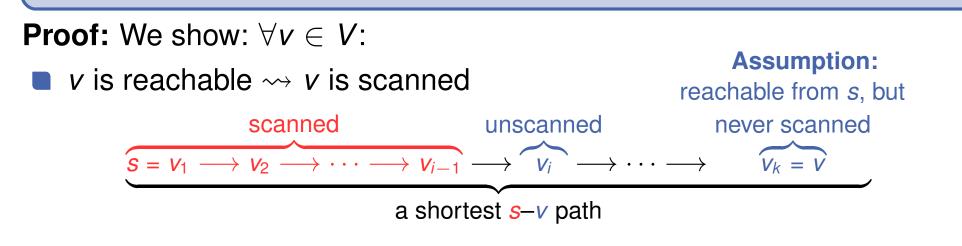


- **Proof:** We show: $\forall v \in V$:
- v is reachable $\rightsquigarrow v$ is scanned
- *v* is scanned $\rightsquigarrow \mu(v) = d[v]$

Shortest Paths - Dijkstra's Algorithm

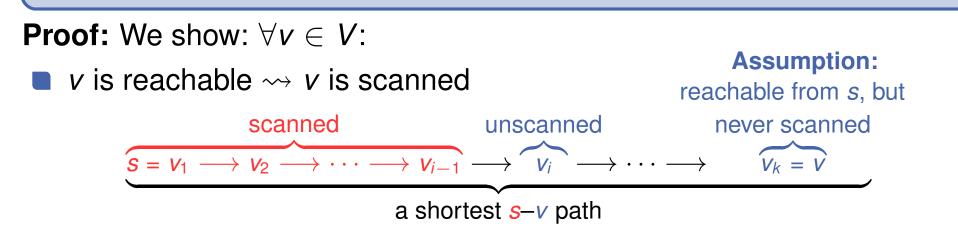
Theorem:Dijkstra's algorithm solves the single-source shortest-path problem for
graphs with nonnegative edge costs.Proof: We show: $\forall v \in V$:Assumption:
reachable $\rightsquigarrow v$ is scannedv is reachable $\rightsquigarrow v$ is scannednever scanned
 $v_i \rightarrow \cdots \rightarrow v_{k} = v$
a shortest s-v path

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.



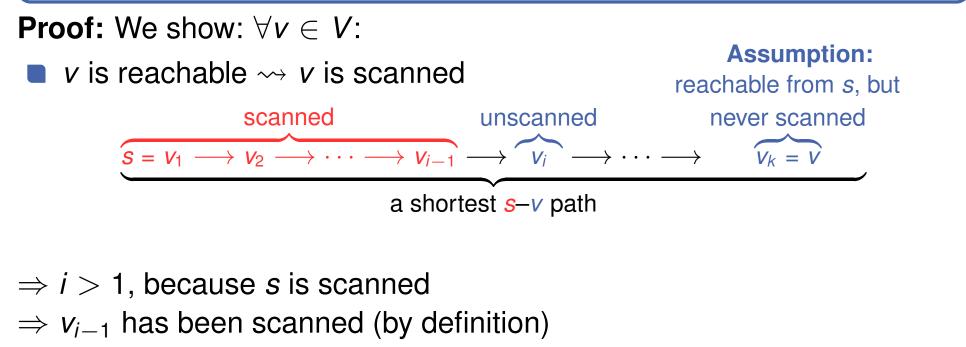
\Rightarrow *i* > 1, because *s* is scanned

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.

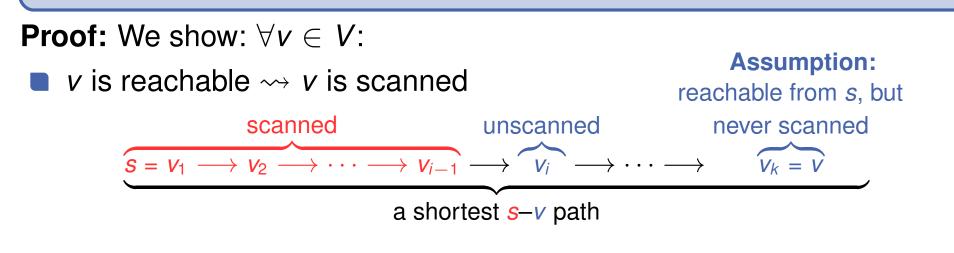


 \Rightarrow *i* > 1, because *s* is scanned \Rightarrow *v*_{*i*-1} has been scanned (by definition)

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.

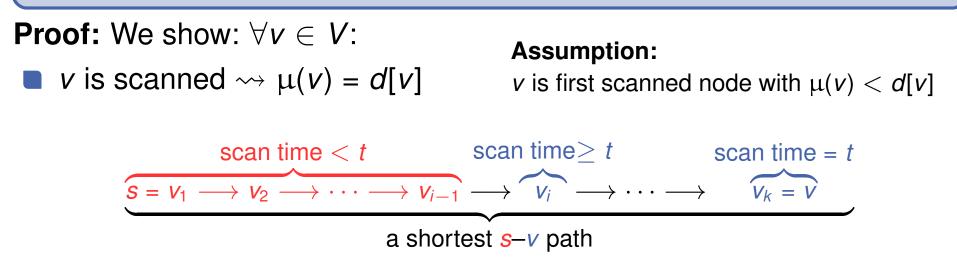


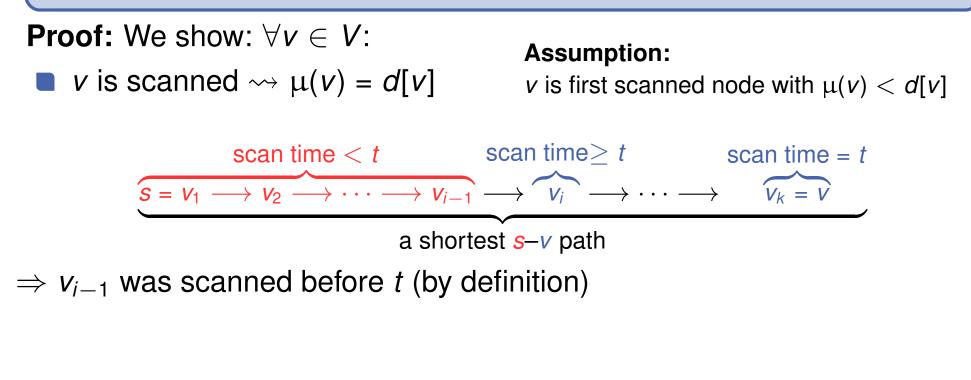
 \Rightarrow edge $v_{i-1} \rightarrow v_i$ was relaxed

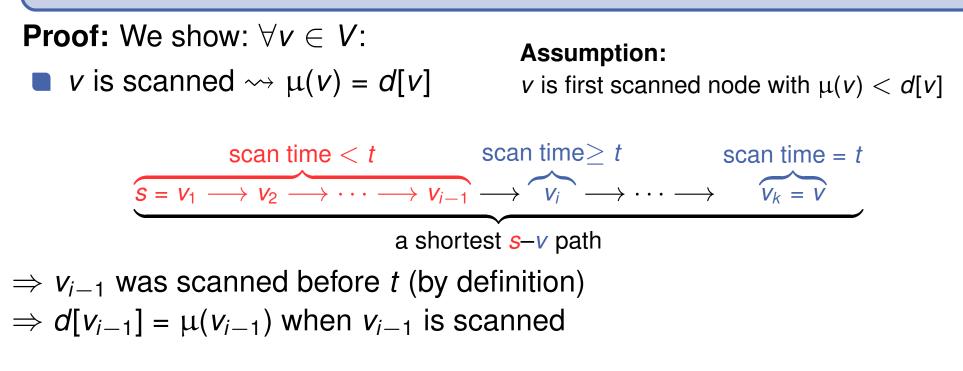


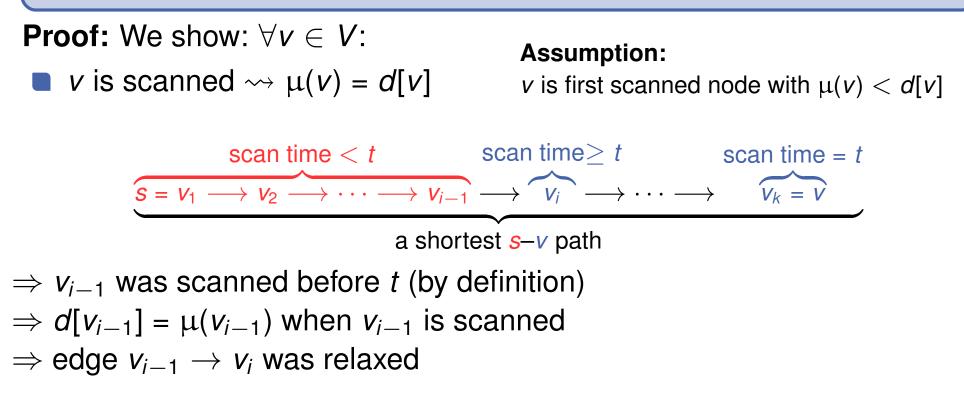
- \Rightarrow *i* > 1, because *s* is scanned
- \Rightarrow v_{i-1} has been scanned (by definition)
- \Rightarrow edge $v_{i-1} \rightarrow v_i$ was relaxed
- $\Rightarrow d[v_i] < \infty$
- \Rightarrow contradiction: only nodes x with $d[x] = \infty$ remain unscanned

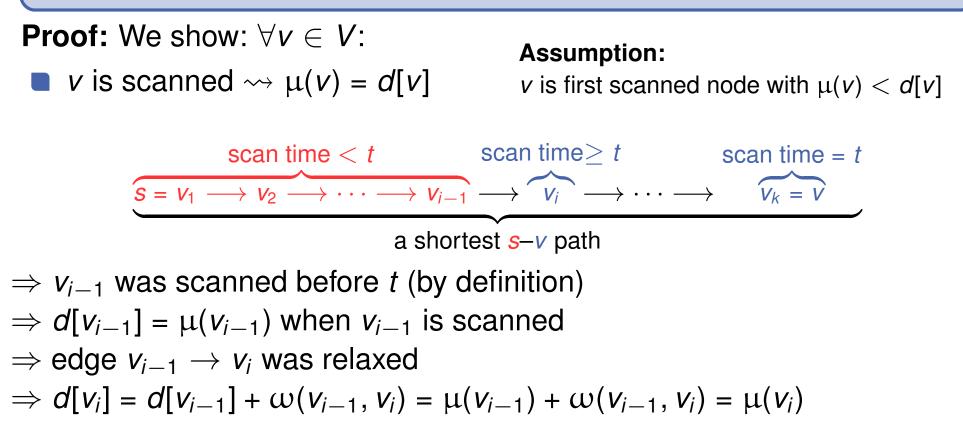
- **Proof:** We show: $\forall v \in V$:
- v is scanned $\rightsquigarrow \mu(v) = d[v]$

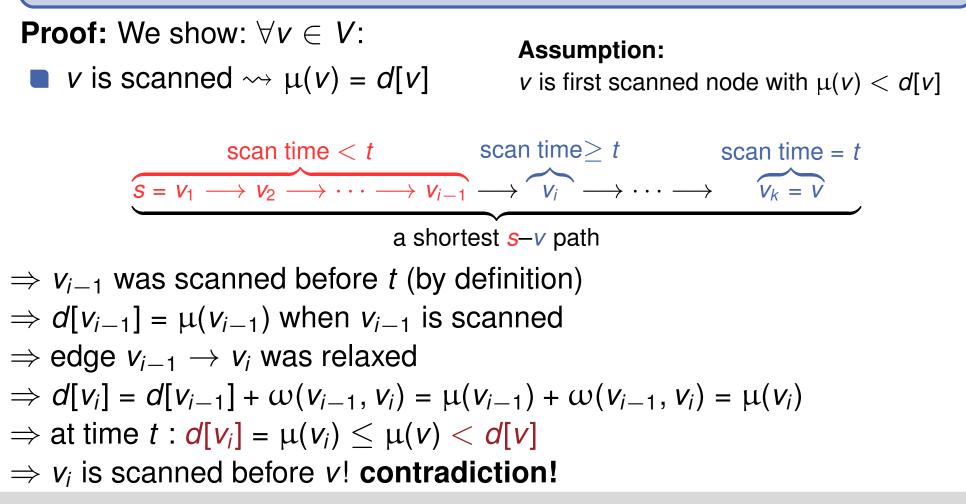




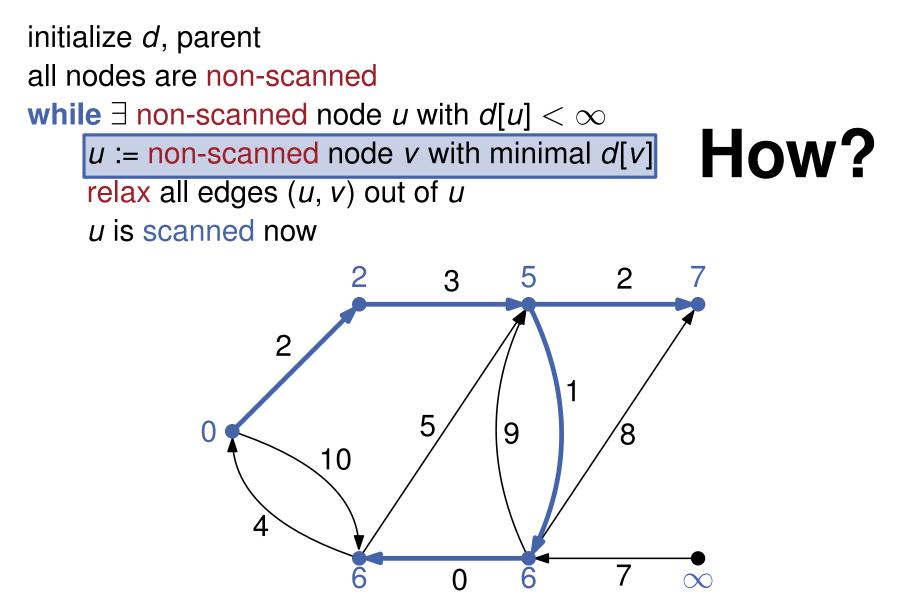








Dijkstra's Algorithm - Implementation



Institute of Theoretical Informatics Algorithmics Group

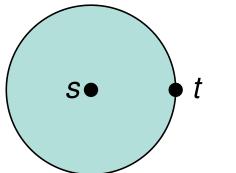
Dijkstra's Algorithm - Implementation

Function Dijkstra(s : NodeId) : NodeArray × NodeArray $d = \{\infty, \dots, \infty\}$; parent[s]:= s; d[s] := 0; Q.insert(s) // O(n)while $Q \neq \emptyset$ do u := Q.deleteMin $|| < n \times$ $// \leq m \times$ foreach edge $e = (u, v) \in E$ do $// \leq m \times$ if d[u] + c(e) < d[v] then d[v] := d[u] + c(e) $\parallel < m \times$ parent[v] := u $\parallel < m \times$ if $v \in Q$ then Q.decreaseKey(v) // < **m**× // < **n**× else Q.insert(v) return (d, parent)

Total Running Time:

 $T_{\text{Dijkstra}} = O(m \cdot T_{\text{decreaseKey}}(n) + n \cdot (T_{\text{deleteMin}}(n) + T_{\text{insert}}(n)))$

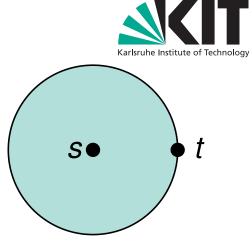
Goal: Find distance from *s* to a specific node *t* One Solution: stop Dijkstra as soon as *t* is removed from PQ

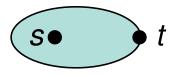


Goal: Find distance from *s* to a specific node *t* One Solution: stop Dijkstra as soon as *t* is removed from PQ

A* Search:

- Idea: bias search towards the target
- $\forall v \in V$: heuristic f(v) estimates distance $\mu(v, t)$
- modified distance fct. $\forall e = (u, v) \in E : \overline{c} = c(e) + f(v) f(u)$





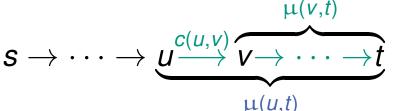
Goal: Find distance from *s* to a specific node *t* One Solution: stop Dijkstra as soon as t is removed from PQ

A* Search:

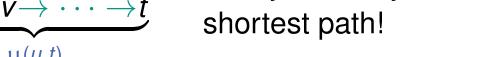
- Idea: bias search towards the target
- $\forall v \in V$: heuristic f(v) estimates distance $\mu(v, t)$
- modified distance fct. $\forall e = (u, v) \in E : \overline{c} = c(e) + f(v) f(u)$

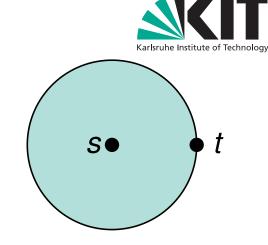
Optimistic Example: $f(v) = \mu(v, t)$

 $\Rightarrow \overline{c}(u, v) = c(u, v) + \mu(v, t) - \mu(u, t) = 0$ if (u, v) is on shortest s, t path



 $s \rightarrow \cdots \rightarrow \underbrace{u \xrightarrow{c(u,v)} v \rightarrow \cdots \rightarrow t}_{shortest path!} \Rightarrow Dijkstra only scans nodes along shortest path!$





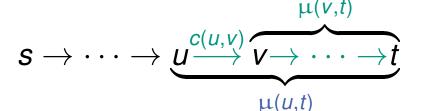


Goal: Find distance from *s* to a specific node *t* One Solution: stop Dijkstra as soon as t is removed from PQ

A* Search:

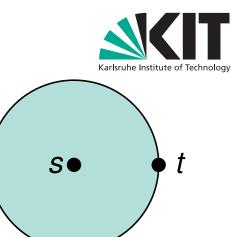
- Idea: bias search towards the target
- $\forall v \in V$: heuristic f(v) estimates distance $\mu(v, t)$
- modified distance fct. $\forall e = (u, v) \in E : \overline{c} = c(e) + f(v) f(u)$

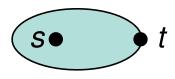
Optimistic Example: $f(v) = \mu(v, t)$ $\Rightarrow \overline{c}(u, v) = c(u, v) + \mu(v, t) - \mu(u, t) = 0$ if (u, v) is on shortest s, t path



 $s \rightarrow \cdots \rightarrow \underbrace{u \xrightarrow{c(u,v)} v \rightarrow \cdots \rightarrow t}_{shortest path!} \Rightarrow Dijkstra only scans nodes along shortest path!$

Interactive Demo: http://www.ryanpon.com/animate





More on Shortest Paths

DAGs:

 \Rightarrow relax edges in topological order of vertices: O(m + n)

- arbitrary edge weights:
 - \Rightarrow Bellman-Ford Algorithm (Idea: relax all edges n 1 times): O(m n)
- All-Pairs Shortest Paths
 - dense graphs (without negative cycles)

 \Rightarrow Floyd–Warshall Algorithm: O(n^3)

non-negative edge weights:

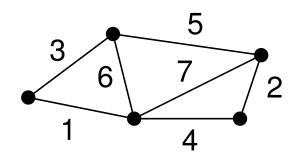
 \Rightarrow *n* × Dijkstra: O(*n*(*m* + *n* log *n*))

- arbitrary edge weights:
 - \Rightarrow *n* × Bellman-Ford: O($n^2 m$)
 - \Rightarrow 1 × Bellman-Ford + *n* × Dijkstra: O(*n*(*m* + *n* log *n*))[1]

[1] K. Mehlhorn, V. Priebe, G. Schäfer, N. Sivadasan: All-pairs shortest-paths computation in the presence of negative cycles. Inf. Process. Lett. 81(6): 341-343 (2002)

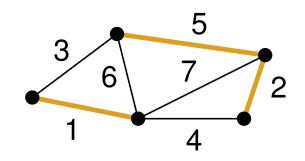
Given undirected Graph G = (V, E) with edge weights $c(e) \in \mathcal{R}_+$

- G connected
- \Rightarrow Find a tree (V,T) with minimal weight $\sum_{e \in T} c(e)$ that connects all vertices



Given undirected Graph G = (V, E) with edge weights $c(e) \in \mathcal{R}_+$

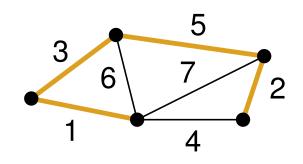
- G connected
- \Rightarrow Find a tree (V,T) with minimal weight $\sum_{e \in T} c(e)$ that connects all vertices



Vertices unconnected Non-minimal weight

Given undirected Graph G = (V, E) with edge weights $c(e) \in \mathcal{R}_+$

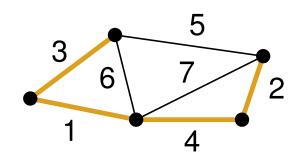
- G connected
- \Rightarrow Find a tree (V,T) with minimal weight $\sum_{e \in T} c(e)$ that connects all vertices



Vertices connected Non-minimal weight

Given undirected Graph G = (V, E) with edge weights $c(e) \in \mathcal{R}_+$

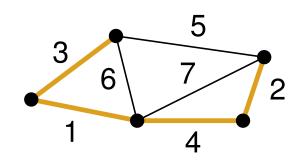
- G connected
- \Rightarrow Find a tree (V,T) with minimal weight $\sum_{e \in T} c(e)$ that connects all vertices



Vertices connected Minimal weight

Given undirected Graph G = (V, E) with edge weights $c(e) \in \mathcal{R}_+$

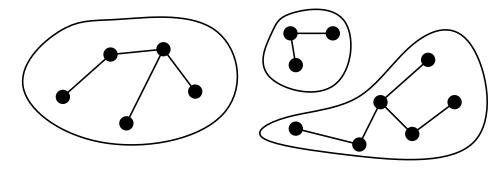
- G connected
- \Rightarrow Find a tree (V,T) with minimal weight $\sum_{e \in T} c(e)$ that connects all vertices



Vertices connected Minimal weight

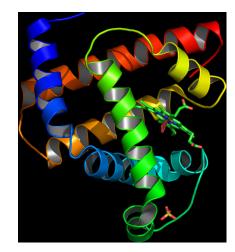
• *G* unconnected

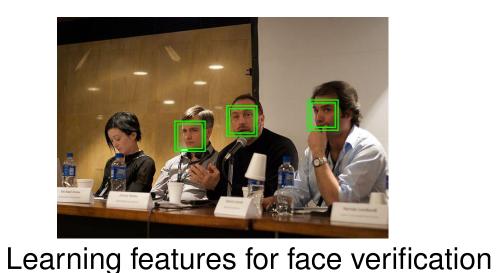
Find minimal spanning forest (MSF) that spans all connected components



Applications

Network design





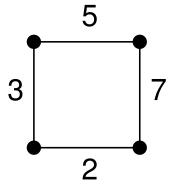
Cluster analysis

Von Michael Kauffmann - Eigenes Werk, CC BY 3.0 de, https://commons.wikimedia.org/w/index.php?curid=52231711 By Jimmy answering questions.jpg: Wikimania2009 Beatrice Murchderivative work: Sylenius (talk) - Jimmy answering questions.jpg, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=11309460

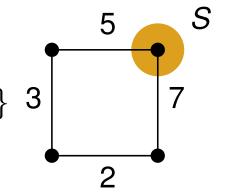
68 Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms

Institute of Theoretical Informatics Algorithmics Group

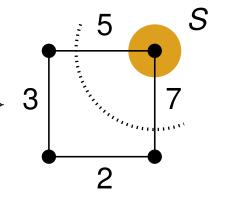
- Cut property
 - Arbitrary subset $S \subset V$
 - Cut edges $C = \{ \{u, v\} \in E : u \in S, v \in V \setminus S \}$ 3



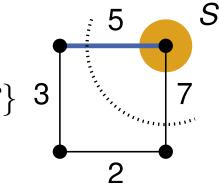
- Cut property
 - Arbitrary subset $S \subset V$
 - Cut edges $C = \{ \{u, v\} \in E : u \in S, v \in V \setminus S \}$ 3



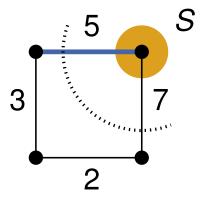
- Cut property
 - Arbitrary subset $S \subset V$
 - Cut edges $C = \{ \{u, v\} \in E : u \in S, v \in V \setminus S \}$ 3

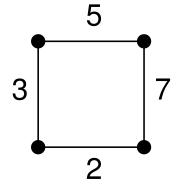


- Cut property
 - Arbitrary subset $S \subset V$
 - Cut edges $C = \{ \{u, v\} \in E : u \in S, v \in V \setminus S \}$ 3
- \Rightarrow Lightest edge in *C* can be used in an MST (Proof via exchange with heavier cycle edge)

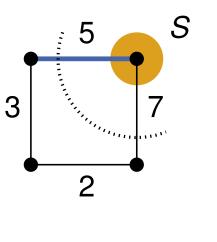


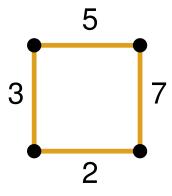
- Cut property
 - Arbitrary subset $S \subset V$
 - Cut edges $C = \{ \{u, v\} \in E : u \in S, v \in V \setminus S \}$ 3
- \Rightarrow Lightest edge in *C* can be used in an MST (Proof via exchange with heavier cycle edge)
- Cycle property
 - Arbitrary cycle C in G



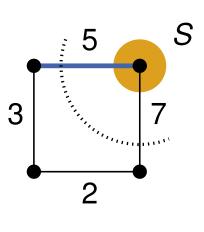


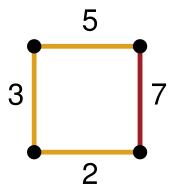
- Cut property
 - Arbitrary subset $S \subset V$
 - Cut edges $C = \{ \{u, v\} \in E : u \in S, v \in V \setminus S \}$ 3
- \Rightarrow Lightest edge in *C* can be used in an MST (Proof via exchange with heavier cycle edge)
- Cycle property
 - Arbitrary cycle C in G





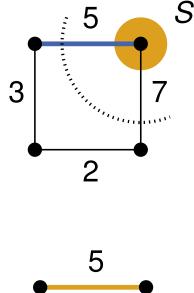
- Cut property
 - Arbitrary subset $S \subset V$
 - Cut edges $C = \{ \{u, v\} \in E : u \in S, v \in V \setminus S \}$ 3
- \Rightarrow Lightest edge in *C* can be used in an MST (Proof via exchange with heavier cycle edge)
- Cycle property
 - Arbitrary cycle C in G
- $\Rightarrow \frac{\text{Heaviest edge in } C \text{ is not needed in an MST}}{(Proof via exchange with lighter cycle edge)}$

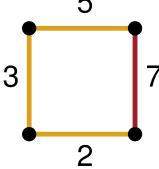




- Cut property
 - Arbitrary subset $S \subset V$
 - Cut edges $C = \{\{u, v\} \in E : u \in S, v \in V \setminus S\}$ 3
- \Rightarrow Lightest edge in *C* can be used in an MST (Proof via exchange with heavier cycle edge)
- Cycle property
 - Arbitrary cycle C in G
- \Rightarrow Heaviest edge in *C* is not needed in an MST (Proof via exchange with lighter cycle edge)

Essential properties for developing MST algorithms





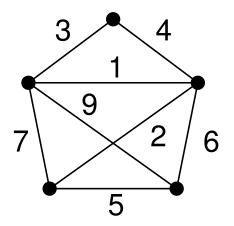
Jarnik-Prim Algorithm

Use cut property to gradually grow the MST

- 1. Start with empty MST T
- 2. Select random start vertex $S = \{s\}$
- 3. Repeat n 1 times
 - (a) Find edge $\{u, v\}$ fulfilling cut property for S

(b)
$$S = S \cup \{v\}$$

(c)
$$T = T \cup \{\{u, v\}\}$$



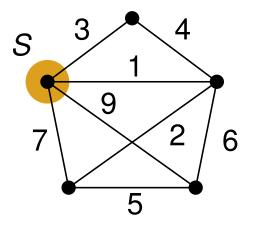
Jarnik-Prim Algorithm

Use cut property to gradually grow the MST

- 1. Start with empty MST T
- 2. Select random start vertex $S = \{s\}$
- 3. Repeat n 1 times
 - (a) Find edge $\{u, v\}$ fulfilling cut property for S

(b)
$$S = S \cup \{v\}$$

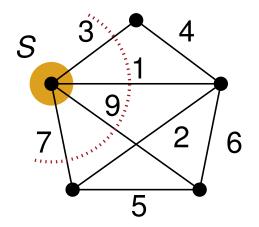
(c)
$$T = T \cup \{\{u, v\}\}$$



- 1. Start with empty MST T
- 2. Select random start vertex $S = \{s\}$
- 3. Repeat n 1 times
 - (a) Find edge $\{u, v\}$ fulfilling cut property for S

(b)
$$S = S \cup \{v\}$$

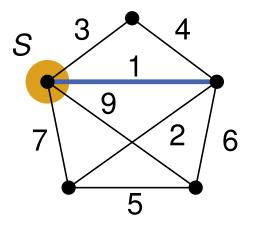
(c)
$$T = T \cup \{\{u, v\}\}$$



- 1. Start with empty MST T
- 2. Select random start vertex $S = \{s\}$
- 3. Repeat n 1 times
 - (a) Find edge $\{u, v\}$ fulfilling cut property for S

(b)
$$S = S \cup \{v\}$$

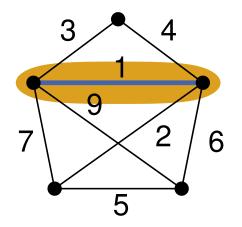
(c)
$$T = T \cup \{\{u, v\}\}$$



- 1. Start with empty MST T
- 2. Select random start vertex $S = \{s\}$
- 3. Repeat n 1 times
 - (a) Find edge $\{u, v\}$ fulfilling cut property for S

(b)
$$S = S \cup \{v\}$$

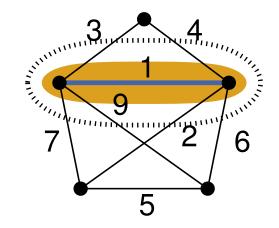
(c)
$$T = T \cup \{\{u, v\}\}$$



- 1. Start with empty MST T
- 2. Select random start vertex $S = \{s\}$
- 3. Repeat n 1 times
 - (a) Find edge $\{u, v\}$ fulfilling cut property for S

(b)
$$S = S \cup \{v\}$$

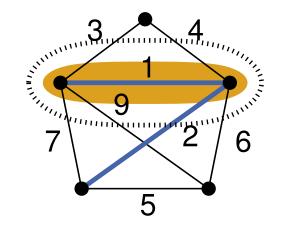
(c)
$$T = T \cup \{\{u, v\}\}$$



- 1. Start with empty MST T
- 2. Select random start vertex $S = \{s\}$
- 3. Repeat n 1 times
 - (a) Find edge $\{u, v\}$ fulfilling cut property for S

(b)
$$S = S \cup \{v\}$$

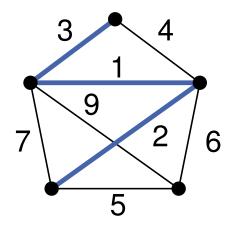
(c)
$$T = T \cup \{\{u, v\}\}$$



- 1. Start with empty MST T
- 2. Select random start vertex $S = \{s\}$
- 3. Repeat n 1 times
 - (a) Find edge $\{u, v\}$ fulfilling cut property for S

(b)
$$S = S \cup \{v\}$$

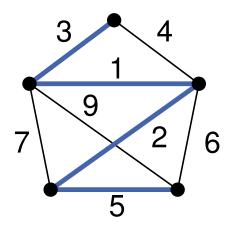
(c)
$$T = T \cup \{\{u, v\}\}$$



- 1. Start with empty MST T
- 2. Select random start vertex $S = \{s\}$
- 3. Repeat n 1 times
 - (a) Find edge $\{u, v\}$ fulfilling cut property for S

(b)
$$S = S \cup \{v\}$$

(c)
$$T = T \cup \{\{u, v\}\}$$

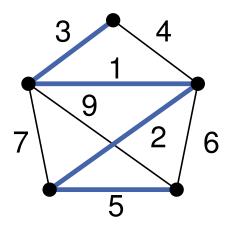


Use cut property to gradually grow the MST

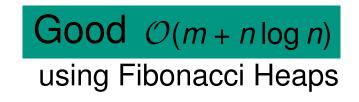
- 1. Start with empty MST T
- 2. Select random start vertex $S = \{s\}$
- 3. Repeat n 1 times
 - (a) Find edge $\{u, v\}$ fulfilling cut property for S

(b)
$$S = S \cup \{v\}$$

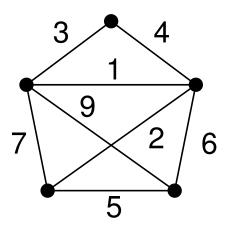
(c)
$$T = T \cup \{\{u, v\}\}$$



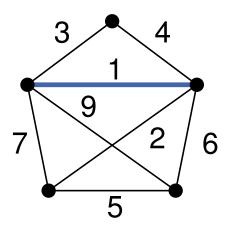
 \Rightarrow Lightest edge using PQ



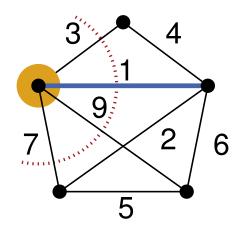
- 1. Start with empty MST T
- 2. Sort edges in ascending order of weight
- 3. Iterate over all edges $\{u, v\}$
 - (a) *u*, *v* in different subtrees \Rightarrow *T* = *T* \cup {{*u*, *v*}} (cut property)
 - (b) *u*, *v* in same subtree \Rightarrow continue (cycle property)



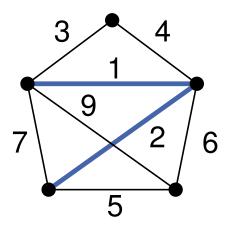
- 1. Start with empty MST T
- 2. Sort edges in ascending order of weight
- 3. Iterate over all edges $\{u, v\}$
 - (a) *u*, *v* in different subtrees \Rightarrow *T* = *T* \cup {{*u*, *v*}} (cut property)
 - (b) *u*, *v* in same subtree \Rightarrow continue (cycle property)



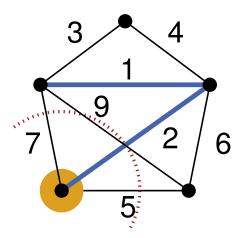
- 1. Start with empty MST T
- 2. Sort edges in ascending order of weight
- 3. Iterate over all edges $\{u, v\}$
 - (a) *u*, *v* in different subtrees \Rightarrow *T* = *T* \cup {{*u*, *v*}} (cut property)
 - (b) *u*, *v* in same subtree \Rightarrow continue (cycle property)



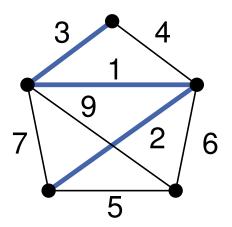
- 1. Start with empty MST T
- 2. Sort edges in ascending order of weight
- 3. Iterate over all edges $\{u, v\}$
 - (a) *u*, *v* in different subtrees \Rightarrow *T* = *T* \cup {{*u*, *v*}} (cut property)
 - (b) *u*, *v* in same subtree \Rightarrow continue (cycle property)



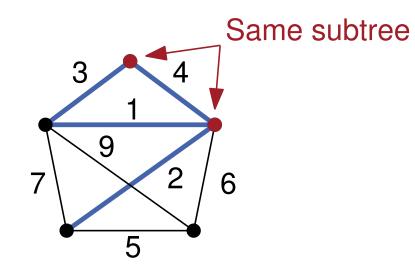
- 1. Start with empty MST T
- 2. Sort edges in ascending order of weight
- 3. Iterate over all edges $\{u, v\}$
 - (a) *u*, *v* in different subtrees \Rightarrow *T* = *T* \cup {{*u*, *v*}} (cut property)
 - (b) *u*, *v* in same subtree \Rightarrow continue (cycle property)



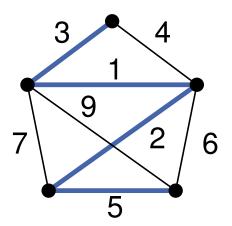
- 1. Start with empty MST T
- 2. Sort edges in ascending order of weight
- 3. Iterate over all edges $\{u, v\}$
 - (a) *u*, *v* in different subtrees \Rightarrow *T* = *T* \cup {{*u*, *v*}} (cut property)
 - (b) *u*, *v* in same subtree \Rightarrow continue (cycle property)



- 1. Start with empty MST T
- 2. Sort edges in ascending order of weight
- 3. Iterate over all edges $\{u, v\}$
 - (a) *u*, *v* in different subtrees \Rightarrow *T* = *T* \cup {{*u*, *v*}} (cut property)
 - (b) *u*, *v* in same subtree \Rightarrow continue (cycle property)

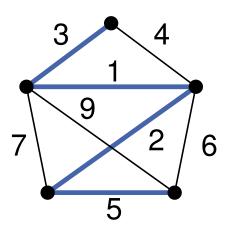


- 1. Start with empty MST T
- 2. Sort edges in ascending order of weight
- 3. Iterate over all edges $\{u, v\}$
 - (a) *u*, *v* in different subtrees \Rightarrow *T* = *T* \cup {{*u*, *v*}} (cut property)
 - (b) *u*, *v* in same subtree \Rightarrow continue (cycle property)



Use cut and cycle property to merge subtrees of MST

- 1. Start with empty MST T
- 2. Sort edges in ascending order of weight
- 3. Iterate over all edges $\{u, v\}$
 - (a) *u*, *v* in different subtrees \Rightarrow *T* = *T* \cup {{*u*, *v*}} (cut property)
 - (b) *u*, *v* in same subtree \Rightarrow continue (cycle property)



 \Rightarrow Fast merging of subtrees using Union-Find

Good $\mathcal{O}(m \log m)$

72 Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms

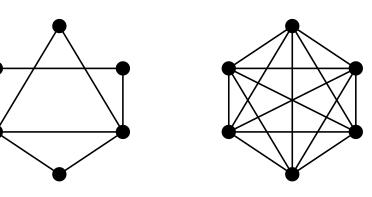
Comparison

Pro Jarnik-Prim

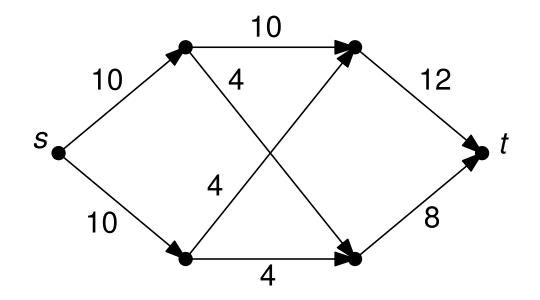
- Asymptotically good for all *m*, *n*
- Very fast for $m \gg n$

Pro Kruskal

- Fast for $m = \mathcal{O}(n)$
- Only requires adjacency lists
- Profits from fast sorting (e.g. parallel/integers)
- Additional improvements available (e.g. FilterKruskal)
- \Rightarrow Choose algorithm based on structure of graph

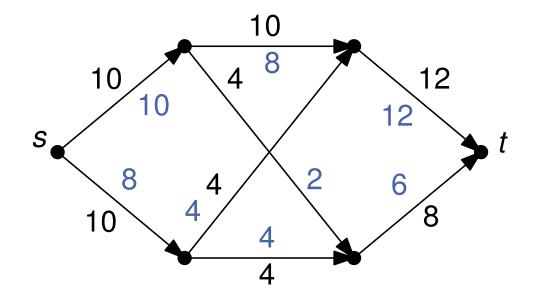


- Network
 - Directed graph G = (V, E, c)
 - Source node s ($d_{out}(s) > 0$)
 - Sink node $t (d_{in}(t) > 0)$
 - Edge capacity c(e) > 0



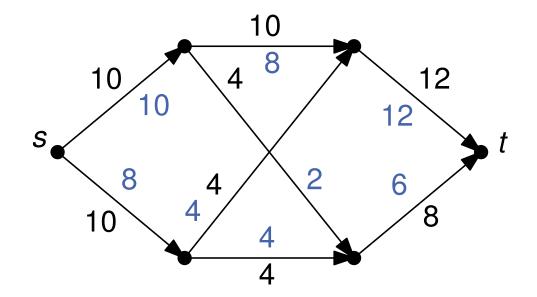
• Flow $f: E \to \mathcal{R}^+$

- For each edge $e \in E : 0 \leq f(e) \leq c(e)$
- For each vertex $v \in V \setminus \{s, t\}$: $\sum_{u \in \Gamma_{in}} f(u, v) = \sum_{u \in \Gamma_{out}} f(v, u)$
- $\operatorname{val}(f) = \sum_{u \in V} f(s, u) \sum_{u \in V} f(u, s) = \sum_{u \in V} f(u, t) \sum_{u \in V} f(t, u)$

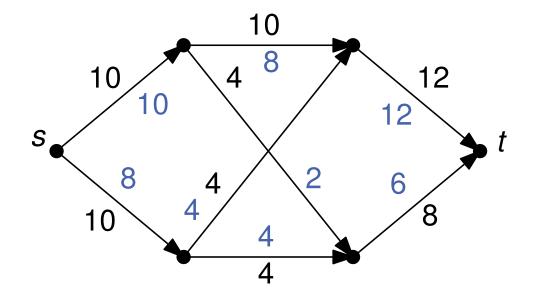


• Flow $f: E \to \mathcal{R}^+$

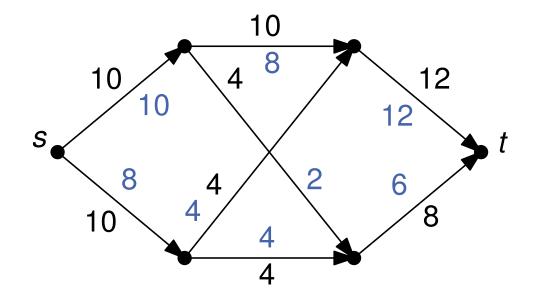
- Flow is non-negative and limited by capacity
- For each vertex $v \in V \setminus \{s, t\}$: $\sum_{u \in \Gamma_{in}} f(u, v) = \sum_{u \in \Gamma_{out}} f(v, u)$
- val $(f) = \sum_{u \in V} f(s, u) \sum_{u \in V} f(u, s) = \sum_{u \in V} f(u, t) \sum_{u \in V} f(t, u)$



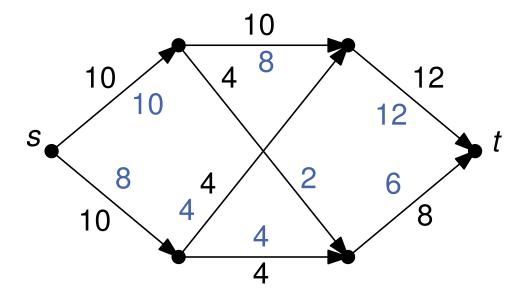
- Flow $f: E \to \mathcal{R}^+$
 - Flow is non-negative and limited by capacity
 - Incoming flow = outgoing flow for each intermediate vertex
 - val $(f) = \sum_{u \in V} f(s, u) \sum_{u \in V} f(u, s) = \sum_{u \in V} f(u, t) \sum_{u \in V} f(t, u)$



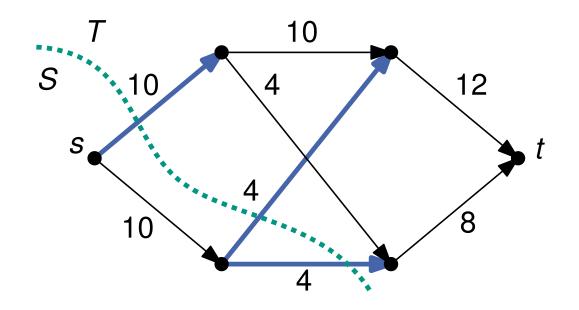
- Flow $f: E \to \mathcal{R}^+$
 - Flow is non-negative and limited by capacity
 - Incoming flow = outgoing flow for each intermediate vertex
 - Value of flow is outgoing/incoming flow from s/t



- Flow $f: E \to \mathcal{R}^+$
 - Flow is non-negative and limited by capacity
 - Incoming flow = outgoing flow for each intermediate vertex
 - Value of flow is outgoing/incoming flow from s/t
- \Rightarrow Find flow *f* with maximum value

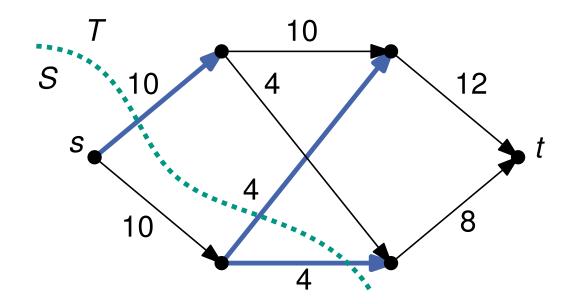


- (Minimum) s t cuts
 - Partition $V = S \cup T$ into disjoint sets S and T
 - $s \in S$ and $t \in T$
- Capacity of cut is $\sum \{c(u, v) : u \in S, v \in T\}$



• (Minimum) s - t cuts

- Partition $V = S \cup T$ into disjoint sets S and T
- $s \in S$ and $t \in T$
- Capacity of cut is $\sum \{c(u, v) : u \in S, v \in T\}$



 \Rightarrow Duality: Capacity of min. s - t cut = value of max. s - t flow

Applications

Oil pipelines

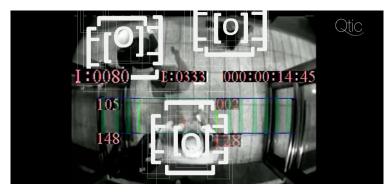
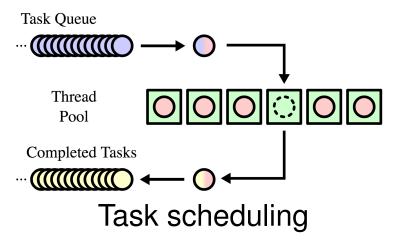


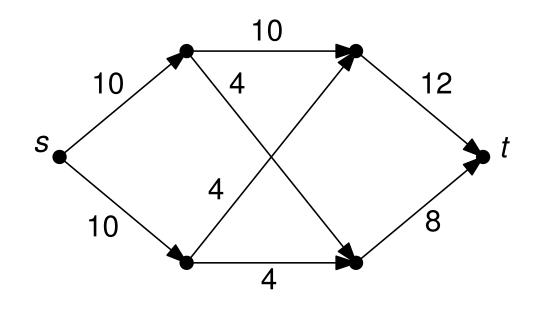
Image processing

Traffic flow on highways

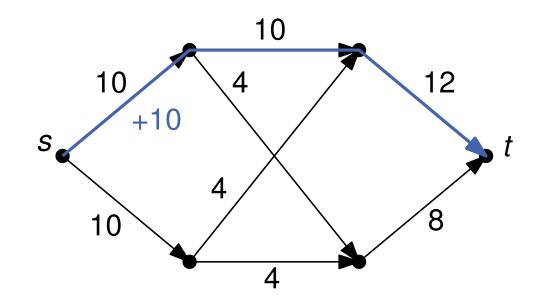


"Trans-Alaska oil pipeline, near Fairbanks" flickr photo by amerune https://flickr.com/photos/amerune/9294639633 shared under a CC (BY) license By Robert Jack Will - http://www.flickr.com/photos/bob406/3860422159/, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=10075775 By QueSera4710 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=31586266 By I, Cburnett, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2233464

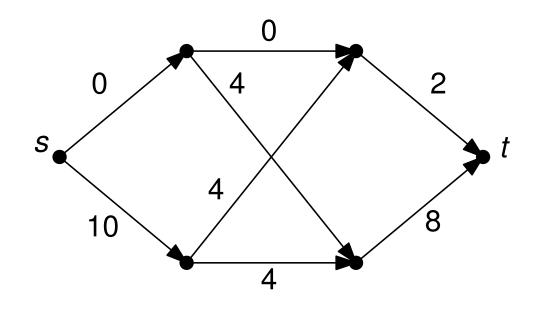
- General Idea (augmenting paths)
 - Find s t path with spare capacity
 - Sature edge with smallest spare capacity
 - Adjust remaining capacities (create residual graph)



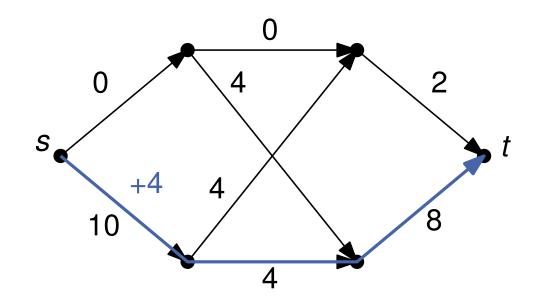
- General Idea (augmenting paths)
 - Find s t path with spare capacity
 - Sature edge with smallest spare capacity
 - Adjust remaining capacities (create residual graph)



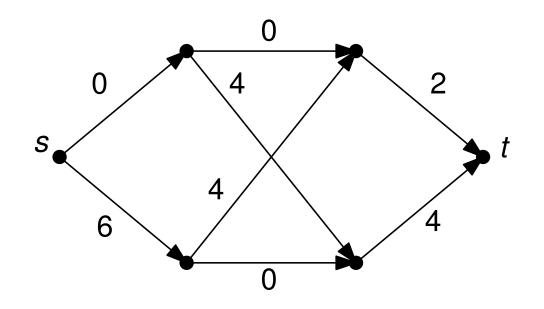
- General Idea (augmenting paths)
 - Find s t path with spare capacity
 - Sature edge with smallest spare capacity
 - Adjust remaining capacities (create residual graph)



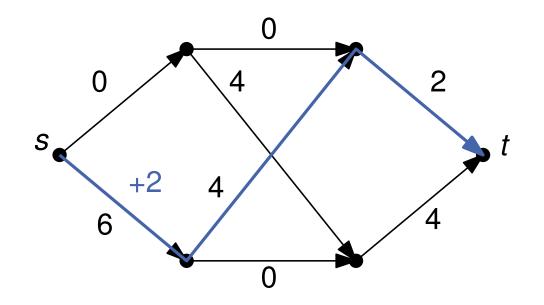
- General Idea (augmenting paths)
 - Find s t path with spare capacity
 - Sature edge with smallest spare capacity
 - Adjust remaining capacities (create residual graph)



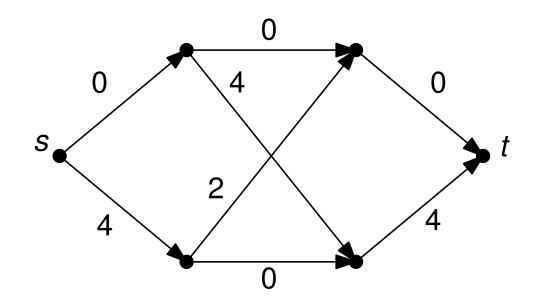
- General Idea (augmenting paths)
 - Find s t path with spare capacity
 - Sature edge with smallest spare capacity
 - Adjust remaining capacities (create residual graph)



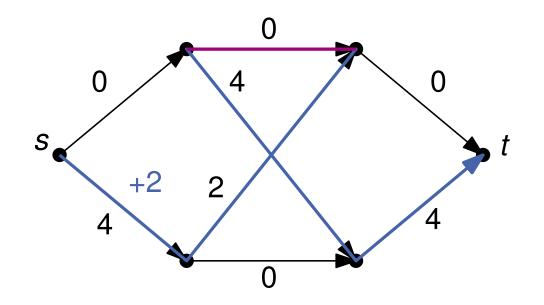
- General Idea (augmenting paths)
 - Find s t path with spare capacity
 - Sature edge with smallest spare capacity
 - Adjust remaining capacities (create residual graph)



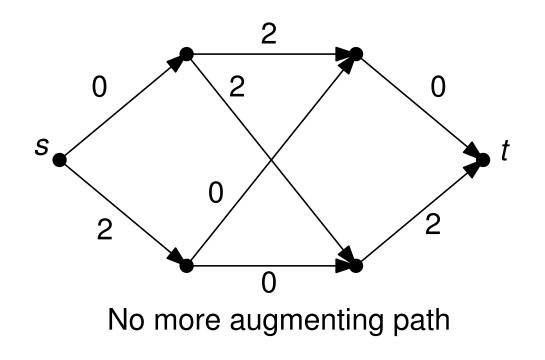
- General Idea (augmenting paths)
 - Find s t path with spare capacity
 - Sature edge with smallest spare capacity
 - Adjust remaining capacities (create residual graph)



- General Idea (augmenting paths)
 - Find s t path with spare capacity
 - Sature edge with smallest spare capacity
 - Adjust remaining capacities (create residual graph)

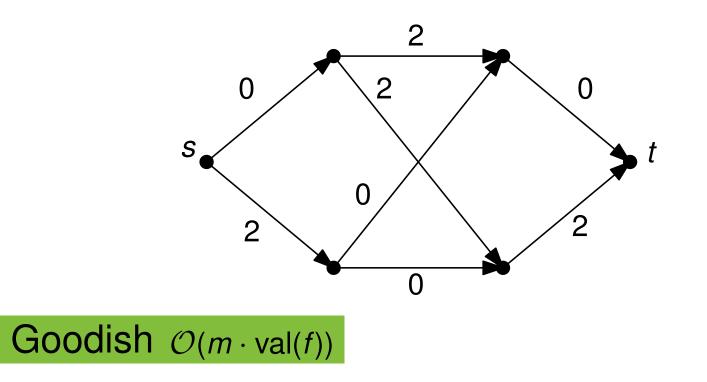


- General Idea (augmenting paths)
 - Find s t path with spare capacity
 - Sature edge with smallest spare capacity
 - Adjust remaining capacities (create residual graph)



Ford Fulkerson Algorithm

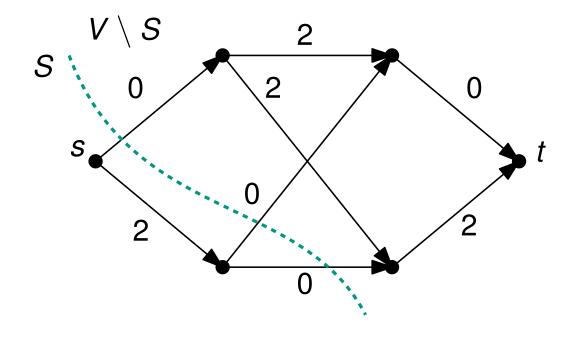
- General Idea (augmenting paths)
 - Find s t path with spare capacity
 - Sature edge with smallest spare capacity
 - Adjust remaining capacities (create residual graph)



Ford Fulkerson Correctness (1/2)

Trivial: Ford Fulkerson computes valid flow

- \Rightarrow Remaining: show that flow value is maximal
- At termination we have no augmenting paths in *G_f*
- Define cut (*S*, $V \setminus S$) with $S := \{v \in V : v \text{ reachable from } s \text{ in } G_f\}$



Institute of Theoretical Informatics Algorithmics Group

Ford Fulkerson Correctness (2/2)

Lemma 1: For any cut (S, T):

$$S \to T \text{ edges} \qquad T \to S \text{ edges}$$
$$val(f) = \sum_{e \in E \cap S \times T} f_e - \sum_{e \in E \cap T \times S} f_e$$

Lemma 2: For each edge $e \in E$: $c_f(e) = 0 \Rightarrow f(e) = 0$

Ford Fulkerson Correctness (2/2)

Lemma 1: For any cut (S, T):

$$S \to T \text{ edges} \qquad T \to S \text{ edges}$$
$$val(f) = \sum_{e \in E \cap S \times T} f_e - \sum_{e \in E \cap T \times S} f_e$$

Lemma 2: For each edge $e \in E$: $c_f(e) = 0 \Rightarrow f(e) = 0$

Observation: For each edge $e \in E \cap S \times T$: $c_f(e) = 0 \implies f(e) = 0$

val(f) =
$$\sum_{e \in E \cap S \times T} f_e - \sum_{e \in E \cap T \times S} f_e$$

= $\sum_{e \in E \cap S \times T} f_e$ = cut capacity
 \geq maximum flow

Ford Fulkerson Correctness (2/2)

Lemma 1: For any cut (S, T):

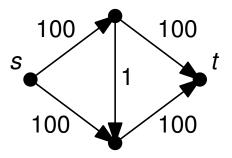
$$S \to T \text{ edges} \qquad T \to S \text{ edges}$$
$$val(f) = \sum_{e \in E \cap S \times T} f_e - \sum_{e \in E \cap T \times S} f_e$$

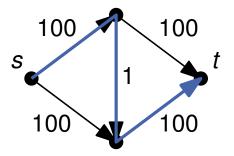
Lemma 2: For each edge $e \in E$: $c_f(e) = 0 \Rightarrow f(e) = 0$

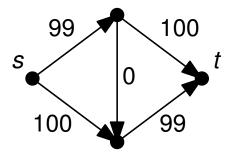
Observation: For each edge $e \in E \cap S \times T$: $c_f(e) = 0 \implies f(e) = 0$

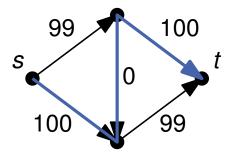
$$val(f) = \sum_{e \in E \cap S \times T} f_e - \sum_{e \in E \cap T \times S} f_e$$
$$= \sum_{e \in E \cap S \times T} f_e = cut capacity$$
$$\geq maximum flow$$

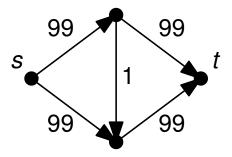
 \Rightarrow Maximum flow = minimum cut

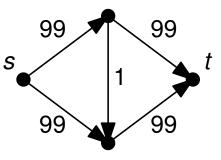












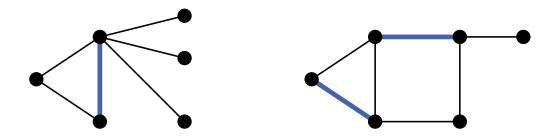
- Alternatives
 - **1973:** Dinic in $\mathcal{O}(mn \cdot \log(val(f)))$
 - **1983:** Sleator-Tarjan in $\mathcal{O}(mn \cdot \log(n))$
 - **1986:** Goldberg-Tarjan in $\mathcal{O}(mn \cdot \log(\frac{n^2}{m}))$
 - **1997:** Goldberg-Rao in $\mathcal{O}(\min\{n^{\frac{2}{3}}, m^{\frac{1}{2}}\} \cdot m \log(\frac{n^{2}}{m}) \log U)$
 - **2013:** Orlin and KRT in $\mathcal{O}(mn)$

Matchings

Given undirected Graph G = (V, E)

 $M \subseteq E$ is matching $\Leftrightarrow M$ is pairwise non-adjacent

 $M \subseteq E$ is maximal matching $\Leftrightarrow M$ is no subset of any other matching in G

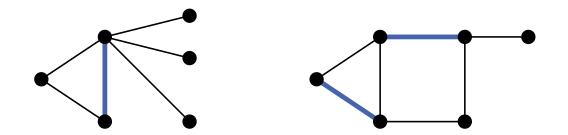


Matchings

Given undirected Graph G = (V, E)

 $M \subseteq E$ is matching $\Leftrightarrow M$ is pairwise non-adjacent

 $M \subseteq E$ is maximal matching $\Leftrightarrow M$ is no subset of any other matching in G



 $M \subseteq E$ is maximum matching $\Leftrightarrow M$ has largest possible number of edges

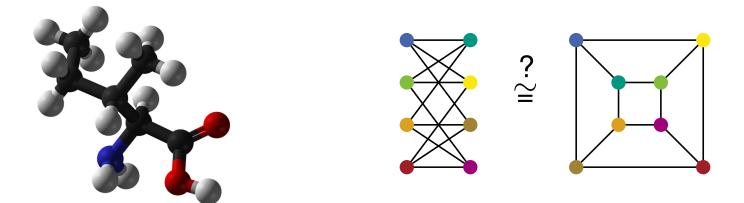


Institute of Theoretical Informatics Algorithmics Group

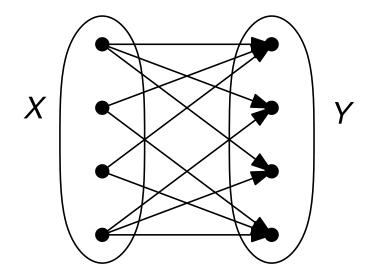
Applications

In general graphs

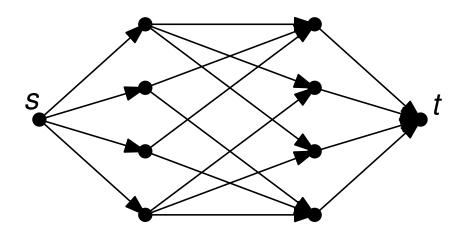
- Detection of chemical structures of aromatic compounds
- Computational/mathematical chemistry (Hosoya index)
- In bipartite graphs
 - Sub-problem for subtree isomorphism
 - Sub-problem for transportation problems



Given undirected bipartite Graph G = (V = (X, Y), E)

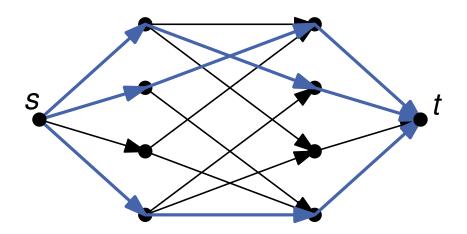


Given undirected bipartite Graph G = (V = (X, Y), E)



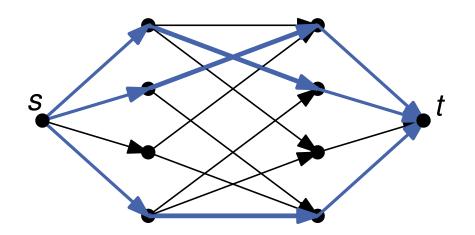
- Algorithm (unit maximum flow)
 - 1. Direct edges from X to Y
 - 2. Add super source *s* and connect to $X \iff$ unit costs
 - 3. Add super sink t and connect to Y

Given undirected bipartite Graph G = (V = (X, Y), E)



- Algorithm (unit maximum flow)
 - 1. Direct edges from X to Y
 - 2. Add super source *s* and connect to $X \iff$ unit costs
 - 3. Add super sink t and connect to Y
- \Rightarrow Reduce problem to maximum s t flow

Given undirected bipartite Graph G = (V = (X, Y), E)



- Algorithm (unit maximum flow)
 - 1. Direct edges from X to Y

83

- 2. Add super source *s* and connect to $X \rightarrow$ unit costs
- 3. Add super sink t and connect to Y
- \Rightarrow Reduce problem to maximum s t flow

Goodish O(nm)

- Hopcroft-Karp in $\mathcal{O}(m\sqrt{n})$
 - Based on augmenting paths
 - Find maximal set of shortest augmenting paths

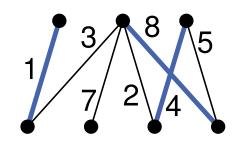
- Hopcroft-Karp in $\mathcal{O}(m\sqrt{n})$
 - Based on augmenting paths
 - Find maximal set of shortest augmenting paths
- Madry's algorithm using electric flows in $\mathcal{O}(m^{\frac{10}{7}})$
 - Good for sparse graphs

- Hopcroft-Karp in $\mathcal{O}(m\sqrt{n})$
 - Based on augmenting paths
 - Find maximal set of shortest augmenting paths
- Madry's algorithm using electric flows in $\mathcal{O}(m^{\frac{10}{7}})$
 - Good for sparse graphs
- Matrix multiplication in $\mathcal{O}(n^{2.376})$
 - Better in theory for dense graphs
 - In practice Hopcroft-Karp still faster

- Hopcroft-Karp in $\mathcal{O}(m\sqrt{n})$
 - Based on augmenting paths
 - Find maximal set of shortest augmenting paths
- Madry's algorithm using electric flows in $\mathcal{O}(m^{\frac{10}{7}})$
 - Good for sparse graphs
- Matrix multiplication in $\mathcal{O}(n^{2.376})$
 - Better in theory for dense graphs
 - In practice Hopcroft-Karp still faster
- Chandran and Hochbaum in $\mathcal{O}(\min\{|X|k, m\} + \sqrt{k}\min\{k^2, m\})$
 - Output-sensitive algorithm

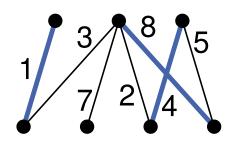
Finding Maximum Matchings

- In weighted bipartite graphs
 - Find matching with maximum value
 - Modified augmenting paths algorithm in $\mathcal{O}(n^2 \log n + nm)$

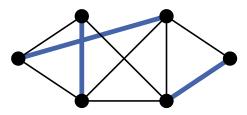


Finding Maximum Matchings

- In weighted bipartite graphs
 - Find matching with maximum value
 - Modified augmenting paths algorithm in $\mathcal{O}(n^2 \log n + nm)$



- In general graphs
 - Edmonds' algorithm in $\mathcal{O}(n^2 m)$
 - Improved version in time $\mathcal{O}(\sqrt{nm})$

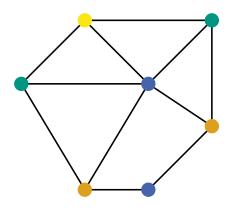


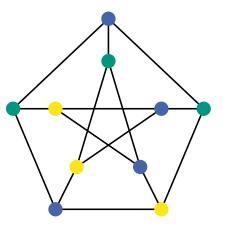
Coloring

Given undirected Graph G = (V, E) (without self-loops)

Vertex coloring

- Label each vertex with a color
- No two vertices sharing an edge have the same color

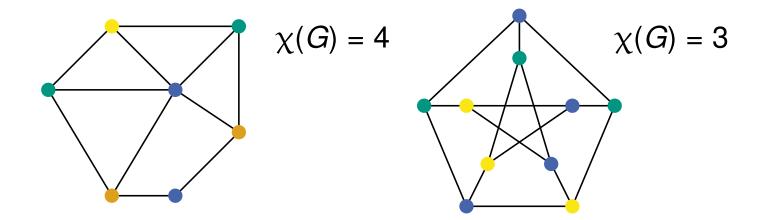




Coloring

Given undirected Graph G = (V, E) (without self-loops)

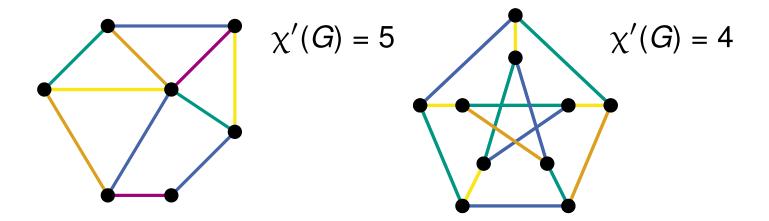
- Vertex coloring
 - Label each vertex with a color
 - No two vertices sharing an edge have the same color



- k-coloring
 - Vertex coloring that uses at most k-colors
 - Smallest possible k of G is called chromatic number $\chi(G)$

Related Problems

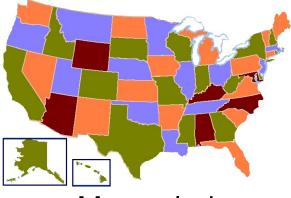
- Edge coloring
 - Label each edge with a color
 - No two edges sharing a vertex have the same color



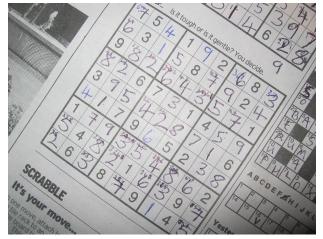
- Improper colorings (i.e. Ramsey theory)
 - Label each edge with a color
 - Two edges sharing a vertex are allowed the same color
 - Example: Friendship theorem

Applications

Task/Exam scheduling



Map coloring



Sudoku solving

Mobile Radio Frequency Assignment

"exam" flickr photo by krzyzanowskim https://flickr.com/photos/krzakptak/2240483862 shared under a Creative Commons (BY) license "Sudoku" flickr photo by Jason Cartwright https://flickr.com/photos/jasoncartwright/130182586 shared under a Creative Commons (BY) license By Map_of_USA_four_colours.svg: of the modification : Derfel73) Dbenbennderivative work: Tomwsulcer (talk) - Map_of_USA_four_colours.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19143208

Finding *k***-Colorings**

Find vertex coloring with minimum number of colors
 ⇒ Optimization problem is NP-hard

Finding *k*-Colorings

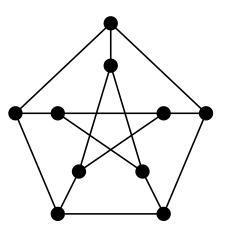
- Find vertex coloring with minimum number of colors ⇒ Optimization problem is NP-hard
- Exact algorithms for general graphs
 - Brute-force search for a k-coloring in $\mathcal{O}(k^n)$
 - Best exact algorithm for finding *k*-coloring in $\mathcal{O}(2^n n)$

Finding *k*-Colorings

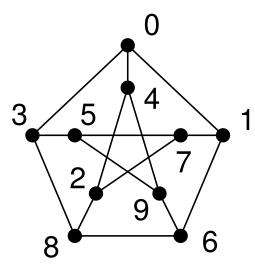
- Find vertex coloring with minimum number of colors ⇒ Optimization problem is NP-hard
- Exact algorithms for general graphs
 - Brute-force search for a k-coloring in $\mathcal{O}(k^n)$
 - Best exact algorithm for finding *k*-coloring in $\mathcal{O}(2^n n)$
- Even worse for general graphs
 - No constant factor approximations in polynomial time
 - Approximable with absolute error guarantee of 1 on planar graphs

How to find good heuristics?

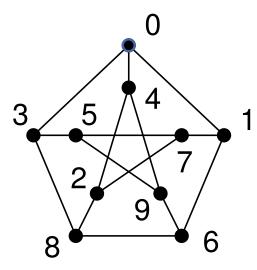
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



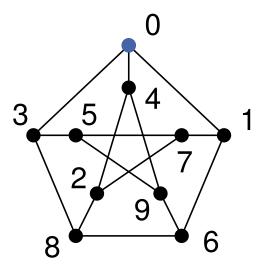
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



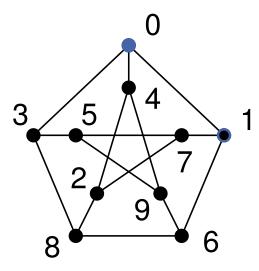
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



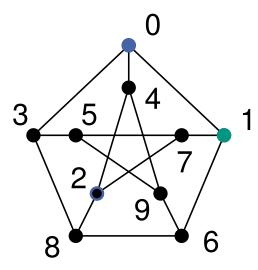
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



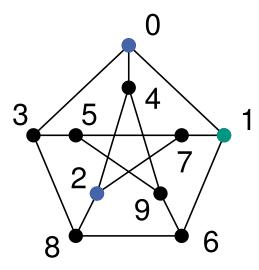
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



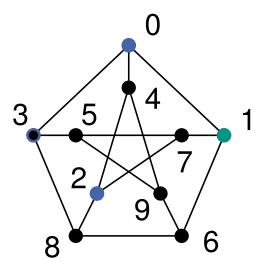
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



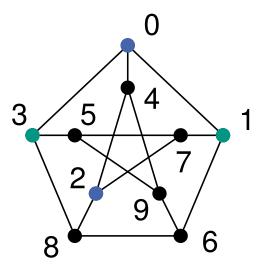
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



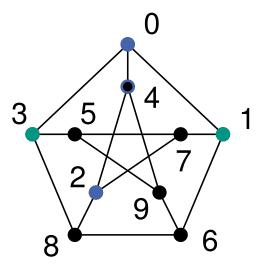
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



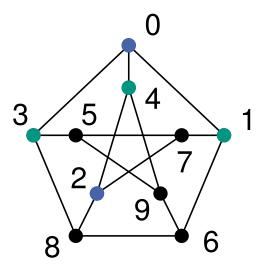
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



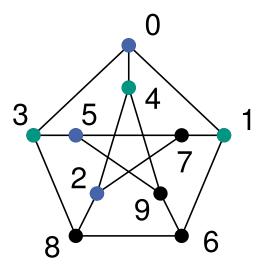
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



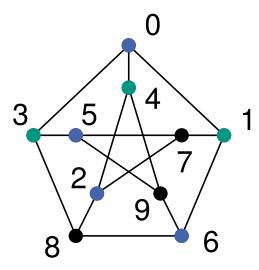
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



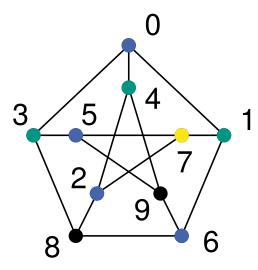
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



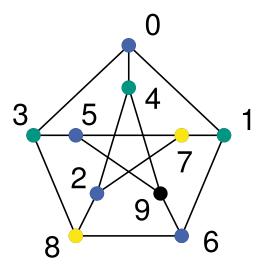
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



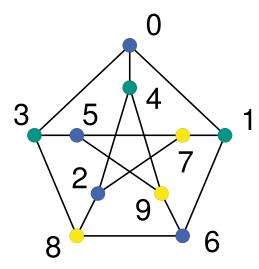
- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary

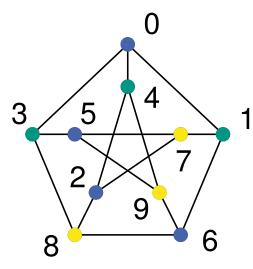


- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary



Given undirected Graph G = (V, E) with bounded degree Δ

- 1. Sort colors
- 2. Sort vertices with predefined order
- 3. Iterate over vertices in sorted order
 - (a) Color vertex with smallest color not used by any neighbor
 - (b) Add new color if necessary

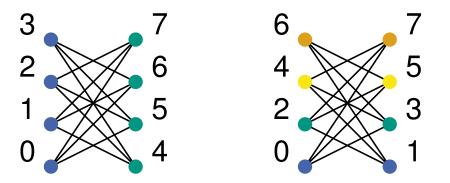


 \Rightarrow At most Δ + 1 colors

Good
$$\mathcal{O}(n+m)$$

Shortcomings of Greedy Algorithm

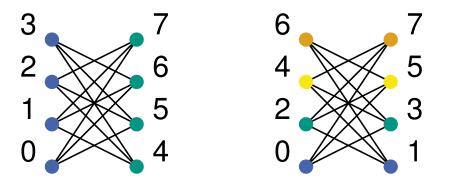
Quality of approximation heavily dependent on vertex ordering



 \Rightarrow Finding perfect ordering is NP-hard

Shortcomings of Greedy Algorithm

Quality of approximation heavily dependent on vertex ordering

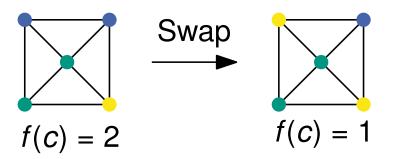


 \Rightarrow Finding perfect ordering is NP-hard

- Heuristic ordering strategies
 - Sort orders by their decreasing degree
 - Better upper bound than random ordering

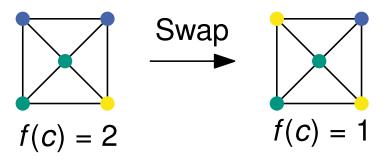
Finding Colorings in Practice

- Tabu search
 - Temporarily allow invalid solutions
 - Minimize conflicts and discourage repetition



Finding Colorings in Practice

- Tabu search
 - Temporarily allow invalid solutions
 - Minimize conflicts and discourage repetition



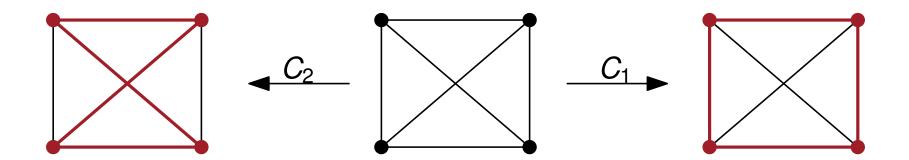
- Reductions
 - Remove subgraphs with certain structure
 - Subgraphs can be solved exactly



TSP is the prototypical optimization problem

Preliminary: Hamiltonian Cycle Problem Is there a cycle in graph *G* that visits each vertex exactly once?

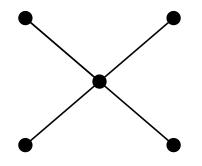
$$\mathbb{M} := \{G = (V, E) : \exists C \subseteq E : |C| = |V|, C \text{ is a cycle}\}$$



TSP is the prototypical optimization problem

Preliminary: Hamiltonian Cycle Problem Is there a cycle in graph *G* that visits each vertex exactly once?

$$\mathbb{M} := \{G = (V, E) : \exists C \subseteq E : |C| = |V|, C \text{ is a cycle}\}$$



TSP is the prototypical optimization problem

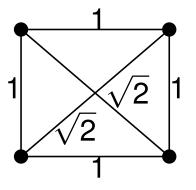
Definition:

$$\sum_{e \in C} \omega(e) \text{ is minimized.}$$

TSP is the prototypical optimization problem

Definition:

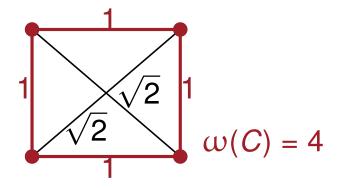
$$\sum_{e \in C} \omega(e) \text{ is minimized.}$$



TSP is the prototypical optimization problem

Definition:

$$\sum_{e \in C} \omega(e) \text{ is minimized.}$$

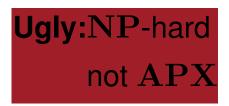


TSP is the prototypical optimization problem

Definition:

$$\sum_{e \in C} \omega(e) \text{ is minimized.}$$

- the TSP is **NP**-hard If $\omega(e) = c$ for all $e \in E$ then TSP \sim Hamiltonian Cycle
- it is NP-hard to approximate the general TSP within any factor α



It is NP-hard to approximate the general TSP within any factor α .

Given HC instance G = (V, E) consider TSP instance $G' = (V, V \times V)$ and

$$\omega(e) = \begin{cases} 1 & \text{if } e \in E \\ \alpha n & \text{else} \end{cases}$$

- if *G* has HC \Leftrightarrow there is a TSP tour of weight *n* in *G'* $\Rightarrow \alpha$ -approx. algorithm delivers tour with weight $\leq \alpha n$
- if *G* has no HC \Leftrightarrow every TSP tour in *G'* has weight $\geq \alpha n + n 1 > \alpha n$
- if α -approx algorithm finds tour with weight $\leq \alpha n$ in $G' \Rightarrow$ HC exists in G

It is NP-hard to approximate the general TSP within any factor α .

Given HC instance G = (V, E) consider TSP instance $G' = (V, V \times V)$ and

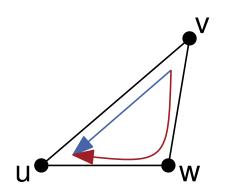
$$\omega(e) = \begin{cases} 1 & \text{if } e \in E \\ \alpha n & \text{else} \end{cases}$$

- if *G* has HC \Leftrightarrow there is a TSP tour of weight *n* in *G'* $\Rightarrow \alpha$ -approx. algorithm delivers tour with weight $\leq \alpha n$
- if *G* has no HC \Leftrightarrow every TSP tour in *G'* has weight $\geq \alpha n + n 1 > \alpha n$
- if α -approx algorithm finds tour with weight $\leq \alpha n$ in $G' \Rightarrow$ HC exists in G

If we restrict the general TSP we can do better

• $G = (V, E, \omega)$ is undirected, connected and obeys the triangle inequality

 $\forall u, v, w \in V : \omega((u, w)) \leq \omega((u, v)) + \omega((v, w))$

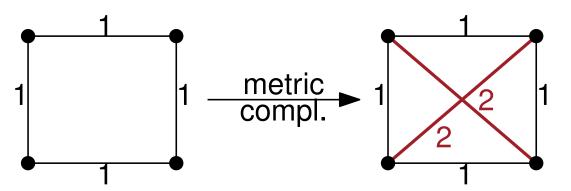


• $G = (V, E, \omega)$ is undirected, connected and obeys the triangle inequality

 $\forall u, v, w \in V : \omega((u, w)) \leq \omega((u, v)) + \omega((v, w))$

• the metric completion of $G = (V, E, \omega)$ is defined as $G' = (V, V \times V, \omega')$ with

 $\omega'(e = (u, v)) = \begin{cases} \omega(e) & \text{if } e \in E \\ \omega(u, \dots, v) & \text{for shortest path from } u \text{ to } v \text{ in } E \end{cases}$



2-Approximation via MST

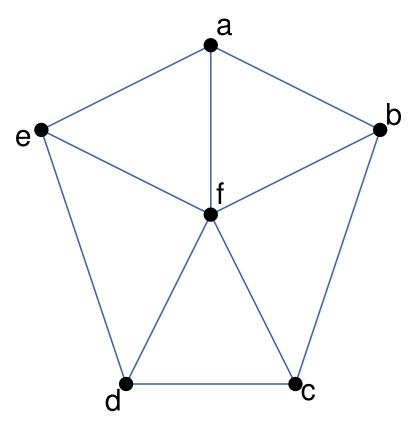
Lemma Given $G = (V, E, \omega)$ and its MST *T*,

 $\omega(T) \leq \text{weight of any TSP tour of } G.$

This includes optimal mimimum weight tour OPT.

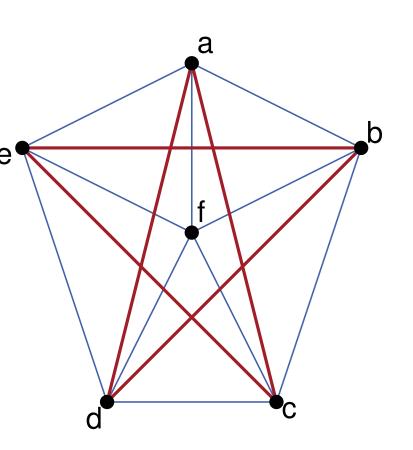
Institute of Theoretical Informatics Algorithmics Group

Metric Traveling Salesman Problem

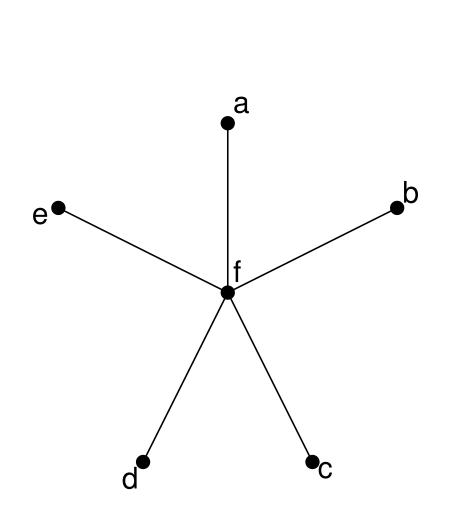


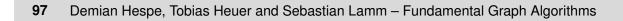
given $G = (V, E, \omega), \omega(e) = 1$

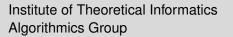
• metric completion, $\omega(e') = 2$



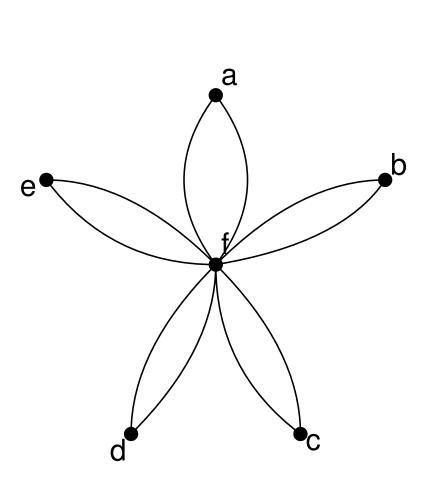
- given $G = (V, E, \omega), \omega(e) = 1$
- metric completion, $\omega(e') = 2$
- compute MST *T*, $\omega(T) \leq OPT$







- given $G = (V, E, \omega), \omega(e) = 1$
- metric completion, $\omega(e') = 2$
- compute MST *T*, $\omega(T) \leq OPT$
- double edges of T, $\omega(T') \leq 2OPT$



2-Approximation via MST

• given $G = (V, E, \omega), \omega(e) = 1$

- metric completion, $\omega(e') = 2$
- compute MST *T*, $\omega(T) \leq OPT$
- double edges of T, $\omega(T') \leq 2OPT$
- compute Eulerian tour

 $t = \{f, a, f, d, f, b, f, e, f, c, f\}$

2-Approximation via MST

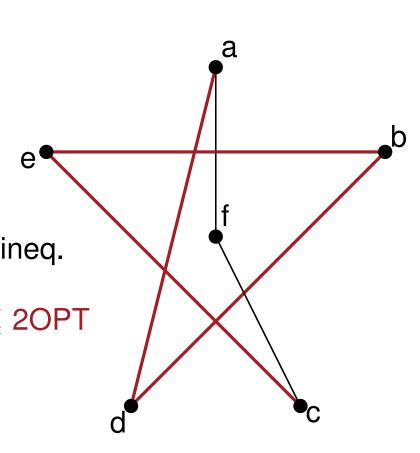
given $G = (V, E, \omega), \omega(e) = 1$ metric completion, $\omega(e') = 2$

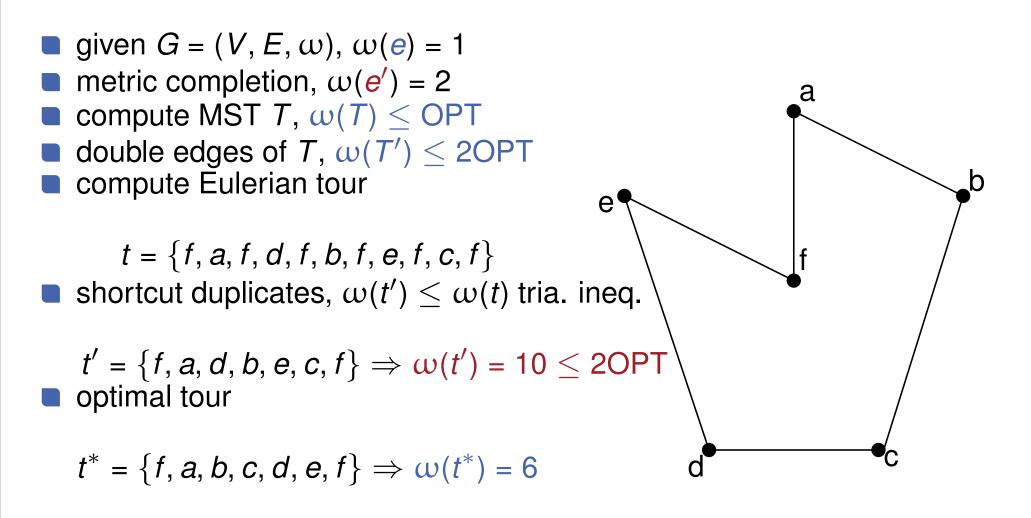
- compute MST T, $\omega(T) \leq OPT$
- double edges of T, $\omega(T') \leq 2OPT$
- compute Eulerian tour

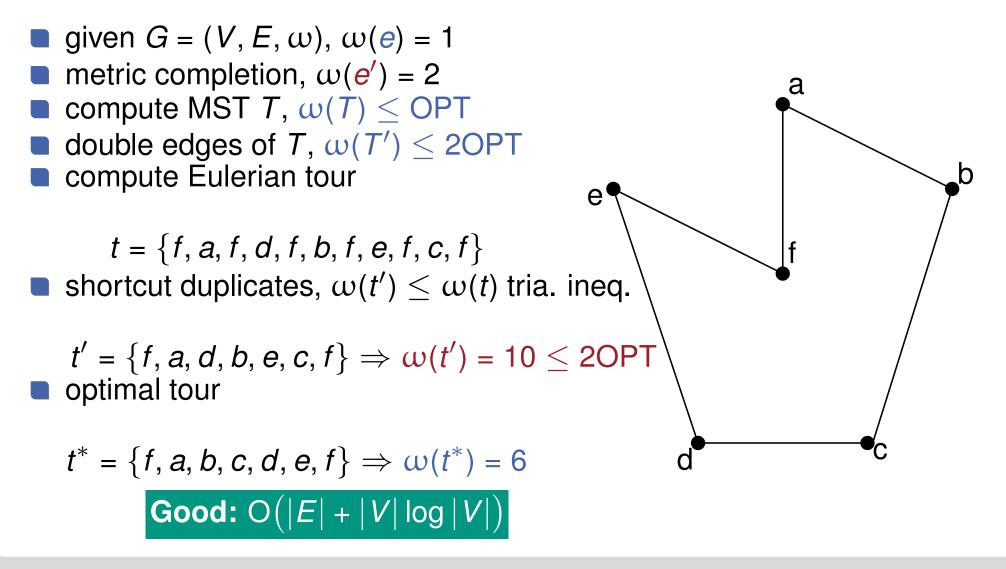
 $t = \{f, a, f, d, f, b, f, e, f, c, f\}$

• shortcut duplicates, $\omega(t') \leq \omega(t)$ tria. ineq.

$$t' = \{f, a, d, b, e, c, f\} \Rightarrow \omega(t') = \mathsf{10} \leq \mathsf{2OPT}$$







- Metric TSP: $\frac{3}{2}$ -approximation known
- Euclidean TSP: metric is Euclidean distance
 - Polynomial-time Approximation scheme (PTAS) known

Traveling Salesman Problem

Applications

- manifold applications in planning, logistics and manufacturing
- astronomy: minimize telescope movement between observed objects
- biology: matching genome sequences
- Vehicle Routing Problem: solve TSP for a fleet of vehicles
- Traveling Purchaser Problem: given different marketplaces find mimimum combined cost of traveling and purchasing a list of goods

many more

Independent Sets

Given undirected Graph G = (V, E)

 $I \subseteq V$ independent set \Leftrightarrow no two vertices in I are adjacent in G

 $I \subseteq V$ maximal independent set

 \Leftrightarrow *I* is no subset of any other independent set

Independent Sets

Given undirected Graph G = (V, E)

 $I \subseteq V$ independent set \Leftrightarrow no two vertices in I are adjacent in G

 $I \subseteq V$ maximal independent set

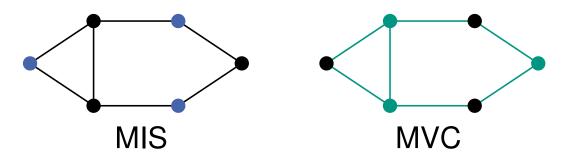
 \Leftrightarrow *I* is no subset of any other independent set

 $I \subseteq V$ maximum independent set (MIS)

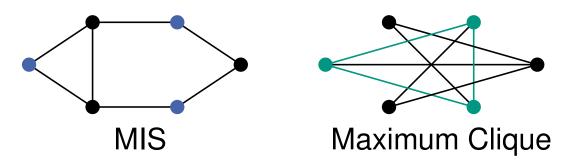
 \Leftrightarrow *I* is independent set with largest cardinality

Related Problems

Vertex cover (VC): Find set of vertices that cover all edges
 ⇒ Complement of MIS is minimum vertex cover (MVC)



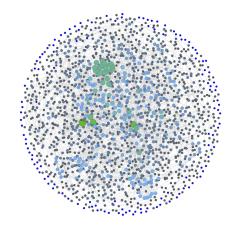
Clique: Find set of vertices that are pairwise adjacent MIS in complement graph is maximum clique



Applications

Partitioning of social networks

Map labeling/shortest-path computations



Mesh edge ordering in rendering Finding protein-protein interactions

"3D Social Networking" flickr photo by ccPixs.com https://flickr.com/photos/86530412@N02/7975205041 shared under a Creative Commons (BY) license

Finding Maximum Independent Sets

Find independent set with maximum number of vertices (MIS)
 ⇒ Optimization problem is NP-hard

Finding Maximum Independent Sets

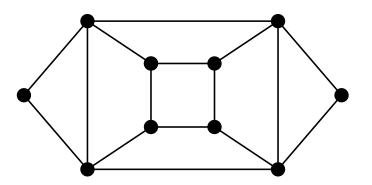
- Find independent set with maximum number of vertices (MIS)
 ⇒ Optimization problem is NP-hard
- Exact algorithms in general graphs
 - Brute-force algorithm in $\mathcal{O}(n^2 2^n)$
 - Best exact algorithm with polynomial space in $\mathcal{O}(1.1996^n)$

Finding Maximum Independent Sets

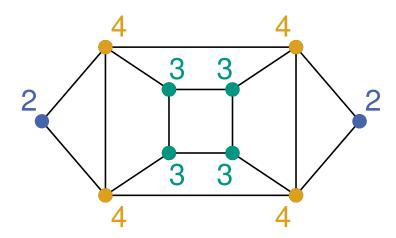
- Find independent set with maximum number of vertices (MIS)
 ⇒ Optimization problem is NP-hard
- Exact algorithms in general graphs
 - Brute-force algorithm in $\mathcal{O}(n^2 2^n)$
 - Best exact algorithm with polynomial space in $\mathcal{O}(1.1996^n)$
- Even worse for general graphs
 - No constant factor approximations in polynomial time
 - Polynomial time approximations for planar and unit disk graphs

How to find good heuristics?

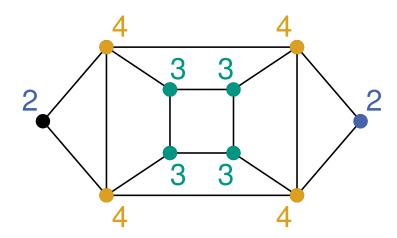
- 1. Sort vertices in buckets by ascending degree
- 2. Vertices remaining?
 - (a) Select random vertex from bucket with lowest degree
 - (b) Add vertex to independent set
 - (c) Remove neighboring vertices
 - (d) Decrease degree of next neighbors



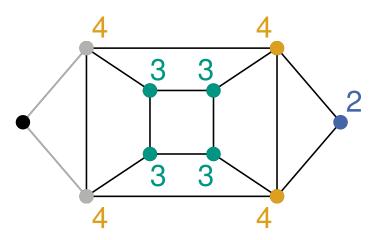
- 1. Sort vertices in buckets by ascending degree
- 2. Vertices remaining?
 - (a) Select random vertex from bucket with lowest degree
 - (b) Add vertex to independent set
 - (c) Remove neighboring vertices
 - (d) Decrease degree of next neighbors



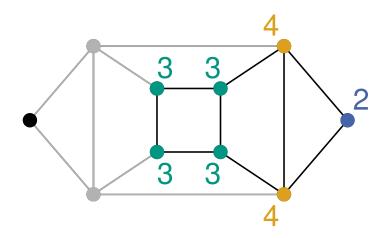
- 1. Sort vertices in buckets by ascending degree
- 2. Vertices remaining?
 - (a) Select random vertex from bucket with lowest degree
 - (b) Add vertex to independent set
 - (c) Remove neighboring vertices
 - (d) Decrease degree of next neighbors



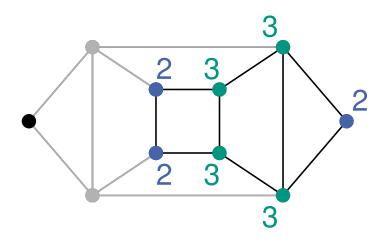
- 1. Sort vertices in buckets by ascending degree
- 2. Vertices remaining?
 - (a) Select random vertex from bucket with lowest degree
 - (b) Add vertex to independent set
 - (c) Remove neighboring vertices
 - (d) Decrease degree of next neighbors



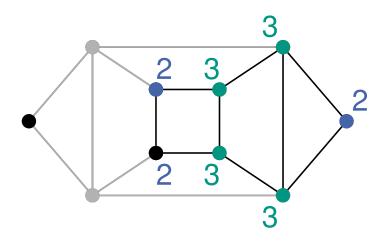
- 1. Sort vertices in buckets by ascending degree
- 2. Vertices remaining?
 - (a) Select random vertex from bucket with lowest degree
 - (b) Add vertex to independent set
 - (c) Remove neighboring vertices
 - (d) Decrease degree of next neighbors



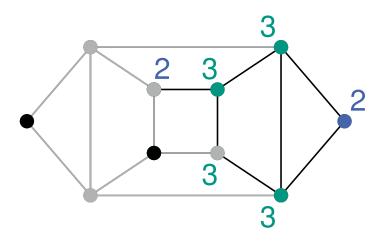
- 1. Sort vertices in buckets by ascending degree
- 2. Vertices remaining?
 - (a) Select random vertex from bucket with lowest degree
 - (b) Add vertex to independent set
 - (c) Remove neighboring vertices
 - (d) Decrease degree of next neighbors



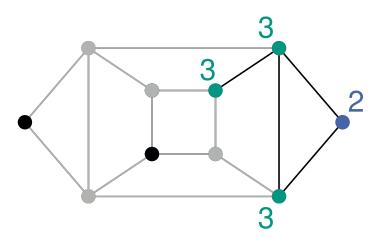
- 1. Sort vertices in buckets by ascending degree
- 2. Vertices remaining?
 - (a) Select random vertex from bucket with lowest degree
 - (b) Add vertex to independent set
 - (c) Remove neighboring vertices
 - (d) Decrease degree of next neighbors



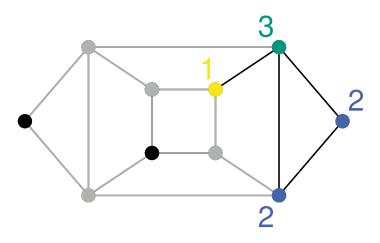
- 1. Sort vertices in buckets by ascending degree
- 2. Vertices remaining?
 - (a) Select random vertex from bucket with lowest degree
 - (b) Add vertex to independent set
 - (c) Remove neighboring vertices
 - (d) Decrease degree of next neighbors



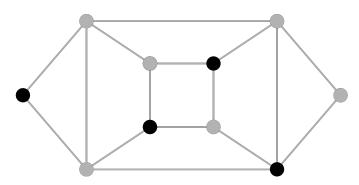
- 1. Sort vertices in buckets by ascending degree
- 2. Vertices remaining?
 - (a) Select random vertex from bucket with lowest degree
 - (b) Add vertex to independent set
 - (c) Remove neighboring vertices
 - (d) Decrease degree of next neighbors



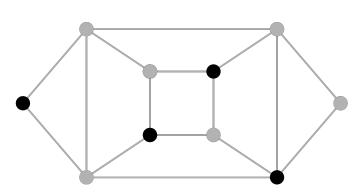
- 1. Sort vertices in buckets by ascending degree
- 2. Vertices remaining?
 - (a) Select random vertex from bucket with lowest degree
 - (b) Add vertex to independent set
 - (c) Remove neighboring vertices
 - (d) Decrease degree of next neighbors



- 1. Sort vertices in buckets by ascending degree
- 2. Vertices remaining?
 - (a) Select random vertex from bucket with lowest degree
 - (b) Add vertex to independent set
 - (c) Remove neighboring vertices
 - (d) Decrease degree of next neighbors



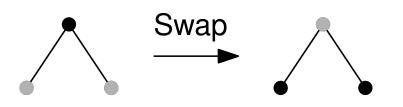
- 1. Sort vertices in buckets by ascending degree
- 2. Vertices remaining?
 - (a) Select random vertex from bucket with lowest degree
 - (b) Add vertex to independent set
 - (c) Remove neighboring vertices
 - (d) Decrease degree of next neighbors



Finding Independent Sets in Practice

Local Search

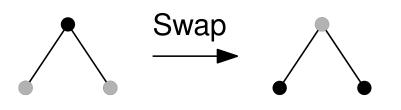
- Swap vertices to gradually find better solutions
- Use different diversification methods



Finding Independent Sets in Practice

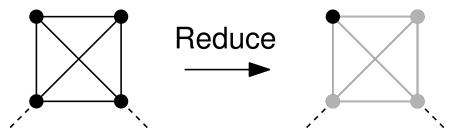
Local Search

- Swap vertices to gradually find better solutions
- Use different diversification methods



Reductions

- Find vertices that are contained in any maximum independent set
- Remove vertices to reduce problem size

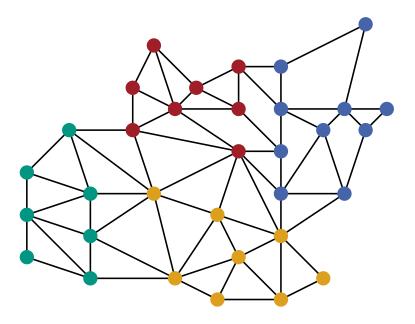


Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

$$C(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

• objective function on edges is minimized



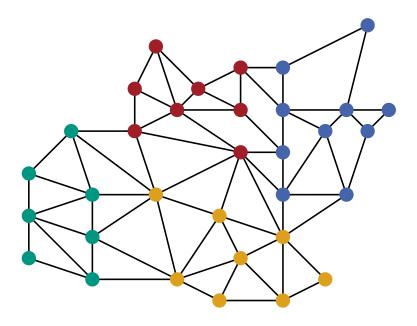
Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized



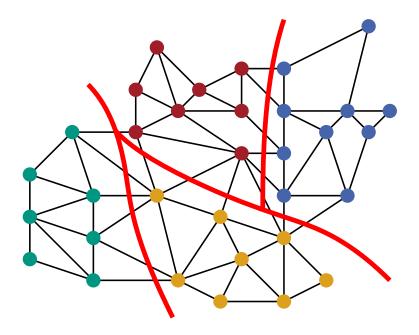
Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized



Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

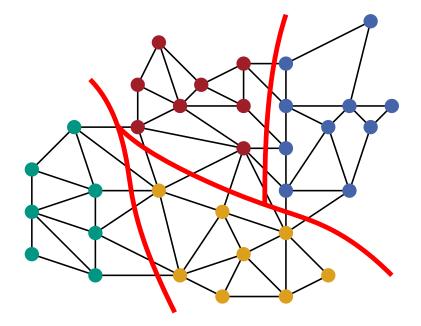
$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

Graphs:

• cut:
$$\sum_{e \in cut} \omega(e)$$



Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

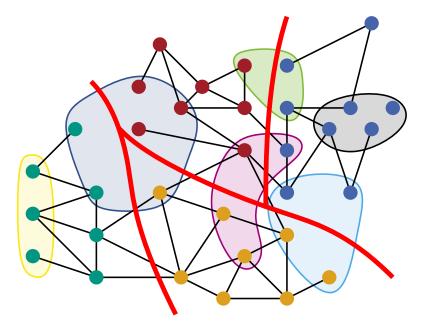
- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

- Graphs:
 - cut: $\sum_{e \in cut} \omega(e)$



Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

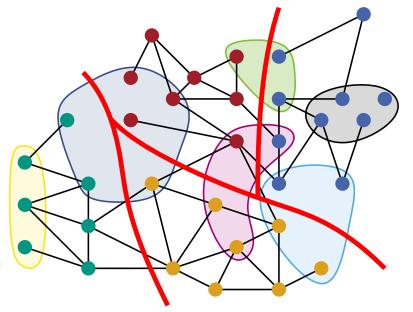
objective function on edges is minimized

Common Objectives:

- Graphs:
 - cut: $\sum_{e \in cut} \omega(e)$
- Hypergraphs:

• cut:
$$\sum_{e \in \mathsf{cut}} \omega(e)$$

• connectivity:
$$\sum_{e \in cut} (\lambda - 1) \omega(e)$$



Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

blocks V_i are roughly equal-sized:

- imbalance parameter

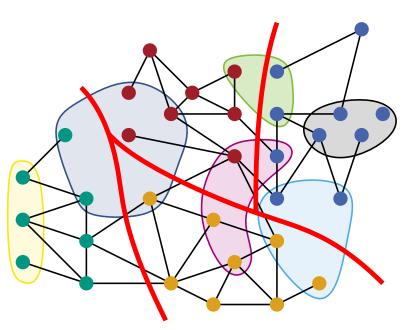
$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

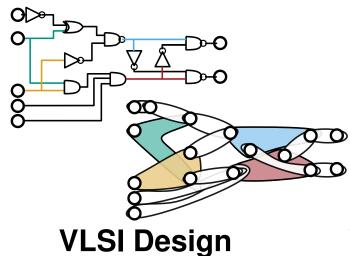
Common Objectives:

- Graphs:
 - cut: $\sum_{e \in cut} \omega(e)$
- Hypergraphs:
 - cut: $\sum_{e \in cut} \omega(e)$
 - connectivity: $\sum_{e \in cut} (\lambda 1) \omega(e)$

blocks connected by e -



Applications

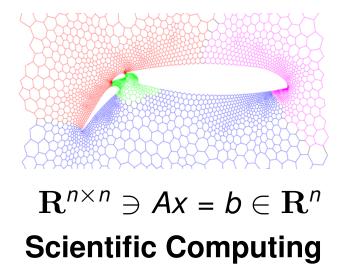


Warehouse Optimization

Complex Networks

Route Planning

Simulation



(Hyper)Graph Partitioning Algorithms

- Hypergraph Partitioning is NP-hard
- \blacksquare even finding good approximate solutions for graphs is $\mathbf{NP}\text{-hard}$

(Hyper)Graph Partitioning Algorithms

- Hypergraph Partitioning is NP-hard
- even finding good approximate solutions for graphs is \mathbf{NP} -hard

- \Rightarrow exact solutions only for very small graphs & small k feasible!
- ⇒ most successful heuristic: Multilevel Approach

(Hyper)Graph Partitioning Algorithms

- Hypergraph Partitioning is NP-hard
- even finding good approximate solutions for graphs is NP-hard

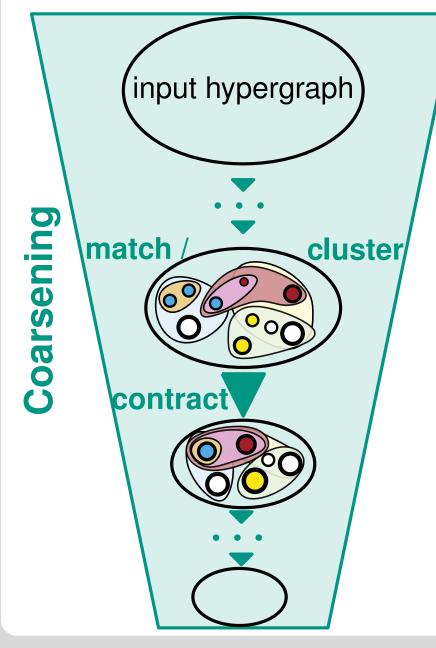
Ugly: NP-hard, not \overline{APX}

- \Rightarrow exact solutions only for very small graphs & small k feasible!
- ⇒ most successful heuristic: Multilevel Approach

Sophisticated partitioners developed in our group:

- **KaHIP** Karlsruhe High Quality Partitioning
 - Objective: cut
 - https://git.io/vderw
- KaHyPar Karlsruhe Hypergraph Partitioning
 - Objectives: cut, $(\lambda 1)$
 - https://git.io/vMBaR

Multilevel Paradigm

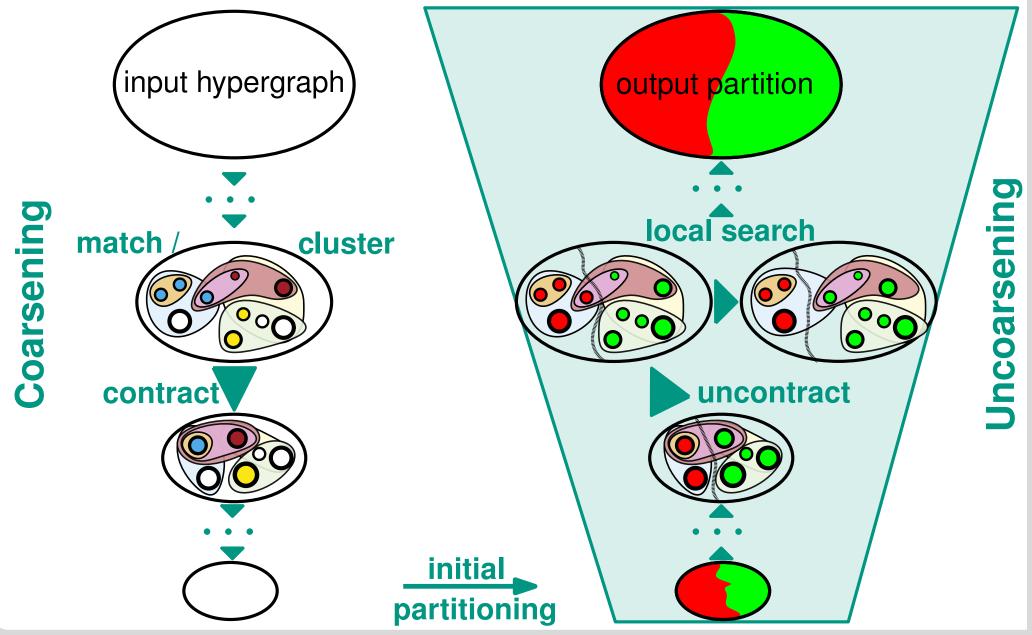


Multilevel Paradigm

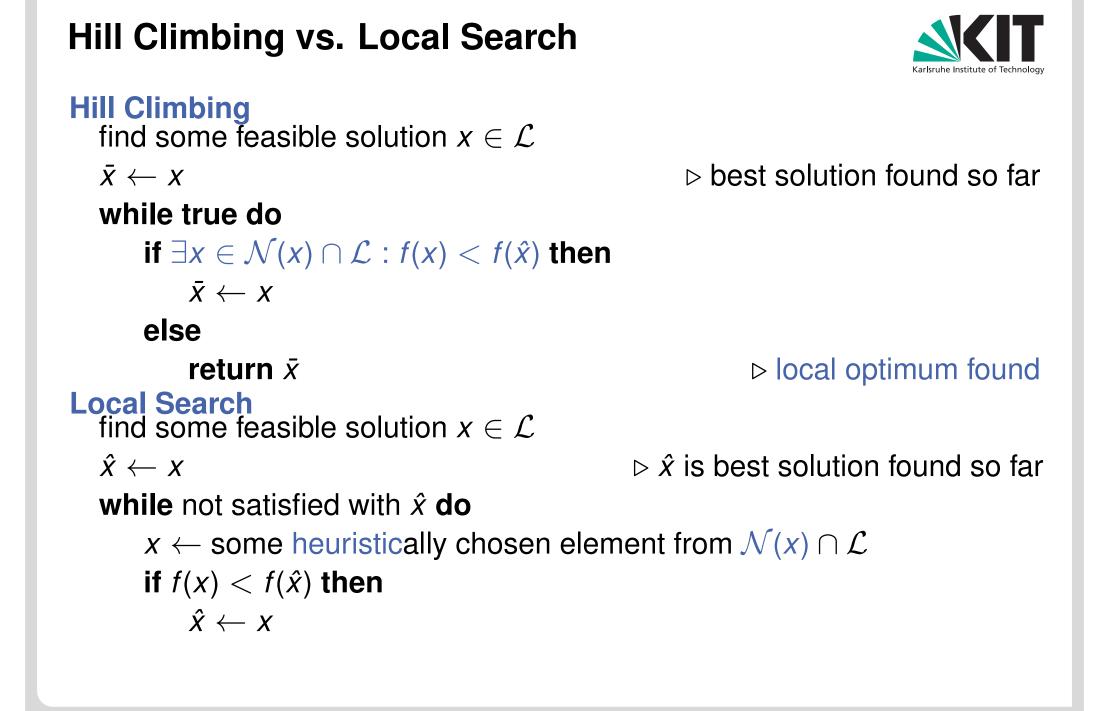


109 Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms

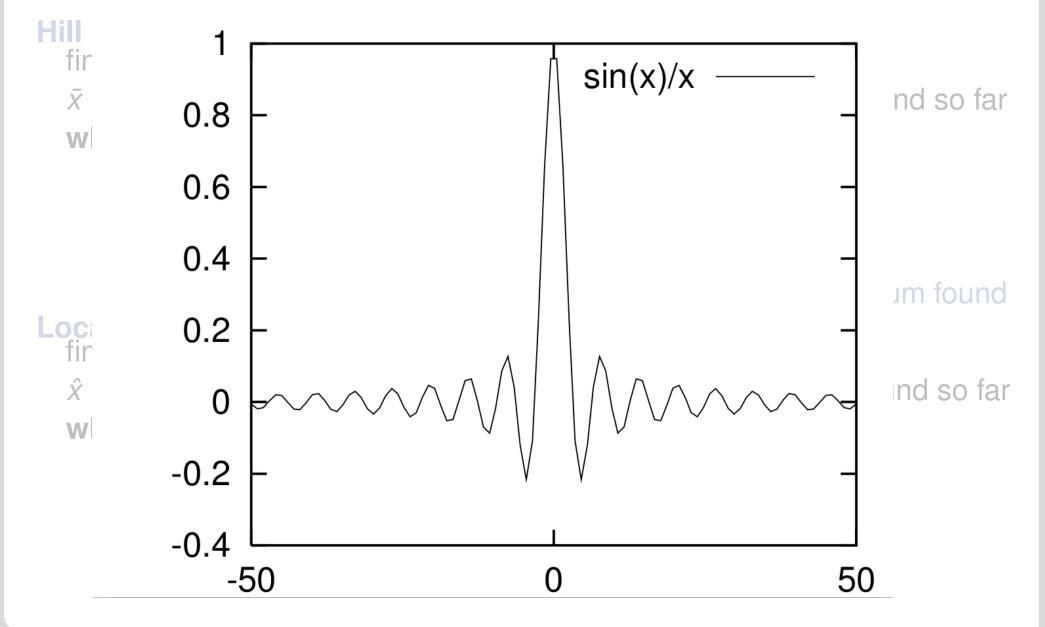
Multilevel Paradigm

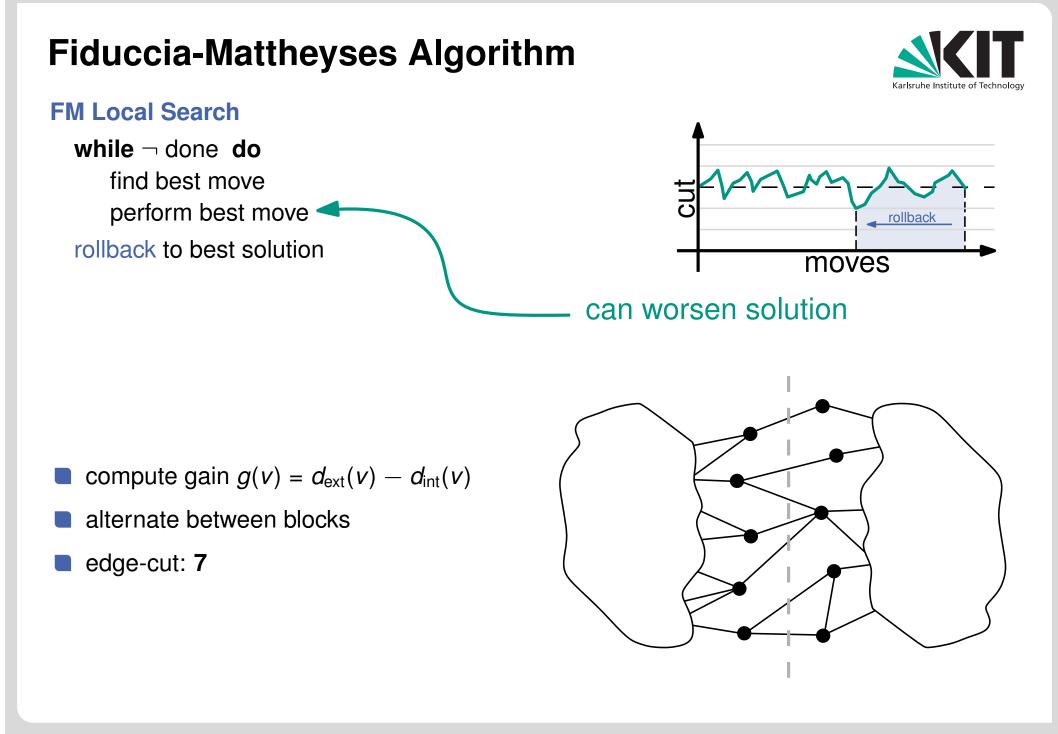


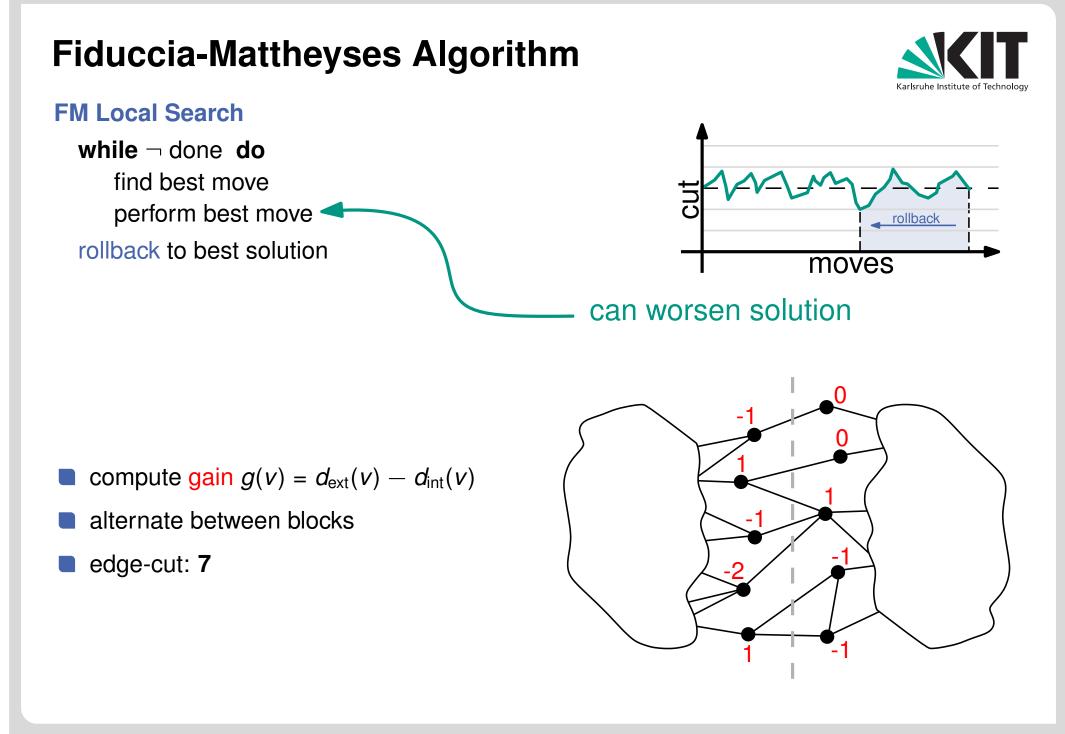
109 Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms

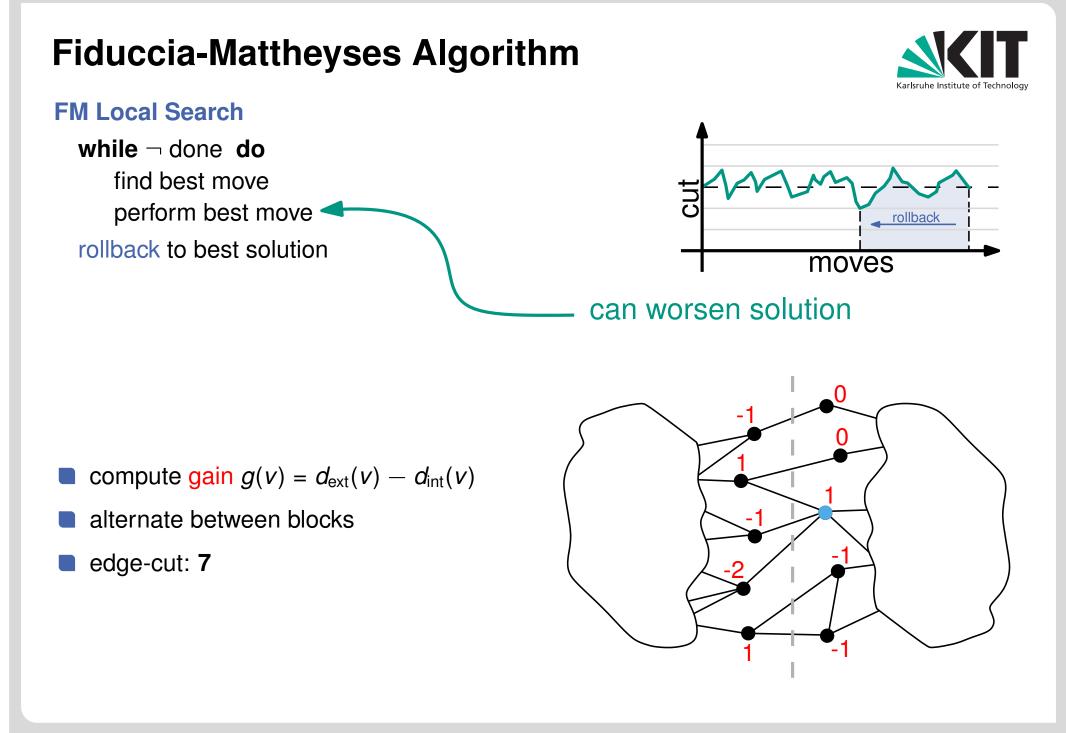


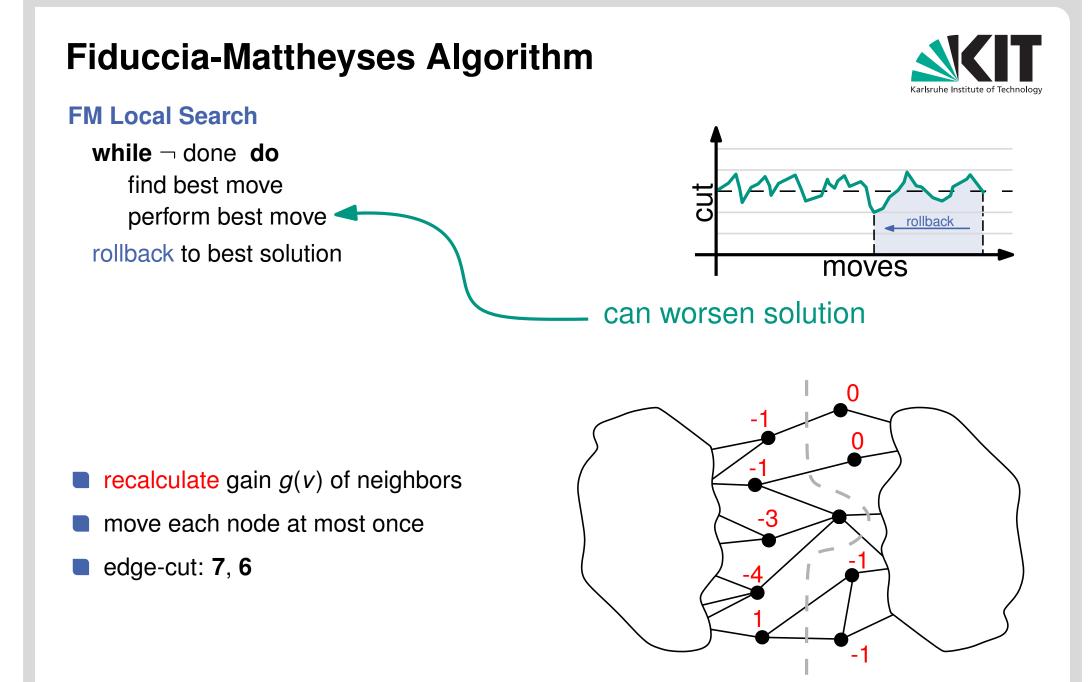
Hill Climbing vs. Local Search

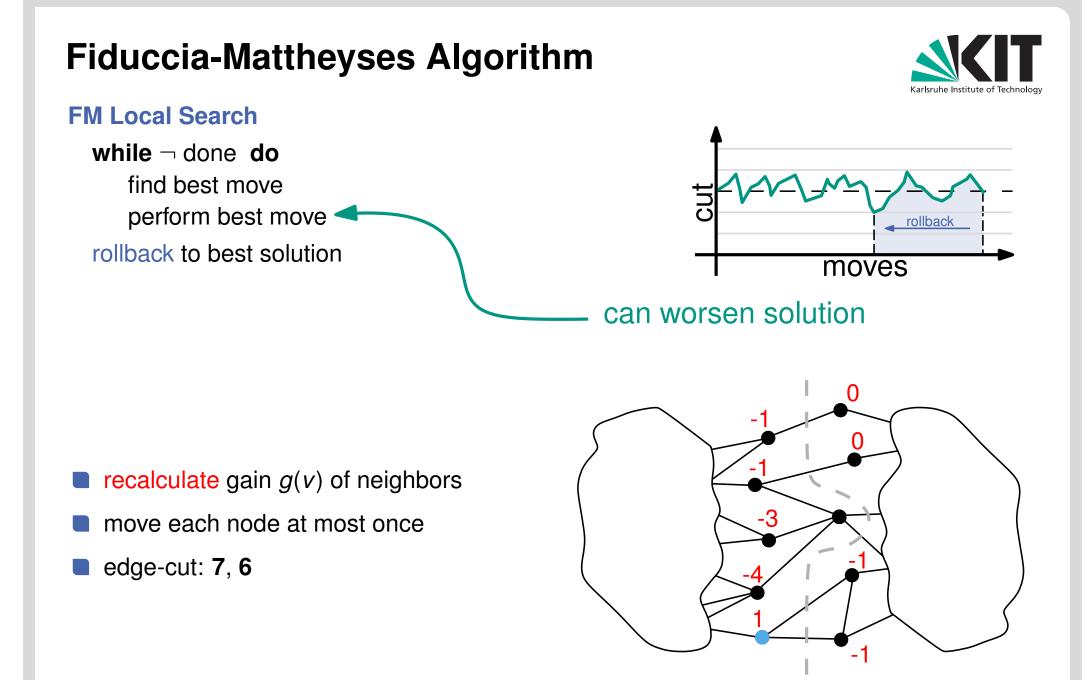


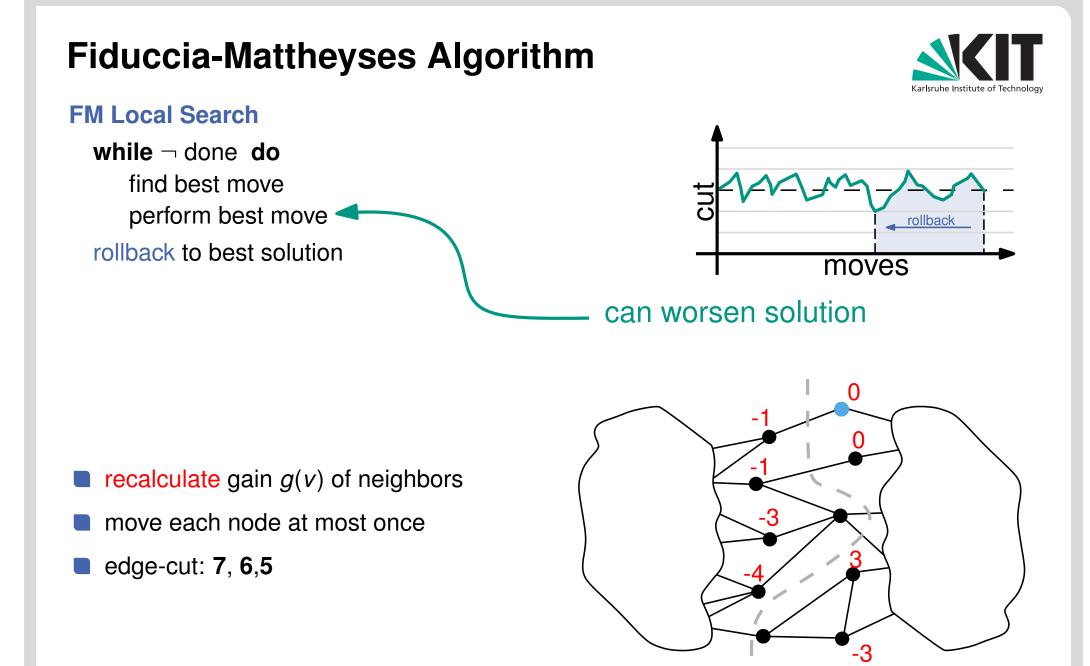


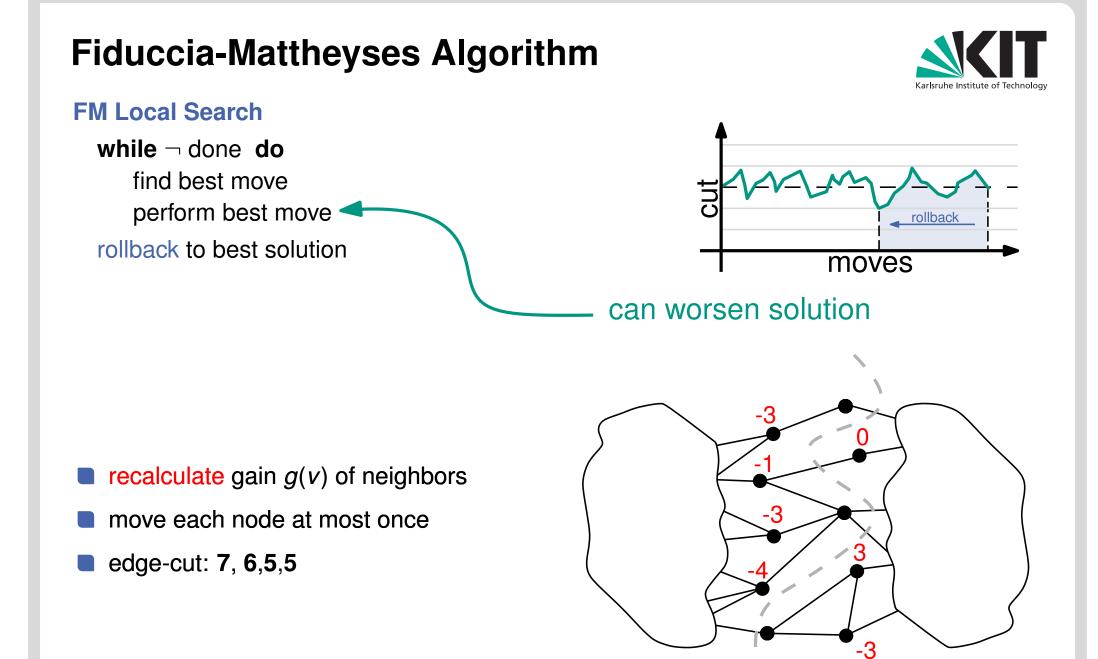


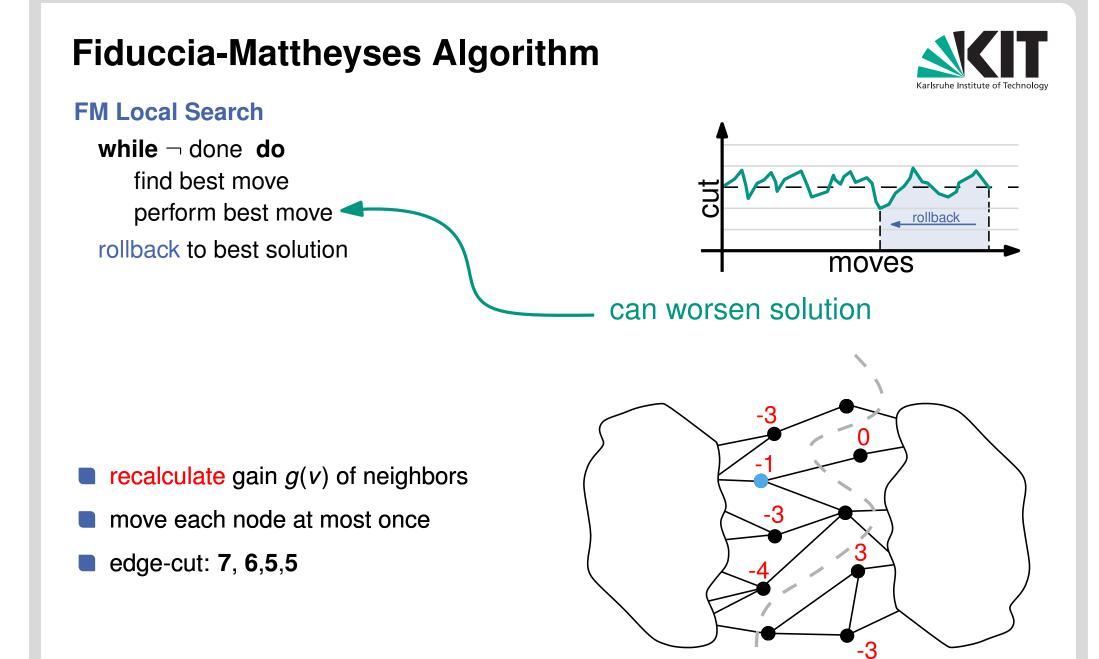


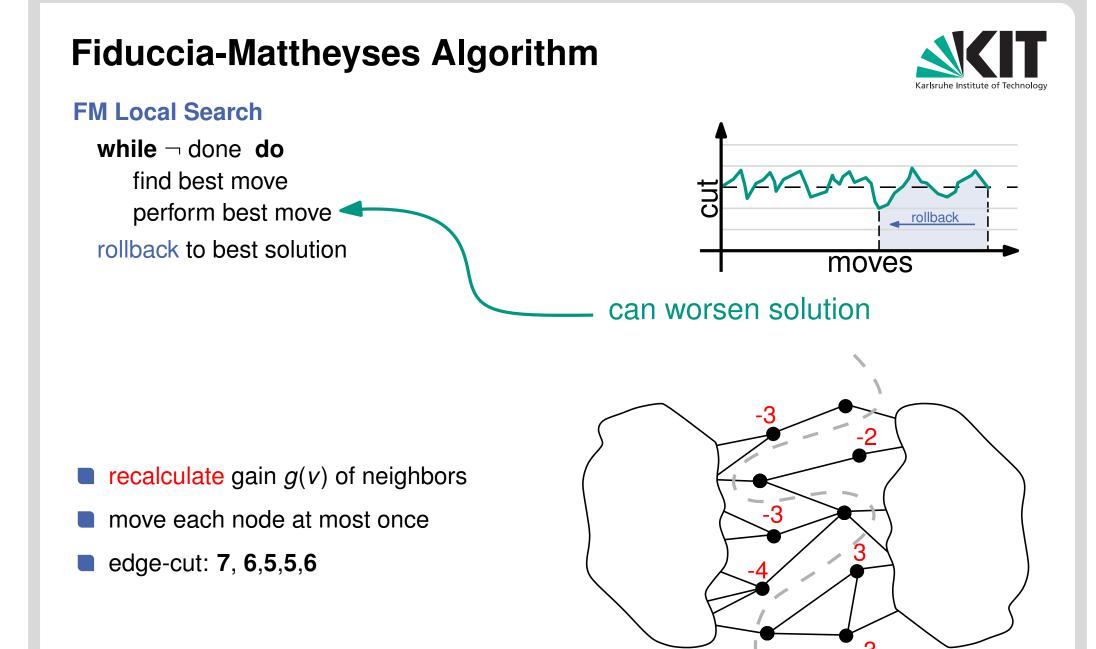


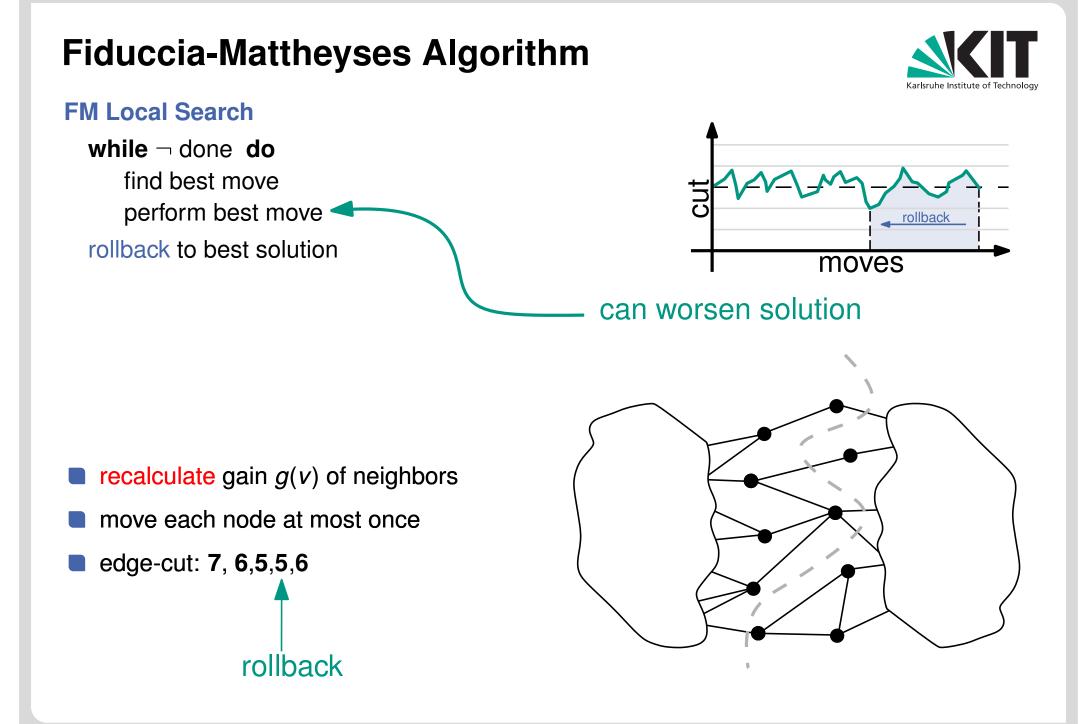












Parallelization

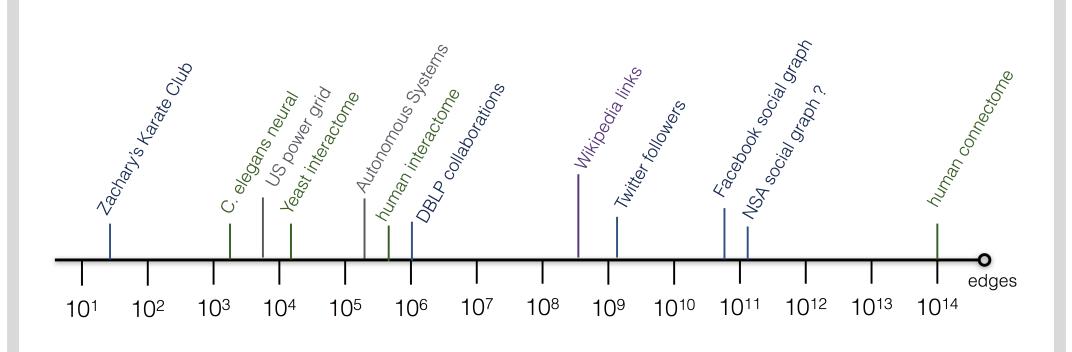
All presented problems have parallel algorithms:

- some problems are well suited for parallelization
 - BFS algorithms especially trees, DAGs
 - MST algorithms local cut or cycle property
- if global decisions are required for exact solutions
 - less suitable for parallel processing
 - e.g. coloring, independent sets, ...
 - often parallelizable greedy heuristics \Rightarrow only need local criteria

Network Analysis

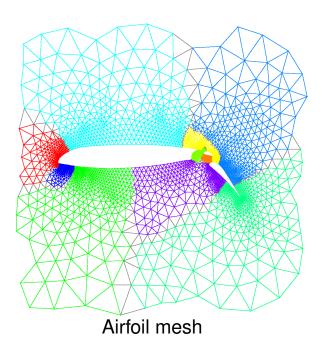
Network Analysis

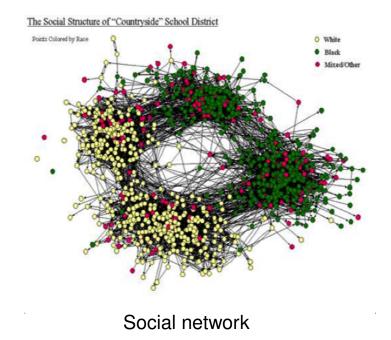
- Transportation
- Business
- (Online) Social networks
- Technology
- Biology



Complex Networks

- Non-trivial topological features that do not occur in simple networks (meshes, simple random graphs), but often occur in reality
 - Small diameter
 - Strongly varying degree distribution
 - Large number of triangles
 - **.**..

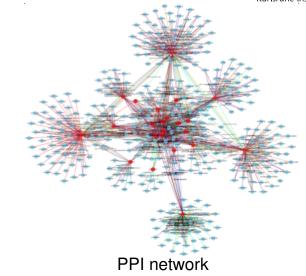




Example Applications

Bioinformatics

- Protein-protein interactions
- Phylogeny trees



Example Applications

Bioinformatics

- Protein-protein interactions
- Phylogeny trees

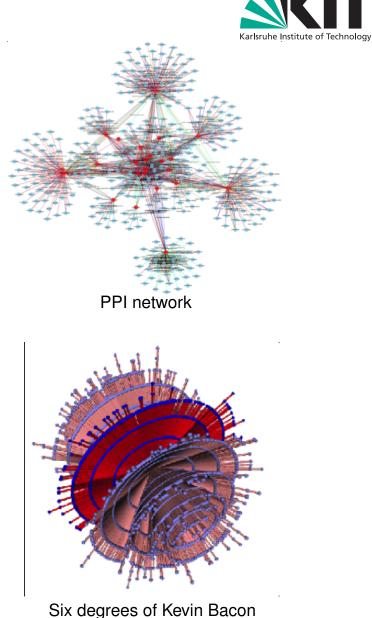
Collaborations

Movies

Scientific papers

Politics

• ...



ix degrees of Kevin Bacoi

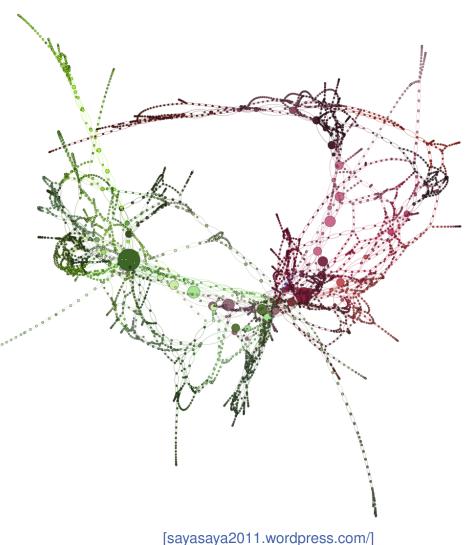
[Seok-Hee Hong]

Network Science

"Statistics of relational data"

Often

- exploratory in nature
- requires data preprocessing to extract graph
- creates large data sets easily
- requires domain-specific postprocessing for interpretation



NetworKit

NetworKit: parallel tool suite for network analysis

- large collection of network science algorithms
- shared-memory parallel C++ implementation
- Python interface
- suitable for interactive analysis with IPython notebooks

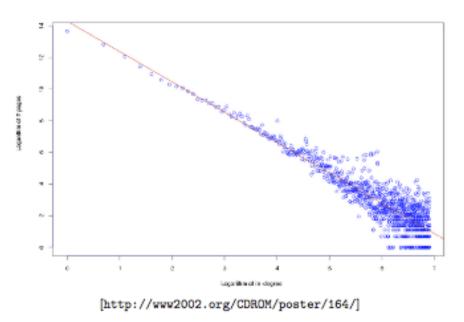
For all introduced measures:

NetworKit IPython call

Degree Distribution

Concept

- Interesting: Distribution of node degrees
- Typically heavy-tailed (especially power law $p(k) \sim k^{-\gamma}$)
- Example: Web graphs

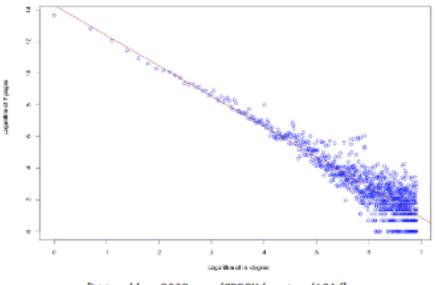


Graph of African web pages early 2000s

Degree Distribution

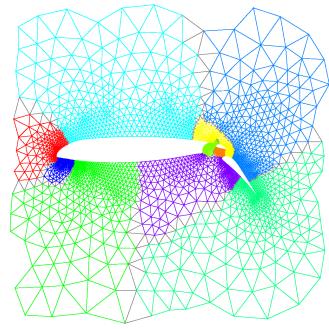
Concept

- Interesting: Distribution of node degrees
- Typically heavy-tailed (especially power law $p(k) \sim k^{-\gamma}$)
- Example: Web graphs



[http://www2002.org/CDROM/poster/164/]

Graph of African web pages early 2000s



Not heavy tailed, often constant: Meshes

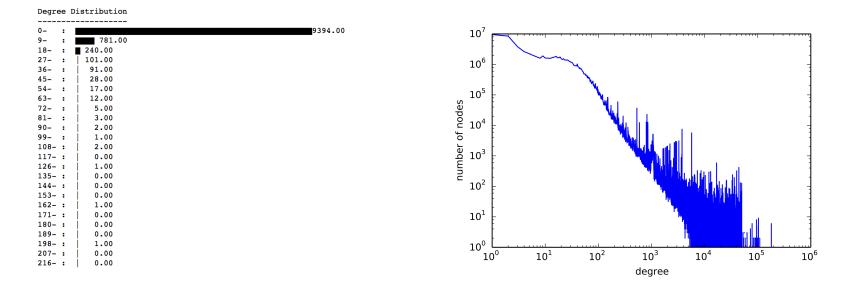
[Clauset et al. 2009: Power-law distributions in empirical data]

Degree Distribution

Algorithms

- Visualizations of degree distribution
- powerlaw Python module determines whether distribution fits power law and estimates exponent γ

dd = centrality.DegreeCentrality(G)

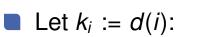


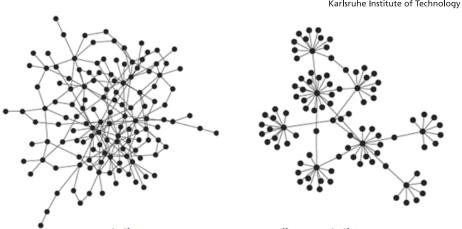
[Alstott et al. 2014: powerlaw: a python package for analysis of heavy-tailed distributions.]

Degree Assortativity

Concept

- Formation of connections between nodes with similar/dissimilar degree
- Based on covariance of degrees
- Normalization expressed as correlation coefficient r





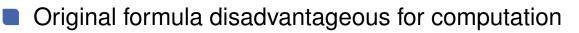
assortative

disassortative

$$\operatorname{cov}(k_i, k_j) = \frac{1}{2m} \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) k_i k_j$$
$$r = \frac{\sum_{i,j} (A_{ij} - k_i k_j / 2m) k_i k_j}{\sum_{i,j} (k_i \delta_{ij} - k_i k_j / 2m) k_i k_j} \qquad \delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

[Newman: Networks – An Introduction. Chapters 7.13, 8.7] [Newman 2002: Assortative mixing in networks.]

Degree Assortativity



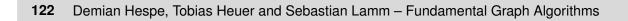
$$r = \frac{\sum_{i,j} (A_{ij} - k_i k_j / 2m) k_i k_j}{\sum_{i,j} (k_i \delta_{ij} - k_i k_j / 2m) k_i k_j} \qquad \delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Reformulation (see Newman):

$$r = \frac{S_1 S_e - S_2^2}{S_1 S_3 - S_2^2} \qquad S_e = \sum_{i,j} A_{ij} k_i k_j = 2 \sum_{\{i,j\} \in E} k_i k_j$$
$$S_1 = \sum_i k_i \qquad S_2 = \sum_i k_i^2 \qquad S_3 = \sum_i k_i^3$$

da = correlation.Assortativity(G, dd)

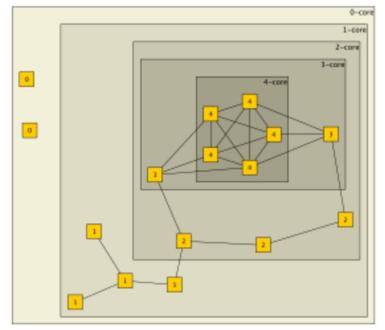
Good:
$$O(|E|)$$



k-Core Decomposition

Concept

- Nodes in core k have at least k neighbors that also belong to core k, $k \ge 0$
- Iteratively peeling away nodes of degree k reveals the k-cores



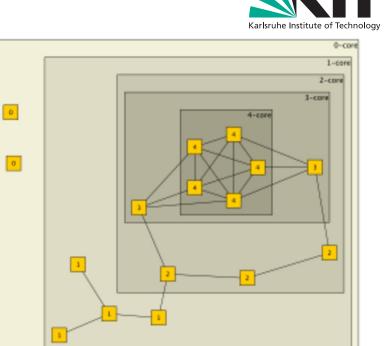
[Baur et al. 2008]

k-Core Decomposition

Concept

- Nodes in core k have at least k neighbors that also belong to core $k, k \ge 0$
- Iteratively peeling away nodes of degree k reveals the k-cores

1: store node degrees in array degree 2: *i* ← 1 3: while $V \neq \emptyset$ do for each $v \in V$ with degree [v] < i do 4:



[Baur et al. 2008]

 \triangleright process v and its neighbors and delete v from G

 $i \leftarrow i + 1$ 6:

7: return (i-1, core)

. . .

5:

k-Core Decomposition

Algorithm and Implementation

- Bucket data structure
- Each bucket stores nodes with the same current degree
- Additional array to store pointers from each node into its bucket

- 1: for each $v \in V$ with degree[v] < i do
- 2: core[v] $\leftarrow i 1$
- 3: for each $u \in N(v)$ do
- 4: $degree[u] \leftarrow degree[u] 1$
- 5: Remove *v* from *G*

coreDec = centrality.CoreDecomposition(G) **Good:** O(|E|)

Diameter

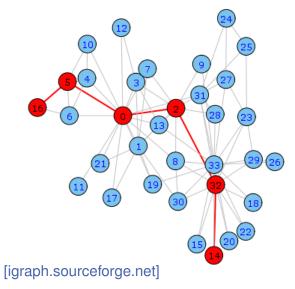
Concept

- Longest shortest path between any two nodes
- Small in most complex networks
- "Six degrees of separation"

Algorithms

- Exact: Simple all pairs shortest paths (*n* shortest path queries)
- In practice faster: iFub
- $\frac{3}{2}$ -approximation possible in O $\left(|E|\sqrt{|V|}\right)$

diam = distance.Diameter(G)

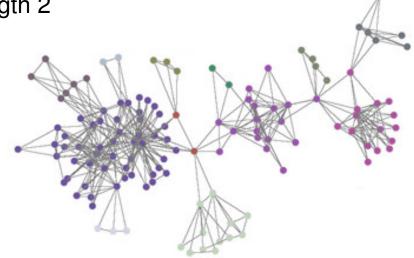


[Crescenzi et al. 2013: On computing the diameter of real-world undirected graphs] [Roditty, Williams. 2013: Fast Approx. Algorithms for the Diameter and Radius of Sparse Graphs]

Clustering Coefficients

Concept

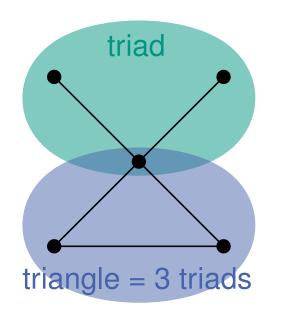
- Social networks: High ratio of closed triangles ("Friends of friends are often friends")
- CC: Ratio of closed triangles and paths of length 2

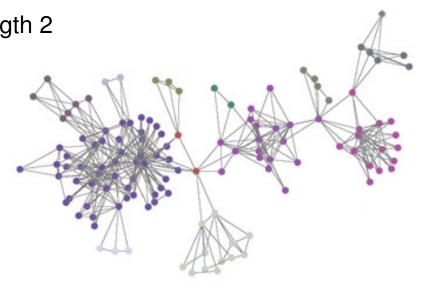


Clustering Coefficients

Concept

- Social networks: High ratio of closed triangles ("Friends of friends are often friends")
- CC: Ratio of closed triangles and paths of length 2





 $C_g(G) = \frac{3 \cdot \text{Number of closed triangles}}{\text{Number of connected triads}}$

 $C_{l}(v) = \frac{\text{Number of triangles with } v}{\text{Number of connected triads with } v \text{ as middle node}}$

Clustering Coefficients

Exact Algorithm

• with parallel node iteration: $O(|V| d_{max}^2)$ time

Approximation

• Wedge sampling:

Linear-time approximation for weighted graphs with probabilistic absolute error $\boldsymbol{\varepsilon}$

cc = globals.ClusteringCoefficient(G)

Good: O(|E|)

[Schank, Wagner 2005: Approximating clustering coefficient and transitivity]

Centrality Measures

Centrality Concept

How important is a node / an edge?

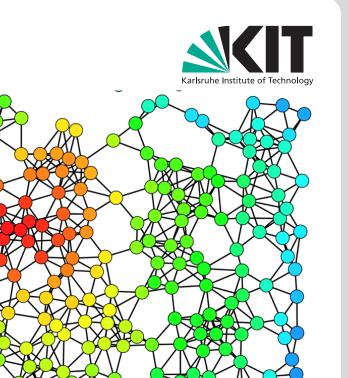
Eigenvector Centrality

Consider importance of neighbors:

$$\forall v \in V : x_v = \frac{1}{\lambda} \sum_{u \in V} A_{vu} x_u$$

$$\lambda \mathbf{x} = A \mathbf{x}$$
 $A := adjacency matrix$

Eigenvector to largest eigenvalue



ec = centrality.EigenvectorCentrality(G) Goodish: O(|

Centrality Measures

Centrality Concept

How important is a node / an edge?

PageRank

- Google's first ranking scheme
- variant of eigenvector centrality
- Random surfer model:

$$\forall v \in V : x_v^{(t+1)} = \alpha \cdot \frac{1}{|V|} + (1-\alpha) \sum_{(u \mapsto v) \in E} \frac{x_u^{(t)}}{|\{(u \mapsto x) \in E\}|}$$

ec = centrality.PageRank(G, 1e-6)

Goodish: $O(|V|^3)$

E 0.0682

В

0.3242

A 0.0276

D

0.0330

С

0.2892

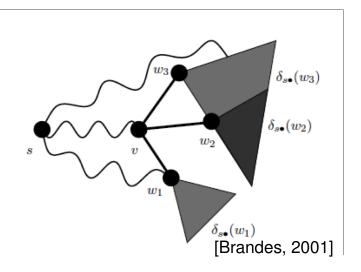
PageRank example

Betweenness Centrality

Definition

- $\forall u, v \in V$ in connected graph, there exists at least one shortest path between them
- BC measures of number of shortest paths that pass through a vertex k

$$C_B(k) = \sum_{u,v \in V \setminus \{k\}} \frac{|\{k \in SP(u,v)|\}}{|SP(u,v)|} SP(u,v) = \text{shortest paths from } u \text{ to } v$$



Betweenness Centrality

Definition

 $\forall u, v \in V$ in connected graph, there exists at least one shortest path between them

BC measures of number of shortest paths that pass through a vertex k

$$C_B(k) = \sum_{u,v \in V \setminus \{k\}} \frac{|\{k \in SP(u,v)|\}}{|SP(u,v)|}$$

SP(u,v) = shortest paths from u to v

Exact Algorithm for BC

Brandes's alg.: $O(|V||E| + |V|^2 \log |V|)$ time

Approximation for BC

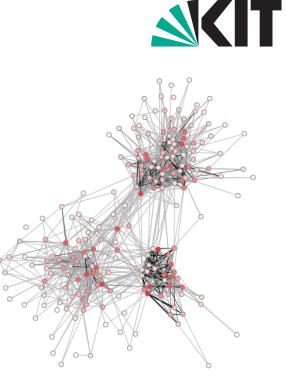
Parallel path sampling with probabilistic absolute error (in (nearly-)linear time)

[Brandes 2001: A faster algorithm for betweenness centrality] [Riondato, Kornaropoulos 2013: Fast approximation of betweenness centrality through sampling] [Geisberger et al. 2008: Better Approximation of Betweenness Centrality]

Community Detection (CD)

Community Detection / Graph Clustering

- Find (non-overlapping) internally dense, externally sparse subgraphs
- Goals: Uncover community structure, prepartition network
- number of cluster not known in advance partitioning



Community Detection (CD)

Community Detection / Graph Clustering

- Find (non-overlapping) internally dense, externally sparse subgraphs
- Goals: Uncover community structure, prepartition network
- number of cluster not known in advance \Leftrightarrow partitioning

What constitutes a cluster?

ocal area friends [wolfram.com]

Online friends

[survey: Schaeffer 07, Fortunato 10]

[Girvan, Newman 2002: Community structure in social and biological networks]

Demian Hespe, Tobias Heuer and Sebastian Lamm - Fundamental Graph Algorithms 131

Given a clustering C for a graph G:

Coverage: fraction of intra-cluster edges $\omega(\mathcal{C})$ over all edges

$\operatorname{cov}(\mathcal{C}) \coloneqq \frac{\omega(\mathcal{C})}{|E|}$

Problem: maximal for trivial cluster (k = 1)

Bad: NP-hard

Bad: NP-hard

CD – **Objective Functions**

Given a clustering C for a graph G:

Coverage: fraction of intra-cluster edges $\omega(\mathcal{C})$ over all edges

Problem: maximal for trivial cluster (k = 1)

Performance: fraction node pairs that are clustered correctly

$$\operatorname{perf}(\mathcal{C}) := \frac{m(\mathcal{C}) + \bar{m}^{c}(\mathcal{C})}{\frac{1}{2} |V| (|V| - 1)} \quad \begin{array}{l} m(\mathcal{C}) := |\{(u, v) \in E : \mathcal{C}(u) = \mathcal{C}(v)\}|\\ \bar{m}^{c}(\mathcal{C}) := |\{u, v \in V : \mathcal{C}(u) \neq \mathcal{C}(v)\\ & \& (u, v) \notin E\}| \end{array}$$

Problem: in sparse networks
$$\overline{m}^{c}(\mathcal{C})$$
 dominates \Rightarrow fine clusterings

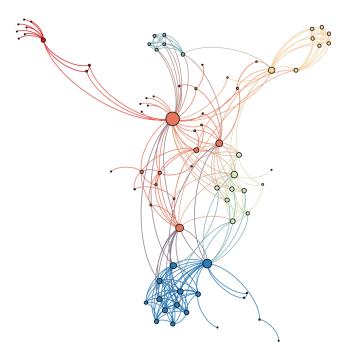
$$\operatorname{cov}(\mathcal{C}) \coloneqq \frac{\omega(\mathcal{C})}{|E|}$$

10

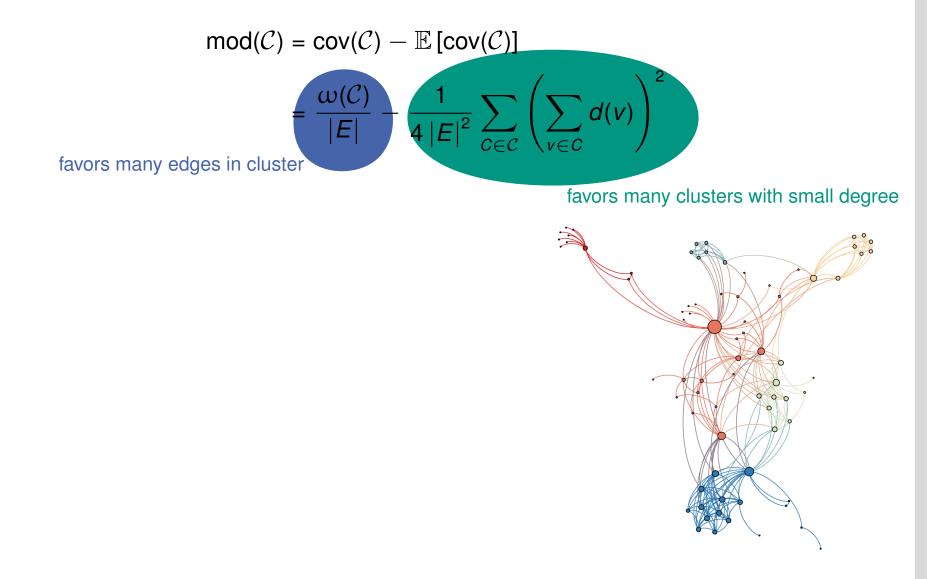
Modularity: cov(·) minus expected coverage of random graph with same clustering

$$\mathsf{mod}(\mathcal{C}) = \mathsf{cov}(\mathcal{C}) - \mathbb{E}\left[\mathsf{cov}(\mathcal{C})\right]$$

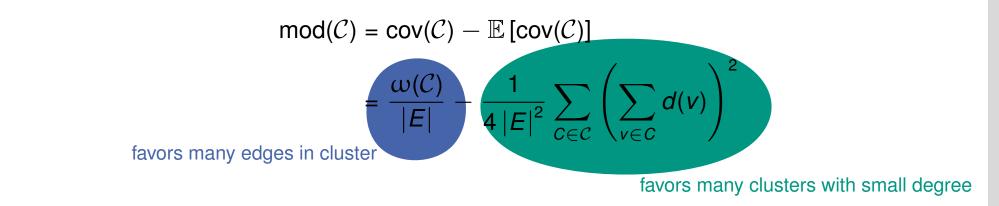
$$= \frac{\omega(\mathcal{C})}{|E|} - \frac{1}{4|E|^2} \sum_{C \in \mathcal{C}} \left(\sum_{v \in C} d(v) \right)^2$$



■ **Modularity:** cov(·) minus expected coverage of random graph with same clustering



Modularity: cov(·) minus expected coverage of random graph with same clustering



- random graph with same degree distribution
- agrees well with intuitive clustering of graph
- Modularity has some **known issues** (resolution limit, ...), some can be circumvented
- most popular clustering metric in network analysis

Ugly: NP-hard, not APX

[Brandes et al. 2006: On Modularity – NP-Completeness and Beyond] [Dinh et al. 2016: Network Clustering via Maximizing Modularity: Approximation Algorithms and Theoretical Limits]

CD – Algorithms

But in practice well-functioning algorithms available:

- parallel label propagation (PLP)
- parallel Louvain method (PLM)
- PLM with refinement (PLMR)

cd = community.detectCommunities(G)

Good: $O(|V| \log |V|)$

CD – Algorithms

But in practice well-functioning algorithms available:

- parallel label propagation (PLP)
- parallel Louvain method (PLM)
- PLM with refinement (PLMR)

cd = community.detectCommunities(G)

Louvain Method: two-phase iterative algorithm

- place each node in their own cluster
- **1.** \lor $\forall v$: calculate $\Delta \mod(\cdot)$ for moving v to any of its neighboring clusters
 - perform most effective move
 - repeat until no more gain possible
- 2. Contract all clusters to one node
 - intra-cluster edges become self loops
 - inter-cluster edges represented by weighted edges

Good: $O(|V| \log |V|)$

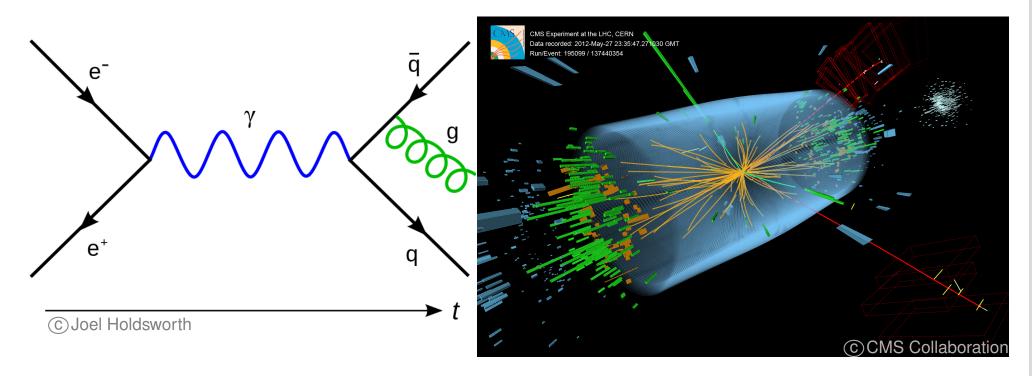
Case Studies in Physics

135 Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms

Case Studies in Physics

Graphs can be applied in varied areas of physics

- graphs to gain theoretical insight: Feynman diagrams
- graphs to model physical problems: particle track reconstruction
- graphs to speed up an algorithms: jet clustering



graph coloring can be applied to Feynman Diagrams to determine the presence of particular Feynman integrals

graph coloring can be applied to Feynman Diagrams to determine the presence of particular Feynman integrals

The ϕ^k theory is compared with the multilinear theory of scalar fields $\phi_1, \phi_2, \ldots, \phi_k$ having the same mass as that of ϕ . In particular, it is shown that Feynman integrals encountered in the ϕ^3 theory are not necessarily present also in the ϕ_1, ϕ_2, ϕ_3 theory, but they are if they correspond to planar Feynman graphs having no tadpole part. Furthermore, a necessary and sufficient condition for the presence of a ϕ^3 Feynman integral in the ϕ_1, ϕ_2^2 theory is found. Those considerations are applications of graph theory, especially of the coloring problem of graphs, to Feynman graphs.

[Nakanishi, Noboru. Quantum field theory and the coloring problem of graphs. Comm. Math. Phys. 32 (1973), no. 2, 167–181.]

graph coloring can be applied to Feynman Diagrams to determine the presence of particular Feynman integrals

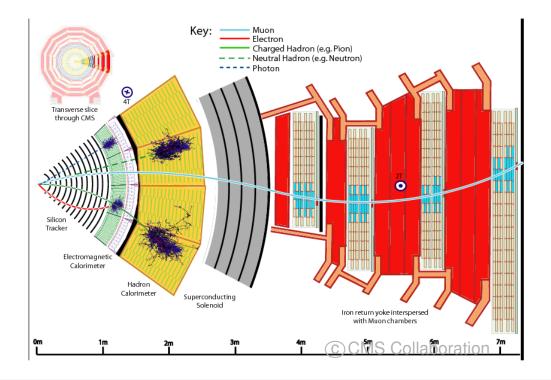
The ϕ^k theory is compared with the multilinear theory of scalar fields $\phi_1, \phi_2, \ldots, \phi_k$ having the same mass as that of ϕ . In particular, it is shown that Feynman integrals encountered in the ϕ^3 theory are not necessarily present also in the ϕ_1, ϕ_2, ϕ_3 the **Beyond physics understanding** in graphs having no tadpole part. Furthermore, a necessary of three computer scientists is found. Those considerations are applications of graph theory, especially of the coloring problem of graphs, to Feynman graphs.

[Nakanishi, Noboru. Quantum field theory and the coloring problem of graphs. Comm. Math. Phys. 32 (1973), no. 2, 167–181.]

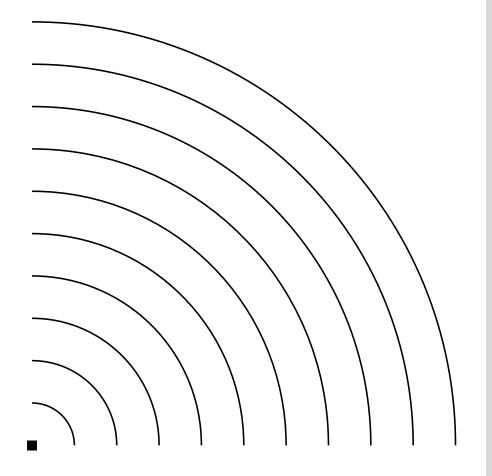
- graph coloring can be applied to Feynman Diagrams to determine the presence of particular Feynman integrals
- further results in condensed matter physics, statistical physics,...

[Estrada, E. (2013): Graph and Network Theory in Physics, ArXiv 1302.4378]

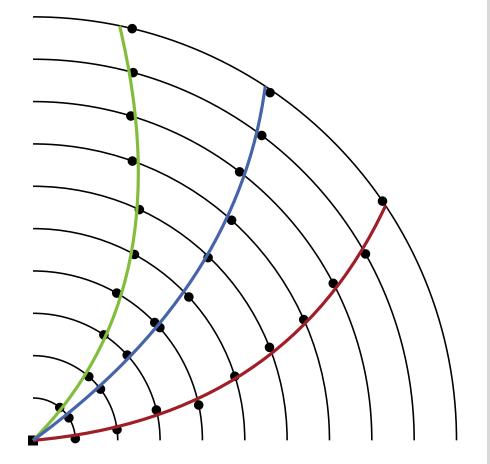
- particles traverse several multi-layer detectors after collision \Rightarrow particularly inner tracker
- energy deposits in detector material are reconstructed as hits
- particle track reconstruction \Rightarrow combinatoral pattern matching problem



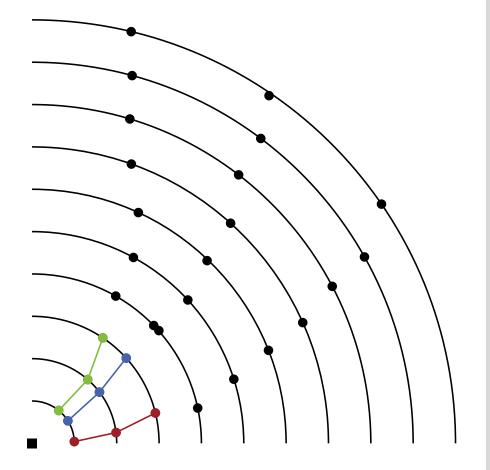
- 1. Seeding
 - Find hit triplets in inner layers
 - Rough track parameters
- 2. Track Finding
 - Extrapolate track outwards
 - Extend track by suitable hits
- 3. Track Fitting
 - Estimate track parameter
 - Inward and outward smoothing



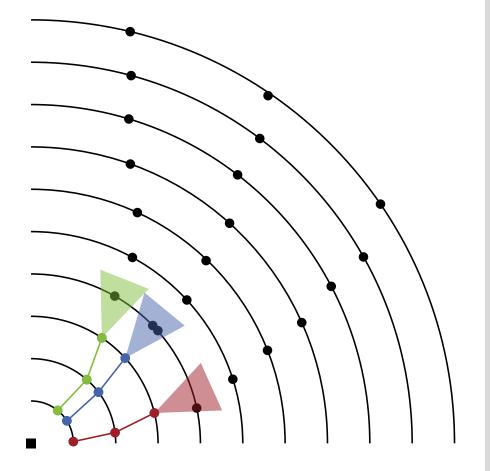
- 1. Seeding
 - Find hit triplets in inner layers
 - Rough track parameters
- 2. Track Finding
 - Extrapolate track outwards
 - Extend track by suitable hits
- 3. Track Fitting
 - Estimate track parameter
 - Inward and outward smoothing



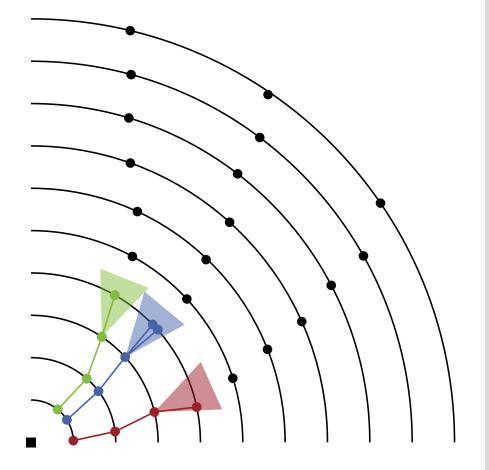
- 1. Seeding
 - Find hit triplets in inner layers
 - Rough track parameters
- 2. Track Finding
 - Extrapolate track outwards
 - Extend track by suitable hits
- 3. Track Fitting
 - Estimate track parameter
 - Inward and outward smoothing



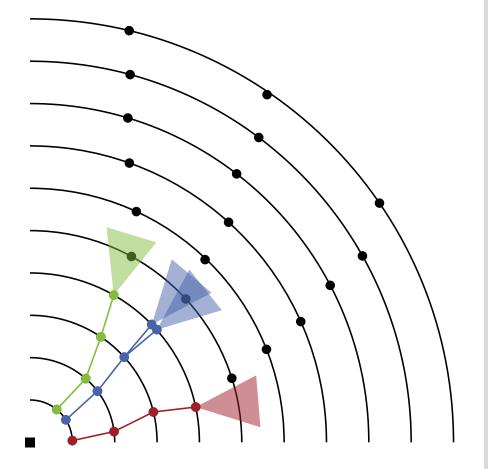
- 1. Seeding
 - Find hit triplets in inner layers
 - Rough track parameters
- 2. Track Finding
 - Extrapolate track outwards
 - Extend track by suitable hits
- 3. Track Fitting
 - Estimate track parameter
 - Inward and outward smoothing



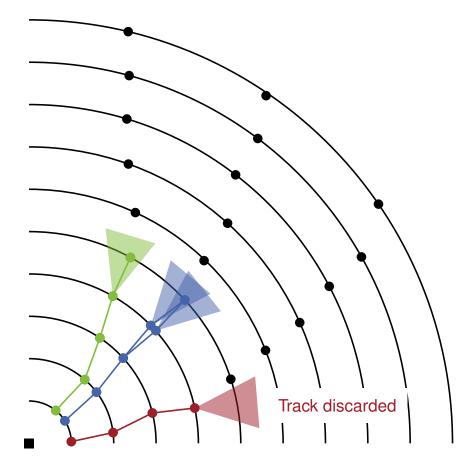
- 1. Seeding
 - Find hit triplets in inner layers
 - Rough track parameters
- 2. Track Finding
 - Extrapolate track outwards
 - Extend track by suitable hits
- 3. Track Fitting
 - Estimate track parameter
 - Inward and outward smoothing



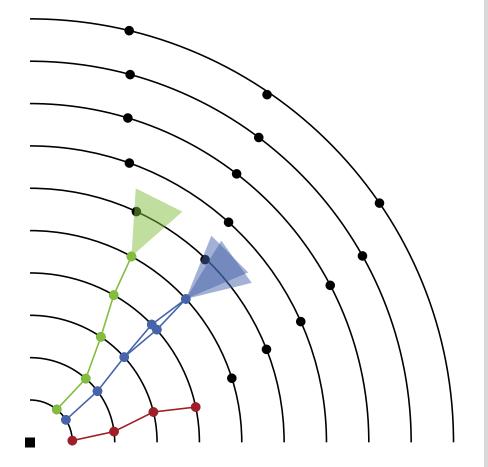
- 1. Seeding
 - Find hit triplets in inner layers
 - Rough track parameters
- 2. Track Finding
 - Extrapolate track outwards
 - Extend track by suitable hits
- 3. Track Fitting
 - Estimate track parameter
 - Inward and outward smoothing



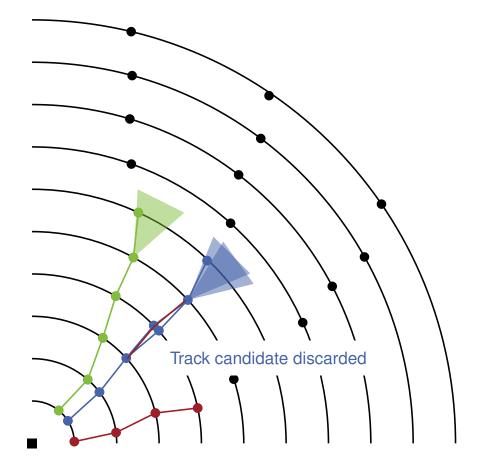
- 1. Seeding
 - Find hit triplets in inner layers
 - Rough track parameters
- 2. Track Finding
 - Extrapolate track outwards
 - Extend track by suitable hits
- 3. Track Fitting
 - Estimate track parameter
 - Inward and outward smoothing



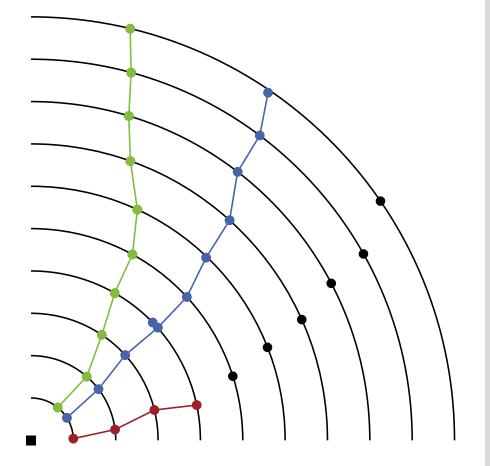
- 1. Seeding
 - Find hit triplets in inner layers
 - Rough track parameters
- 2. Track Finding
 - Extrapolate track outwards
 - Extend track by suitable hits
- 3. Track Fitting
 - Estimate track parameter
 - Inward and outward smoothing



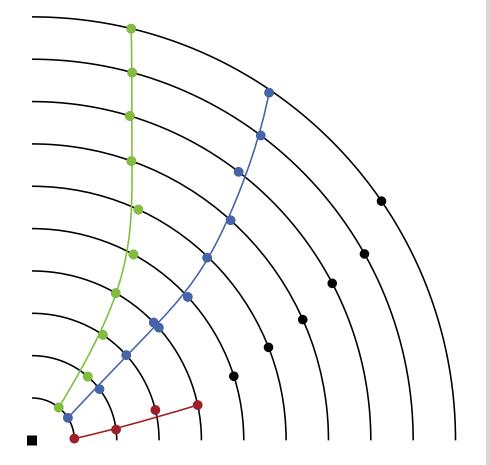
- 1. Seeding
 - Find hit triplets in inner layers
 - Rough track parameters
- 2. Track Finding
 - Extrapolate track outwards
 - Extend track by suitable hits
- 3. Track Fitting
 - Estimate track parameter
 - Inward and outward smoothing



- 1. Seeding
 - Find hit triplets in inner layers
 - Rough track parameters
- 2. Track Finding
 - Extrapolate track outwards
 - Extend track by suitable hits
- 3. Track Fitting
 - Estimate track parameter
 - Inward and outward smoothing

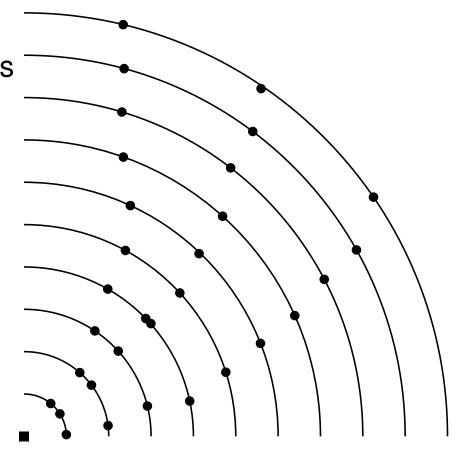


- 1. Seeding
 - Find hit triplets in inner layers
 - Rough track parameters
- 2. Track Finding
 - Extrapolate track outwards
 - Extend track by suitable hits
- 3. Track Fitting
 - Estimate track parameter
 - Inward and outward smoothing



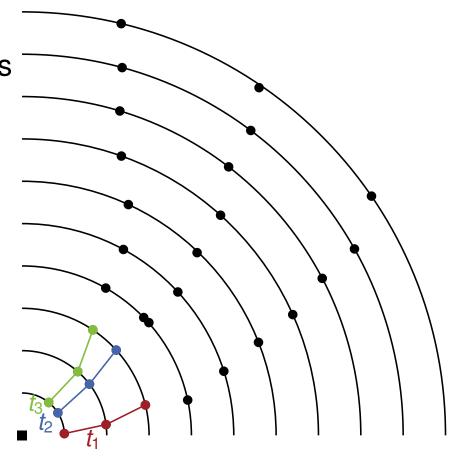
Tracking as graph problem: definition of vertices and edges

G = (V, E, ω)
Find triplets in all layer combinations
V = {v = (h₁, h₂, h₃)}



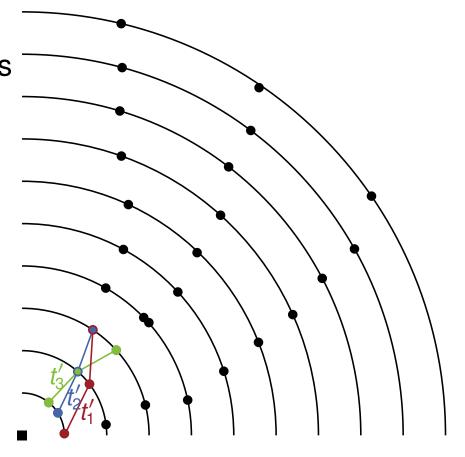
Tracking as graph problem: definition of vertices and edges

G = (V, E, ω)
Find triplets in all layer combinations
V = {v = (h₁, h₂, h₃)}



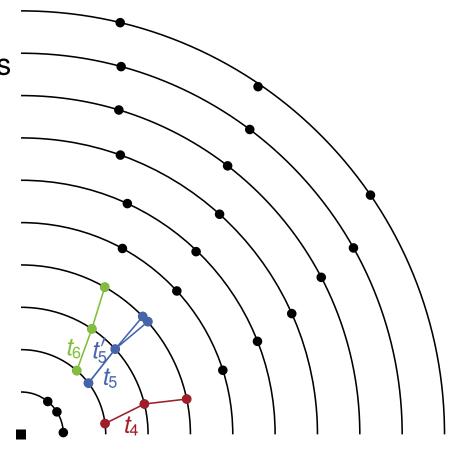
Tracking as graph problem: definition of vertices and edges

G = (V, E, ω)
Find triplets in all layer combinations
V = {v = (h₁, h₂, h₃)}



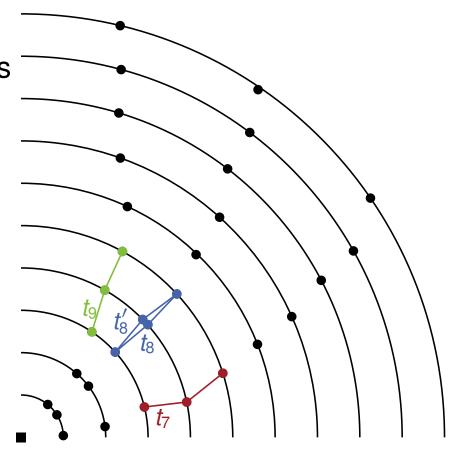
Tracking as graph problem: definition of vertices and edges

 $G = (V, E, \omega)$ Find triplets in all layer combinations $V = \{v = (h_1, h_2, h_3)\}$

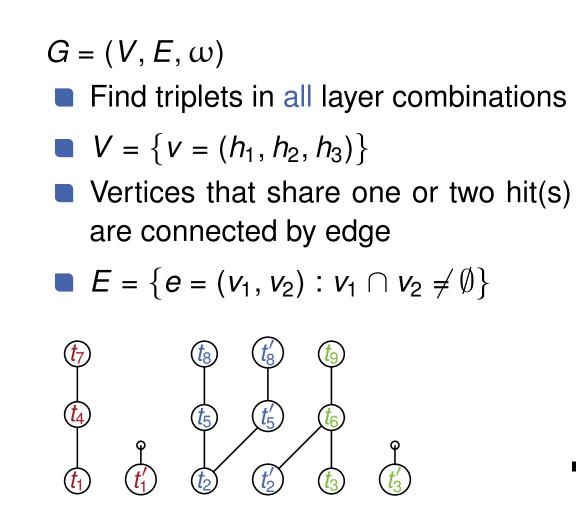


Tracking as graph problem: definition of vertices and edges

 $G = (V, E, \omega)$ Find triplets in all layer combinations $V = \{v = (h_1, h_2, h_3)\}$



Tracking as graph problem: definition of vertices and edges

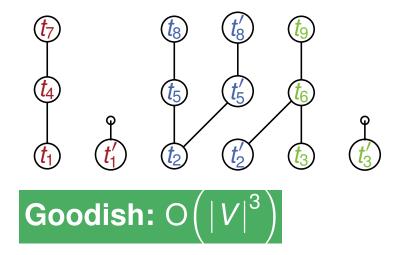


Tracking as graph problem: definition of vertices and edges

 $G=(V,E,\omega)$

• defining $\omega(e)$ is the hard part, e.g.

- angular difference $\Delta \phi$, $\Delta \theta$
- curvature Δc
- χ^2 of circle fit of all four hits
- solve all-pair-shortest-path problem



Tracking as graph problem: definition of vertices and edges

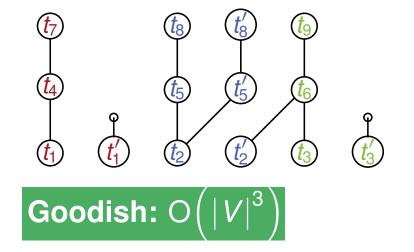
 $G=(V,E,\omega)$

- defining $\omega(e)$ is the hard part, e.g.
 - angular difference $\Delta \phi$, $\Delta \theta$
 - curvature Δc
 - χ^2 of circle fit of all four hits
- solve all-pair-shortest-path problem

Challenge:

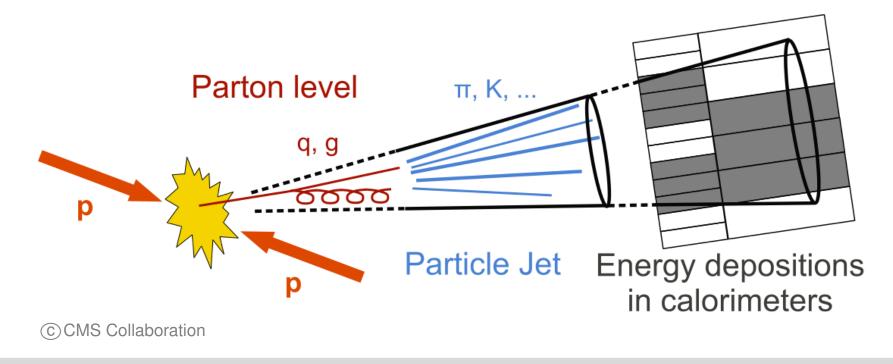
Weight function must ensure that:

- paths corresponding to valid tracks are lighter than others
- otherwise a fake track is reconstructed



Jet Clustering

- **Jets:** collimated spray of hadrons from fragmentation of quark or gluon
- reveal direction and energy original "parton"
- jets are reconstructed from particles found in detector
- various algorithms exist to cluster jets from reconstructed particles
 e.g. k_t algorithm



Input: list of particles \mathbf{P} **Output:** list of jets J 1: while $\mathbf{P} \neq \emptyset$ do \triangleright O(*n*) times $\triangleright O(n^2)$ for $(i, j) \in \mathbf{P} \times \mathbf{P}$ do 2: $d_{i,j} = \min(k_{t,j}^2, k_{t,j}^2) \cdot \Delta R_{i,j}^2$ 3: for $i \in \mathbf{P}$ do $\triangleright O(n)$ 4: $d_{i,B} = k_{t,i}^2$ 5: $\triangleright O(n^2)$ $d_{\min} = \min(d_{i,i}, d_{i,B})$ 6: if $d_{\min} = d_{i,j}$ then 7: $i = \text{combine}(i, j), \mathbf{P} \setminus \{j\}$ \triangleright merge *i* and *j*, delete *j* 8: else 9: $\mathbf{J} \cup i, \mathbf{P} \setminus \{i\}$ \triangleright finalize jet *i* 10:

Input: list of particles **P Output:** list of jets J 1: while $\mathbf{P} \neq \emptyset$ do for $(i, j) \in \mathbf{P} \times \mathbf{P}$ do 2: $d_{i,j} = \min(k_{t,i}^2, k_{t,j}^2) \cdot \Delta R_{i,j}^2$ $k_{t,i}$: transverse momentum 3: for $i \in \mathbf{P}$ do 4: $d_{i,B} = k_{t,i}^2$ 5: $d_{\min} = \min(d_{i,i}, d_{i,B})$ 6: if $d_{\min} = d_{i,j}$ then 7: $i = \text{combine}(i, j), \mathbf{P} \setminus \{j\}$ 8: else 9: $\mathbf{J} \cup i, \mathbf{P} \setminus \{i\}$ 10:

$$\Delta R_{i,j}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$$

• ϕ_i : azimuth

Input: list of particles **P Output:** list of jets J 1: while $\mathbf{P} \neq \emptyset$ do \triangleright O(*n*) times $\triangleright O(n^2)$ for $(i, j) \in \mathbf{P} \times \mathbf{P}$ do 2: $d_{i,j} = \min(k_{t,j}^2, k_{t,j}^2) \cdot \Delta R_{i,j}^2$ 3: for $i \in \mathbf{P}$ do $\triangleright O(n)$ 4: $d_{i,B} = k_{t,i}^2$ 5: $\triangleright O(n^2)$ $d_{\min} = \min(d_{i,j}, d_{i,B})$ 6:

Goodish: $O(|\mathbf{P}|^3)$

prohibitive for high multiplicities

Improving the $O(n^3)$ runtime:

Lemma:

If *i*, *j* have the smallest $d_{i,j}$ and $k_{t,i} < k_{t,j}$, then $R_{i,j} < R_{i,l}$ for all $l \neq j$.

For minimum $d_{i,j}$: *i* and *j* geometrically nearest-neighbors on (η, ϕ) -plane

[Cacciari M. and Salam, G.P., *Dispelling the* N^3 *myth for the* k_t *jet-finder*]

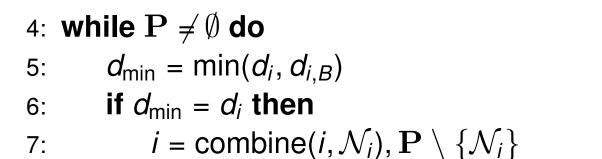
144 Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms

1: for $i \in \mathbf{P}$ do $\mathcal{N}_i = \text{findNearestNeighbor}(i)$ 2: $\triangleright O(n)$ $d_i = \min(k_{t,i}^2, k_{t,N_i}^2) \cdot \Delta R_{i,N_i}^2, \ d_{i,B} = k_{t,i}^2$ 3: 4: while $\mathbf{P} \neq \emptyset$ do \triangleright O(*n*) times $d_{\min} = \min(d_i, d_{i,B})$ $\triangleright O(n)$ 5: if $d_{\min} = d_i$ then 6: $i = \text{combine}(i, \mathcal{N}_i), \mathbf{P} \setminus \{\mathcal{N}_i\}$ \triangleright merge *i* and \mathcal{N}_i , delete \mathcal{N}_i 7: else 8: $\mathbf{J} \cup i, \mathbf{P} \setminus \{i\}$ \triangleright finalize jet *i* 9: for particles *j* with $N_i = i$ do \triangleright O(1) many 10: $\mathcal{N}_i = \text{findNearestNeighbor}(j)$ 11: for $i \in \mathbf{P}$ do 12: $\mathcal{N}_i = updateNearestNeighbor(i, i)$ 13: $\triangleright O(1)$

2: $\mathcal{N}_i = \text{findNearestNeighbor}(i)$ 3: $d_i = \min(k_{t,i}^2, k_{t,\mathcal{N}_i}^2) \cdot \Delta R_{i,\mathcal{N}_i}^2, \ d_{i,B} = k_{t,i}^2$

Jet Clustering

1: for $i \in \mathbf{P}$ do



 \triangleright merge *i* and \mathcal{N}_i , delete \mathcal{N}_i

8: **else**

.

13:

Goodish: $O(|\mathbf{P}|^2)$

- but we can do better!

$$\mathcal{N}_j = updateNearestNeighbor(j, i)$$

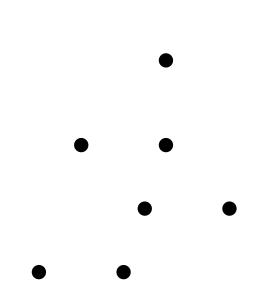
 $\triangleright O(n)$

 $\triangleright O(n)$

 $\triangleright O(1)$

 \triangleright O(*n*) times

Enter geometric graphs. Given a point set ${\bf P}$ in \mathbb{R}^2

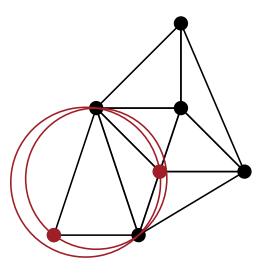


Enter geometric graphs. Given a point set \mathbf{P} in \mathbb{R}^2 A triangulation $T(\mathbf{P})$ is the subdivision of the convex hull of \mathbf{P} into triangles such that

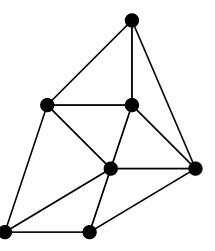
- **The vertices of** $T(\mathbf{P})$ **coincide with** \mathbf{P}
- any two triangles of T(P) intersect in a common edge or not at all



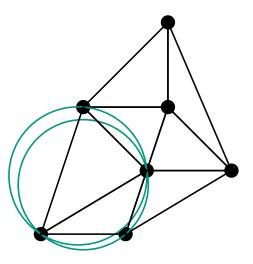
Enter geometric graphs. Given a point set \mathbf{P} in \mathbb{R}^2 A Delaunay triangulation $DT(\mathbf{P})$ is a triangulation such that no point of \mathbf{P} is inside the circumcircle of any simplex of $DT(\mathbf{P})$.



Enter geometric graphs. Given a point set \mathbf{P} in \mathbb{R}^2 A Delaunay triangulation $DT(\mathbf{P})$ is a triangulation such that no point of \mathbf{P} is inside the circumcircle of any simplex of $DT(\mathbf{P})$.

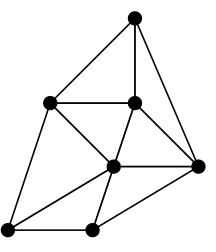


Enter geometric graphs. Given a point set \mathbf{P} in \mathbb{R}^2 A Delaunay triangulation $DT(\mathbf{P})$ is a triangulation such that no point of \mathbf{P} is inside the circumcircle of any simplex of $DT(\mathbf{P})$.



Enter geometric graphs. Given a point set \mathbf{P} in \mathbb{R}^2 A Delaunay triangulation $DT(\mathbf{P})$ is a triangulation such that no point of \mathbf{P} is inside the circumcircle of any simplex of $DT(\mathbf{P})$.

- nearest-neighbor graph of \mathbf{P} is a subgraph of $DT(\mathbf{P})$
- **D** $T(\mathbf{P})$ can be constructed in $O(n \log n)$
- **D** $T(\mathbf{P})$ can be updated in $O(\log n)$



1: construct $DT(\mathbf{P})$ $\triangleright O(n \log n)$ 2: for $i \in \mathbf{P}$ do $d_i = \min(k_{t,i}^2, k_{t,N_i}^2) \cdot \Delta R_{i,N_i}^2, \ d_{i,B} = k_{t,i}^2$ ⊳ O(1) 3: 4: construct binary binary trees T_{d_i} , $T_{d_{iB}}$ $\triangleright O(n \log n)$ 5: while $\mathbf{P} \neq \emptyset$ do \triangleright O(*n*) times $d_{\min} = \min(d_i, d_{i,B})$ $\triangleright O(\log n)$ 6: if $d_{\min} = d_i$ then 7: $i = \text{combine}(i, \mathcal{N}_i), \mathbf{P} \setminus \{\mathcal{N}_i\}$ \triangleright merge *i* and \mathcal{N}_i , delete \mathcal{N}_i 8: else 9: $\mathbf{J} \cup i, \mathbf{P} \setminus \{i\}$ \triangleright finalize jet *i* 10: update $DT(\mathbf{P})$ $\triangleright O(\log n)$ 11: update $T_{d_i}, T_{d_{iB}}$ $\triangleright O(\log n)$ 12:

1: construct $DT(\mathbf{P})$ $\triangleright O(n \log n)$ 2: for $i \in \mathbf{P}$ do $d_i = \min(k_{t,i}^2, k_{t,N_i}^2) \cdot \Delta R_{i,N_i}^2, \ d_{i,B} = k_{t,i}^2$ 3: 4: construct binary binary trees T_{d_i} , $T_{d_{iB}}$ $\triangleright O(n \log n)$ 5: while $\mathbf{P} \neq \emptyset$ do \triangleright O(*n*) times $d_{\min} = \min(d_i, d_{i,B})$ $\triangleright O(\log n)$ 6: 7: **if** $d_{\min} = d_i$ **then** $i = \text{combine}(i, \mathcal{N}_i), \mathbf{P} \setminus \{\mathcal{N}_i\}$ \triangleright merge *i* and \mathcal{N}_i , delete \mathcal{N}_i 8:

Good: $O(|\mathbf{P}| \log |\mathbf{P}|)$

⊳ O(1)

Tutorial

Credits

The slides of this course are partially based on the following lectures/talks:

- P. Sanders Algorithmen I
- P. Sanders Algorithmen II
- P. Sanders, R. van Stee Approximations- und Online-Algorithmen
- C. Schulz Graphpartitionierung und Graphenclustern in Theorie und Praxis
- H. Meyerhenke Algorithmische Methoden zur Netzwerkanalyse
- Henning Meyerhenke NetworKit: A Parallel Interactive Tool Suite for Analyzing Massive Networks
- H. Meyerhenke Network Analysis with NetworKit: Interactive, Feature-rich, Fast
- S. Schlag k-way Hypergraph Partitioning via n-Level Recursive Bisection
- D. Funke Parallel Triplet Finding for Particle Track Reconstruction