Fundamental Graph Algorithms

KSETA • March 9, 2020

Demian Hespe, Tobias Heuer and Sebastian Lamm

Institute of Theoretical Informatics • Algorithmics Group

Outline

- Foundations

1. Session

- Complexity Theory
- Graph Notation/Properties
- Graph Representation
- Graph Exploration
- The Good, Bad \& Ugly
- Network Analysis
- Case Studies in Physics
- Network Analysis Tutorial

2. Session
3. Session
4. Session

The Good, Bad \& Ugly

The Good

- Shortest Paths
- Minimum Spanning Trees
- Maximum Flows
- Maximum Matchings

The Bad \& Ugly

- Coloring
- Traveling Salesman
- Independent Sets
- (Hyper-)graph Partitioning

The Good, Bad \& Ugly

The Good

- Shortest Paths
- Minimum Spanning Trees
- Maximum Flows
- Maximum Matchings

The Bad \& Ugly

- Coloring
- Traveling Salesman
- Independent Sets
- (Hyper-)graph Partitioning
slides available at:
http://algo2.iti.kit.edu/documents/graph_theory.pdf

Algorithm Engineering

Algorithm Engineering

(Caricatured) Traditional View: Algorithm Theory

Karlsruhe Institute of Technology

Gaps Between Theory \& Practice

Theory		\longleftrightarrow		Practice
simple	曲	appl. model		complex
simple	\square	machine model	-	real
complex	3	algorithms	FOR	simple
advanced	枡	data structures	U110	arrays,..
worst case	max	complexity measure		inputs
asympt.	$\mathrm{O}(\cdot)$	efficiency	42\%	ant factors

Algorithmics as Algorithm Engineering

Algorithm Engineering \leftrightarrow Algorithm Theory

Conclusion:

- algorithm engineering is a wider view on algorithmics (but no revolution. None of the ingredients is really new)
- rich methodology
- better coupling to applications
- experimental algorithmics \ll algorithm engineering
- algorithm theory \subset algorithm engineering
- sometimes different theoretical questions
- algorithm theory may still yield the strongest, deepest and most persistent results within algorithm engineering

Theoretical Foundations

Algorithm Characterization

An algorithm can be characterized by:

- runtime behaviour
- (main) memory consumption
- I/O operations (e.g. hard drive)
- number and size of messages sent/received over network

Algorithm Characterization

Given input \mathcal{I}, we assume the runtime depends only on the size $|\mathcal{I}|=: n$

$$
T(n):=\ldots
$$

Algorithm Characterization

Given input \mathcal{I}, we assume the runtime depends only on the size $|\mathcal{I}|=: n$

$$
T(n):=\ldots
$$

Examples

$$
\begin{aligned}
& m \leftarrow \frac{1}{2}\left(\mathcal{I}_{0}+\mathcal{I}_{n-1}\right) \\
& \text { return } m
\end{aligned}
$$

- $T(n)=3$
- Output: undef.

Algorithm Characterization

Given input \mathcal{I}, we assume the runtime depends only on the size $|\mathcal{I}|=: n$

$$
T(n):=\ldots
$$

Examples

Require: \mathcal{I} sorted
$m \leftarrow \frac{1}{2}\left(\mathcal{I}_{0}+\mathcal{I}_{n-1}\right)$
return m

- $T(n)=3$
- Output: $\operatorname{avg}(\mathcal{I})$

Algorithm Characterization

Given input \mathcal{I}, we assume the runtime depends only on the size $|\mathcal{I}|=: n$

$$
T(n):=\ldots
$$

Examples

Require: \mathcal{I} sorted
$m \leftarrow \frac{1}{2}\left(\mathcal{I}_{0}+\mathcal{I}_{n-1}\right)$ return m

- $T(n)=3$
- Output: $\operatorname{avg}(\mathcal{I})$
$a \leftarrow \infty, b \leftarrow 0$
for $i \in \mathcal{I}$ do
if $i<a$ then $a \leftarrow i$
if $i>b$ then $b \leftarrow i$
$m \leftarrow \frac{a+b}{2}$
return m
- $T(n)=2 n+2$
- Output: $\operatorname{avg}(\mathcal{I})$

Algorithm Characterization

Given input \mathcal{I}, we assume the runtime depends only on the size $|\mathcal{I}|=: n$

$$
T(n):=\ldots
$$

Examples

Require: \mathcal{I} sorted
$m \leftarrow \frac{1}{2}\left(\mathcal{I}_{0}+\mathcal{I}_{n-1}\right)$ return m

- $T(n)=3$
- Output: $\operatorname{avg}(\mathcal{I})$

$$
\begin{aligned}
& \text { for } i \in[0,|\mathcal{I}|-1) \text { do } \\
& \quad \text { for } j \in[0,|\mathcal{I}|-i-1) \text { do } \\
& \quad \text { if } \mathcal{I}_{j}>\mathcal{I}_{j+1} \text { then } \\
& \quad \operatorname{swap}\left(\mathcal{I}_{j}, \mathcal{I}_{j+1}\right) \\
& m \leftarrow \frac{1}{2}\left(\mathcal{I}_{0}+\mathcal{I}_{n-1}\right) \\
& \text { return } m
\end{aligned}
$$

- $T(n)=3 n^{2}+3$
- Output: $\operatorname{avg}(\mathcal{I})$
- Side effect: sorted \mathcal{I}

Algorithm Characterization

Given input \mathcal{I}, we assume the runtime depends only on the size $|\mathcal{I}|=: n$

$$
T(n):=\ldots
$$

Examples

Require: \mathcal{I} sorted
$m \leftarrow \frac{1}{2}\left(\mathcal{I}_{0}+\mathcal{I}_{n-1}\right)$ return m

- $T(n)=3$
- Output: $\operatorname{avg}(\mathcal{I})$

$$
\begin{aligned}
& \text { for } i \in[0,|\mathcal{I}|-1) \text { do } \\
& \quad \text { for } j \in[0,|\mathcal{I}|-i-1) \text { do } \\
& \quad \text { if } \mathcal{I}_{j}>\mathcal{I}_{j+1} \text { then } \\
& \quad \operatorname{swap}\left(\mathcal{I}_{j}, \mathcal{I}_{j+1}\right) \\
& m \leftarrow \mathcal{I}_{n-1} \\
& \text { for } i \in \mathcal{I} \text { do } \\
& \quad \mathcal{I}_{i} \leftarrow \frac{\mathcal{I}_{i}}{m}
\end{aligned}
$$

- $T(n)=3 n^{2}+2 n+1$

Side effect: norm., sort. \mathcal{I}

Bachmann-Landau Notation

Consider $T(n)=3 n^{2}+2 n+1$:

- counting constant factors is tidious and can be architecture-dependant
- n^{2} term clearly dominates lower order terms for sufficiently large n

Bachmann-Landau Notation

Consider $T(n)=3 n^{2}+2 n+1$:

- counting constant factors is tidious and can be architecture-dependant
- n^{2} term clearly dominates lower order terms for sufficiently large n

Enter Big-O notation

For upper bounds: $f(n) \in \mathrm{O}(g(n))$

- $|f|$ is bounded above by g asymptotically (up to a constant factor)
- " $g(n)$ grows at least as fast as $f(n)$ "
- Formally,

$$
\exists k>0: \exists n_{0}: \forall n>n_{0}:|f(n)| \leq k \cdot g(n)
$$

Bachmann-Landau Notation

Given $T(n)$:

Bachmann-Landau Notation

Given $T(n)$:

- $T(n) \notin \mathrm{O}(n)$

Bachmann-Landau Notation

Given $T(n)$:

- $T(n) \notin \mathrm{O}(n)$
- $T(n) \in O\left(n^{2}\right)$

Bachmann-Landau Notation

Given $T(n)$:

- $T(n) \notin \mathrm{O}(n)$
- $T(n) \in O\left(n^{2}\right)$
- $T(n) \in O\left(n^{3}\right)$

Bachmann-Landau Notation

Given $T(n)$:

- $T(n) \notin \mathrm{O}(n)$
- $T(n) \in O\left(n^{2}\right)$
- $T(n) \in O\left(n^{3}\right)$

Tight bounds are preferred

Bachmann-Landau Notation

For lower bounds: $f(n) \in \Omega(g(n))$

- $|f|$ is bounded below by g asymptotically (up to a constant factor)
- " $g(n)$ grows at most as fast as $f(n)$ "
- Formally,

$$
\exists k>0: \exists n_{0}: \forall n>n_{0}: f(n) \geq k \cdot g(n)
$$

Bachmann-Landau Notation

Given $T(n)$:

Bachmann-Landau Notation

Given $T(n)$:

- $T(n) \in \Omega(n)$

Bachmann-Landau Notation

Given $T(n)$:

- $T(n) \in \Omega(n)$
- $T(n) \in \Omega\left(n^{2}\right)$

Bachmann-Landau Notation

Given $T(n)$:

- $T(n) \in \Omega(n)$
- $T(n) \in \Omega\left(n^{2}\right)$
- $T(n) \notin \Omega\left(n^{3}\right)$

Bachmann-Landau Notation

Given $T(n)$:

- $T(n) \in \Omega(n)$
- $T(n) \in \Omega\left(n^{2}\right)$
- $T(n) \notin \Omega\left(n^{3}\right)$

Tight bounds are preferred

Bachmann-Landau Notation

For tight bounds: $f(n) \in \Theta(g(n))$

- $|f|$ is bounded both above and below by g asymptotically
- " $g(n)$ grows at as fast as $f(n)$ "
- Formally,

$$
\exists k_{1}, k_{2}>0: \exists n_{0}: \forall n>n_{0}: k_{1} \cdot g(n) \leq f(n) \geq k_{2} \cdot g(n)
$$

- $f(n) \in O(g(n)) \& f(n) \in \Omega(g(n)) \Leftrightarrow f(n) \in \Theta(g(n))$

Algorithm Characterization

Given input \mathcal{I}, we assume the runtime depends only on the size $|\mathcal{I}|=: n$

```
sorted \(\leftarrow\) true,\(i \leftarrow 0\)
while \(i<|\mathcal{I}|-1 \&\) sorted do
    if \(\mathcal{I}_{i}>\mathcal{I}_{i+1}\) then
        sorted \(\leftarrow\) false
    inc(i)
if \(\neg\) sorted then
    for \(i \in[0,|\mathcal{I}|-1)\) do
        for \(j \in[0,|\mathcal{I}|-i-1)\) do
        if \(\mathcal{I}_{j}>\mathcal{I}_{j+1}\) then
            \(\operatorname{swap}\left(\mathcal{I}_{j}, \mathcal{I}_{j+1}\right)\)
```


Algorithm Characterization

Given input \mathcal{I}, we assume the runtime depends only on the size $|\mathcal{I}|=: n$

```
sorted \(\leftarrow\) true,\(i \leftarrow 0\)
while \(i<|\mathcal{I}|-1 \&\) sorted do
    if \(\mathcal{I}_{i}>\mathcal{I}_{i+1}\) then
        sorted \(\leftarrow\) false
    inc(i)
if \(\neg\) sorted then
    for \(i \in[0,|\mathcal{I}|-1)\) do
        for \(j \in[0,|\mathcal{I}|-i-1)\) do
        if \(\mathcal{I}_{j}>\mathcal{I}_{j+1}\) then
            \(\operatorname{swap}\left(\mathcal{I}_{j}, \mathcal{I}_{j+1}\right)\)
```


Algorithm Characterization

Given input \mathcal{I}, we assume the runtime depends only on the size $|\mathcal{I}|=: n$

```
sorted \(\leftarrow\) true, \(i \leftarrow 0\)
while \(i<|\mathcal{I}|-1 \&\) sorted do
    if \(\mathcal{I}_{i}>\mathcal{I}_{i+1}\) then
        sorted \(\leftarrow\) false
    inc(i)
if \(\neg\) sorted then
    for \(i \in[0,|\mathcal{I}|-1)\) do
        for \(j \in[0,|\mathcal{I}|-i-1)\) do
        if \(\mathcal{I}_{j}>\mathcal{I}_{j+1}\) then
            \(\operatorname{swap}\left(\mathcal{I}_{j}, \mathcal{I}_{j+1}\right)\)
```

- sorted input:

$$
\begin{aligned}
\mathcal{I}_{\text {sorted }} & =\{1,2,3,4,5,6\} \\
T(n) & =2 n+2 \in O(n)
\end{aligned}
$$

- descending input:

$$
\begin{aligned}
\mathcal{I}_{\text {desc }} & =\{6,5,4,3,2,1\} \\
T(n) & =3 n^{2}+5 \in \mathrm{O}\left(n^{2}\right)
\end{aligned}
$$

Algorithm Characterization

Given input \mathcal{I}, we assume the runtime depends only on the size $|\mathcal{I}|=: n$

```
sorted }\leftarrow\mathrm{ true, }i\leftarrow
while i< |\mathcal{I}|-1& sorted do
    if }\mp@subsup{\mathcal{I}}{i}{}>\mp@subsup{\mathcal{I}}{i+1}{}\mathrm{ then
        sorted }\leftarrow\mathrm{ false
    inc(i)
if }\neg\mathrm{ sorted then
    for i\in[0, |\mathcal{I}-1) do
        for j\in[0, |\mathcal{I}-i-1) do
        if }\mp@subsup{\mathcal{I}}{j}{}>\mp@subsup{\mathcal{I}}{j+1}{}\mathrm{ then
                swap(\mp@subsup{\mathcal{I}}{j}{},\mp@subsup{\mathcal{I}}{j+1}{})
```

- sorted input:

$$
\begin{aligned}
\mathcal{I}_{\text {sorted }} & =\{1,2,3,4,5,6\} \\
T(n) & =2 n+2 \in O(n)
\end{aligned}
$$

- descending input:

$$
\begin{aligned}
\mathcal{I}_{\text {desc }} & =\{6,5,4,3,2,1\} \\
T(n) & =3 n^{2}+5 \in \mathrm{O}\left(n^{2}\right)
\end{aligned}
$$

- almost sorted input:

$$
\begin{aligned}
\mathcal{I}_{\text {worst }} & =\{1,2,3,4,6,5\} \\
T(n) & =3 n^{2}+2 n+2 \\
& \in \mathrm{O}\left(n^{2}+n\right) \in \mathrm{O}\left(n^{2}\right)
\end{aligned}
$$

Algorithm Characterization

Given input \mathcal{I}, we assume the runtime depends only on the size $|\mathcal{I}|=: n$
To characterize an algorithm in theory:

- consider the worst case input
- determine tight upper bounds

Algorithm Characterization

Given input \mathcal{I}, we assume the runtime depends only on the size $|\mathcal{I}|=: n$
To characterize an algorithm in theory:

- consider the worst case input
- determine tight upper bounds

To characterize an algorithm in practice:

- consider the instances at hand, often average case inputs
- determine bounds for the expected running time

Problem Characterization

In general we consider algorithms for two kinds of problems:

Problem Characterization

In general we consider algorithms for two kinds of problems:

Decision Problem:

Given an input \mathcal{I}, decide whether it belongs to a well-defined set \mathbb{M}.

Problem Characterization

In general we consider algorithms for two kinds of problems:

Decision Problem:

Given an input \mathcal{I}, decide whether it belongs to a well-defined set \mathbb{M}.

Example: Boolean Satisfiability Problem (SAT)

Given a propositional logic formula
$\phi[\mathbf{X},\{\vee, \wedge, \neg\}]$ with variables $\mathbf{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$,
is there an assigment $\chi: \mathbf{X} \rightarrow\{\text { true, } \mathbf{f a l s e}\}^{n}$ such that ϕ is satisfied?

Problem Characterization

In general we consider algorithms for two kinds of problems:

Decision Problem:

Given an input \mathcal{I}, decide whether it belongs to a well-defined set \mathbb{M}.

Example: Boolean Satisfiability Problem (SAT)

Given a propositional logic formula

$$
\phi[\mathbf{X},\{\vee, \wedge, \neg\}] \text { with variables } \mathbf{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\},
$$

is there an assigment $\chi: \mathbf{X} \rightarrow\{\text { true, false }\}^{n}$ such that ϕ is satisfied?

$$
\phi_{1}:=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
$$

Problem Characterization

In general we consider algorithms for two kinds of problems:

Decision Problem:

Given an input \mathcal{I}, decide whether it belongs to a well-defined set \mathbb{M}.

Example: Boolean Satisfiability Problem (SAT)

Given a propositional logic formula

$$
\phi[\mathbf{X},\{\vee, \wedge, \neg\}] \text { with variables } \mathbf{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\},
$$

is there an assigment $\chi: \mathbf{X} \rightarrow\{\text { true, false }\}^{n}$ such that ϕ is satisfied?

$$
\begin{aligned}
& \phi_{1}:=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \\
& \chi_{1}:=\mathbf{X} \rightarrow \operatorname{true}^{n} \Rightarrow \quad \phi_{1} \rightarrow \text { true }
\end{aligned}
$$

Problem Characterization

In general we consider algorithms for two kinds of problems:

Decision Problem:

Given an input \mathcal{I}, decide whether it belongs to a well-defined set \mathbb{M}.

Example: Boolean Satisfiability Problem (SAT)

Given a propositional logic formula

$$
\phi[\mathbf{X},\{\vee, \wedge, \neg\}] \text { with variables } \mathbf{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\},
$$

is there an assigment $\chi: \mathbf{X} \rightarrow\{\text { true, false }\}^{n}$ such that ϕ is satisfied?

$$
\begin{aligned}
\Phi_{2} & :=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
\end{aligned}
$$

Problem Characterization

In general we consider algorithms for two kinds of problems:

Decision Problem:

Given an input \mathcal{I}, decide whether it belongs to a well-defined set \mathbb{M}.

Example: Boolean Satisfiability Problem (SAT)

Given a propositional logic formula

$$
\phi[\mathbf{X},\{\vee, \wedge, \neg\}] \text { with variables } \mathbf{X}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\},
$$

is there an assigment $\chi: \mathbf{X} \rightarrow\{\text { true, false }\}^{n}$ such that ϕ is satisfied?

$$
\begin{aligned}
\phi_{2} & : \\
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \\
& \left.\Rightarrow x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \\
& \text { e.g. } x_{2}:=\mathbf{X} \rightarrow \text { truetisfiable }^{n}
\end{aligned}
$$

Problem Characterization

In general we consider algorithms for two kinds of problems:

Optimization Problem:

Given a set \mathcal{L} of feasible solutions and cost function $f: \mathcal{L} \rightarrow \mathbb{R}$, find $x^{*} \in \mathcal{L}$ such that

$$
f\left(x^{*}\right) \leq f(x) \quad \forall x \in \mathcal{L} .
$$

Problem Characterization

In general we consider algorithms for two kinds of problems:

Optimization Problem:

Given a set \mathcal{L} of feasible solutions and cost function $f: \mathcal{L} \rightarrow \mathbb{R}$, find $x^{*} \in \mathcal{L}$ such that

$$
f\left(x^{*}\right) \leq f(x) \quad \forall x \in \mathcal{L} .
$$

Example: Max-SAT

Given a propositional logic formula ϕ with variables \mathbf{X}, which assigment χ maximizes the number of satisifed clauses \# (ϕ, χ) ?

Problem Characterization

In general we consider algorithms for two kinds of problems:

Optimization Problem:

Given a set \mathcal{L} of feasible solutions and cost function $f: \mathcal{L} \rightarrow \mathbb{R}$, find $x^{*} \in \mathcal{L}$ such that

$$
f\left(x^{*}\right) \leq f(x) \quad \forall x \in \mathcal{L} .
$$

Example: Max-SAT

Given a propositional logic formula ϕ with variables \mathbf{X}, which assigment χ maximizes the number of satisifed clauses \# (ϕ, χ) ?

$$
\begin{aligned}
\phi & : \\
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right)
\end{aligned}
$$

Problem Characterization

In general we consider algorithms for two kinds of problems:

Optimization Problem:

Given a set \mathcal{L} of feasible solutions and cost function $f: \mathcal{L} \rightarrow \mathbb{R}$, find $x^{*} \in \mathcal{L}$ such that

$$
f\left(x^{*}\right) \leq f(x) \quad \forall x \in \mathcal{L} .
$$

Example: Max-SAT

Given a propositional logic formula ϕ with variables \mathbf{X}, which assigment χ maximizes the number of satisifed clauses \# (ϕ, χ) ?

$$
\begin{aligned}
\phi & : \\
& \left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \\
& \left.\chi_{t}: \mathbf{X} \rightarrow x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \\
& \Rightarrow \quad \#\left(\phi, x_{t}\right)=7
\end{aligned}
$$

Problem Characterization

In general we consider algorithms for two kinds of problems:

Optimization Problem:

Given a set \mathcal{L} of feasible solutions and cost function $f: \mathcal{L} \rightarrow \mathbb{R}$, find $x^{*} \in \mathcal{L}$ such that

$$
f\left(x^{*}\right) \leq f(x) \quad \forall x \in \mathcal{L} .
$$

Example: Max-SAT

Given a propositional logic formula ϕ with variables \mathbf{X}, which assigment χ maximizes the number of satisifed clauses \# (ϕ, χ) ?

$$
\begin{aligned}
\phi & :=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \\
& \chi_{f}: \mathbf{X} \rightarrow \text { false }^{n} \Rightarrow \quad \#\left(\phi, \chi_{f}\right)=7
\end{aligned}
$$

Problem Characterization

In general we consider algorithms for two kinds of problems:

Optimization Problem:

Given a set \mathcal{L} of feasible solutions and cost function $f: \mathcal{L} \rightarrow \mathbb{R}$, find $x^{*} \in \mathcal{L}$ such that

$$
f\left(x^{*}\right) \leq f(x) \quad \forall x \in \mathcal{L} .
$$

Example: Max-SAT

Given a propositional logic formula ϕ with variables \mathbf{X}, which assigment χ maximizes the number of satisifed clauses \# (ϕ, χ) ?

$$
\begin{aligned}
\phi & :=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{3}\right) \\
& \chi_{m}: \mathbf{X} \rightarrow\{\text { true, false, false }\} \Rightarrow \#\left(\phi, \chi_{m}\right)=7
\end{aligned}
$$

Problem Characterization

In general we consider algorithms for two kinds of problems:

1. Optimization Problem: asks for the minimum cost solution $x^{*} \in \mathcal{L}$
2. Optimal Value Problem: asks for minimal cost function value $f(\cdot)$
3. Decision Problem: given a parameter $k \in \mathbb{R}$, asks $\exists x \in \mathcal{L}$ with $f(x) \leq k$?

Problem Characterization

In general we consider algorithms for two kinds of problems:

Complexity Classes

Complexity classes group problems of similar characteristics

- algorithm characeterized by its upper bound
- problem characterized by its lower bound, i.e.
no possible algorithm can solve the problem faster than $T(n)$
- for many interesting problems lower bounds still unkown

$$
\mathbf{P} \subset \mathbf{N P} \quad ? \quad \mathbf{P}=\mathbf{N P}
$$

Complexity Classes

Complexity classes group problems of similar characteristics

(C)S. Raskhodnikova

The Good - The Bad

Complexity Class P:

Problems decidable by a deterministic machine in polynomial time

$$
T(n) \in \mathrm{O}\left(n^{d}\right) \quad \text { for constant } d .
$$

The Good - The Bad

Complexity Class P:

Problems decidable by a deterministic machine in polynomial time

$$
T(n) \in \mathrm{O}\left(n^{d}\right) \quad \text { for constant } d .
$$

Examples:

- Circuit Value Problem (CVP)
- Linear programming
- Primality testing

The Good - The Bad

Complexity Class P:

Problems decidable by a deterministic machine in polynomial time

$$
T(n) \in \mathrm{O}\left(n^{d}\right) \quad \text { for constant } d .
$$

Remarks:

- polynomial time algorithms are considered efficient
- in practice, algorithms $\in O\left(n^{2}\right)$ infeasible for large inputs
- algorithms $\in \mathrm{O}(n \log n)$ desirable

The Good - The Bad

Complexity Class P:

Problems decidable by a deterministic machine in polynomial time

$$
T(n) \in \mathrm{O}\left(n^{d}\right) \quad \text { for constant } d .
$$

Complexity Class NP:

Problems decidable by a non-deterministic machine in polynomial time.
or
Set of decison problems with efficiently verifiable-proof for "yes" instances.

The Good - The Bad

Complexity Class P:

Problems decidable by a deterministic machine in polynomial time

$$
T(n) \in \mathrm{O}\left(n^{d}\right) \quad \text { for constant } d .
$$

Complexity Class NP:

Problems decidable by a non-deterministic machine in polynomial time.
or
Set of decison problems with efficiently verifiable-proof for "yes" instances.
Examples

- Boolean Satisfiability Problem (SAT)
- Knapsack Problem
- Subset sum problem

The Good - The Bad

NP-complete:

Problem L is NP-complete iff

1. $L \in \mathbf{N P}$
2. L is NP-hard:
every problem $G \in \mathbf{N P}$ can be reduced in polynomial time to L \Leftrightarrow NP-complete problem G can be reduced in polynomial time to L.

The Good - The Bad

NP-complete:

Problem L is NP-complete iff

1. $L \in \mathbf{N P}$
2. L is NP-hard:
every problem $G \in \mathbf{N P}$ can be reduced in polynomial time to L \Leftrightarrow NP-complete problem G can be reduced in polynomial time to L.

The Bad

Many interesting optimization problems are NP-hard

Approximation algorithms:

Instead of exact solution x^{*}, compute approximate solution \tilde{x} in polynomial time with provable goodness guarantee $f(n)$

$$
\frac{\tilde{x}}{x^{*}} \leq f(n) .
$$

The Bad

Complexity Class APX:

Problems approximable to a constant factor c in polynomial time,

$$
f(n)=c .
$$

The Bad

Complexity Class APX:

Problems approximable to a constant factor c in polynomial time,

$$
f(n)=c .
$$

Complexity Class PTAS:
Problems approximable to any factor $1+\epsilon$

$$
f(n)=1+\epsilon \quad \forall \epsilon>0,
$$

with runtime polynomial in n but possibly exponential in $\frac{1}{\epsilon}$.

The Bad

Complexity Class APX:

Problems approximable to a constant factor c in polynomial time,

$$
f(n)=c .
$$

Complexity Class PTAS:

Problems approximable to any factor $1+\epsilon$

$$
f(n)=1+\epsilon \quad \forall \epsilon>0,
$$

with runtime polynomial in n but possibly exponential in $\frac{1}{\epsilon}$.
Complexity Class FPTAS:
PTAS with runtime polynomial in n and $\frac{1}{\epsilon}$.

The Bad

Many interesting optimization problems are NP-hard

Approximation algorithms:

 Instead of exact solution x^{*}, compute approximate solution \tilde{x} in polynomial time with provable goodness guarantee $f(n)$$$
\frac{\tilde{x}}{x^{*}} \leq f(n) .
$$

$$
\begin{aligned}
& \text { FPTAS } \\
& \text { Makespan scheduling } \\
& \text { C } \\
& \text { APX } \\
& \text { Bin packing }
\end{aligned}
$$

The Ugly

Some problems cannot be approximated efficiently

The Ugly

Some problems cannot be approximated efficiently
Example: Minimum Set Cover
Given a universe $\mathbb{U}=\{1,2, \ldots, n\}$ and a collection S of m subsets of \mathbb{U}, with $\bigcup_{s \in S}=\mathbb{U}$, find a minimal subfamily $C \subseteq S$ with $\bigcup_{c \in C}=\mathbb{U}$

Min set cover cannot be approximated to $(1-o(1)) \cdot \log n$, unless $\mathbf{P}=\mathbf{N P}$.

The Ugly

Some problems cannot be approximated efficiently

Example: Minimum Set Cover

Given a universe $\mathbb{U}=\{1,2, \ldots, n\}$ and a collection S of m subsets of \mathbb{U}, with $\bigcup_{s \in S}=\mathbb{U}$, find a minimal subfamily $C \subseteq S$ with $\bigcup_{c \in C}=\mathbb{U}$

Min set cover cannot be approximated to $(1-o(1)) \cdot \log n$, unless $\mathbf{P}=\mathbf{N P}$.

- there can be polynomial time heuristics for these problems
- work good in practice, but without proven guarantee

The Good - The Bad - The Ugly

Good : $\leq \mathrm{O}(n \log n)$
Goodish: $\geq \mathrm{O}\left(n^{2}\right)$

Bad:NP-hard APX

Graph Theory

Graph Theory

- Foundation: 7 Bridges of Köngisberg (L. Euler, 1736)

Problem: Walk through Königsberg crossing each bridge exacly once

- Today: widely used to model relationships between objects
- Social Networks
- Transportation
- Internet
- Protein Interaction

Graphs: Notation \& Definitions

Graph $G=(V, E)$

vertices edges
$V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$
$E=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{1}, v_{4}\right), \ldots\right\}$
$n=|V|$
$m=|E|$

Graphs: Notation \& Definitions

Graph $G=(V, E)$

vertices edges
$V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$
$E=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{1}, v_{4}\right), \ldots\right\}$
$n=|V|$
$m=|E|$
degree $d(v)$: \# incident edges

$e_{1}=\left(v_{1}, v_{2}\right)$ is incident to v_{1}, v_{2}
$v_{1} \& v_{2}$ are adjacent

Graphs: Notation \& Definitions

$$
\begin{aligned}
& \text { Graph } G=(V, E) \\
& V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\} \\
& E=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{1}, v_{4}\right), \ldots\right\} \\
& n=|V| \\
& m=|E| \\
& \text { vertices edges } \\
& \text { degree } d(v) \text { : \# incident edges } \\
& e_{1}=\left(v_{1}, v_{2}\right) \text { is incident to } v_{1}, v_{2} \\
& v_{1} \& v_{2} \text { are adjacent }
\end{aligned}
$$

Graphs: Notation \& Definitions

Graph $G=(V, E)$
vertices
edges
$V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}$
$E=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{1}, v_{4}\right), \ldots\right\}$
$n=|V|$
$m=|E|$
degree $d(v)$: \# incident edges

Graphs: Notation \& Definitions

$$
\begin{aligned}
& \text { Graph } G=(V, E) \\
& V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\} \\
& E=\left\{\left(v_{1}, v_{2}\right),\left(v_{1}, v_{3}\right),\left(v_{1}, v_{4}\right), \ldots\right\} \\
& n=|V| \\
& m=|E| \\
& \text { vertices edges } \\
& \text { degree } d(v): \# \text { incident edges }
\end{aligned}
$$

simple graph: no self-loops \& multiedges

Graphs: Notation \& Definitions

- Weighted Graphs:
- vertex weights $c: V \rightarrow \mathbb{R}$
- edge weights $\omega: E \rightarrow \mathbb{R}$

Graphs: Notation \& Definitions

- Weighted Graphs:
- vertex weights $c: V \rightarrow \mathbb{R}$
- edge weights $\omega: E \rightarrow \mathbb{R}$
- Directed Graphs:
- in-degree $d_{i n}(v)$
- out-degree $d_{\text {out }}(v)$

Graphs: Notation \& Definitions

- Weighted Graphs:
- vertex weights $c: V \rightarrow \mathbb{R}$
- edge weights $\omega: E \rightarrow \mathbb{R}$

- Directed Graphs:
- in-degree $d_{i n}(v)$
- out-degree $d_{\text {out }}(v)$

- Planar Graphs: can be drawn without edge crossings

Graphs: Notation \& Definitions

- Cyclic Graphs

Graphs: Notation \& Definitions

- Cyclic Graphs

- Acyclic Graphs

Graphs: Notation \& Definitions

- Cyclic Graphs

- Acyclic Graphs

- Sparse/Dense Graphs

Graphs: Notation \& Definitions

- Hypergraphs: generalization of graphs
- hyperedges connect ≥ 2 vertices
- can represent d-ary relationships
- $E \subseteq \mathcal{P}(V) \backslash \emptyset$

Graphs: Notation \& Definitions

- Hypergraphs: generalization of graphs
- hyperedges connect ≥ 2 vertices
- can represent d-ary relationships
- $E \subseteq \mathcal{P}(V) \backslash \emptyset$

- Bipartite Graphs: $\forall(u, v) \in E:(u \in A \wedge v \in B) \vee(v \in A \wedge u \in B)$

Graph Representations

- Unordered Edge Sequence $(1,2),(2,3),(4,5),(3,4),(1,3),(3,6),(3,5),(6,2)$
+ simple
- navigation in $\Theta(m)$
+ add edges in $O(1)$ - remove edges in $\Theta(m)$

Graph Representations

- Unordered Edge Sequence $(1,2),(2,3),(4,5),(3,4),(1,3),(3,6),(3,5),(6,2)$
+ simple
- navigation in $\Theta(m)$
+ add edges in $O(1)$ - remove edges in $\Theta(m)$

- Adjacency Array

edge endpoints

Graph Representations

- Unordered Edge Sequence $(1,2),(2,3),(4,5),(3,4),(1,3),(3,6),(3,5),(6,2)$
+ simple - navigation in $\Theta(m)$
+ add edges in $O(1)$ - remove edges in $\Theta(m)$

- Adjacency Array

+ navigation easy: outgoing edges $E[V[v]], \ldots, E[V[V+1]-1]$
+ remove edges: easy via explicit end indices
- add edges

Graph Representations

- Adjacency List

+ adding edges: easy - up to 3x more space
+ removing edges: easy - slower (more cache misses)
+ navigation: easy

Graph Representations

- Adjacency Matrix

$$
A \in\{0,1\}^{n \times n} \text { with } A(i, j)=[(i, j) \in E]
$$

$A=\left[\begin{array}{llllll}0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0\end{array}\right]$

+ space efficient for very dense graphs
+ query $(u, v) \in E$? easy
- space inefficient otherwise
- navigation in $O(n)$
+ edge insertions/deletions in $O(1)$
+ connects graph theory with linear algebra
Example: $C=A^{k} \Rightarrow C_{i j}=\#$ paths of length k from i to j

Graph Representations

Summary:

- edge sequence
- adjacency array

no data structure fits all needs!
- adjacency list
- adjacency matrix

Graph Representations

Summary:

- edge sequence
- adjacency array
no data structure fits all needs!
- adjacency list
- adjacency matrix

Key Takeaways:

- Choice of DS depends on
- operations needed
- frequency of operations
- static or dynamic?
- Adjacency Array \rightarrow best DS for static graphs
- Matrices rarely used in practice

Graph Traversal

Random Walks

Given undirected Graph $G=(V, E)$

- Random walk in G
- Random walker that stands at one vertex at each point in time
- Each edge is taken with same probability

Random Walks

Given undirected Graph $G=(V, E)$

- Random walk in G
- Random walker that stands at one vertex at each point in time
- Each edge is taken with same probability

- Interesting properties
- $m_{u v}$:= expected number of steps from vertex u to v
- $C_{u v}$:= expected number of steps from vertex u to u via v

Applications

Image segmentation

Model Brownian motion and diffusion

Model share prices in economics

Estimate size of WWW

By Katrina.Tuliao - https://www.tradergroup.org, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=12262407
By The Opte Project - Originally from the English Wikipedia; CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1538544

Example

- Lollipop graph L_{n}
- First $\frac{n}{2}$ vertices form clique
- Second $\frac{n}{2}$ vertices form path "glued" to clique
L_{16}

Example

- Lollipop graph L_{n}
- First $\frac{n}{2}$ vertices form clique
- Second $\frac{n}{2}$ vertices form path "glued" to clique
L_{16}

$\Rightarrow m_{u v} \in \Theta\left(n^{3}\right)$
$\Rightarrow m_{v u} \in \Theta\left(n^{2}\right)$
How to efficiently model this problem?

Resistance Networks

- Model graph as network $N(G)$ of electrical resistors
- Graph has to be undirected, connected and loop-free
- Replace each edge with resistor of 1Ω

Resistance Networks

- Model graph as network $N(G)$ of electrical resistors
- Graph has to be undirected, connected and loop-free
- Replace each edge with resistor of 1Ω

\Rightarrow We can measure the effective resistance $R_{u v}$ between u and v
\Rightarrow We now proof that $C_{u v}=2 m R_{u v}$

Lemma: $m_{u v}=\rho_{u v}$

- Add electric current $d(x)$ to every vertex $x \in V$
- Remove total current of $2 m$ at vertex v

Lemma: $m_{u v}=\rho_{u v}$

- Add electric current $d(x)$ to every vertex $x \in V$
- Remove total current of $2 m$ at vertex v

- Kirchoff's law:
$d(u)=\sum_{w \in \Gamma(u)}\left(\rho_{u v}-\rho_{w v}\right) \Leftrightarrow d(u)+\sum_{w \in \Gamma(u)} \rho_{w v}=d(u) \rho_{u v}$

Lemma: $m_{u v}=\rho_{u v}$

- Add electric current $d(x)$ to every vertex $x \in V$
- Remove total current of $2 m$ at vertex v

- Kirchoff's law:
$d(u)=\sum_{w \in \Gamma(u)}\left(\rho_{u v}-\rho_{w v}\right) \Leftrightarrow d(u)+\sum_{w \in \Gamma(u)} \rho_{w v}=d(u) \rho_{u v}$
- Linearity of expectation:
$m_{u v}=\sum_{w \in \Gamma(u)}\left(1+m_{w v}\right) / d(u) \Leftrightarrow d(u)+\sum_{w \in \Gamma(u)} m_{w v}=d(u) m_{u v}$

Lemma: $m_{u v}=\rho_{u v}$

- Add electric current $d(x)$ to every vertex $x \in V$
- Remove total current of $2 m$ at vertex v

- Kirchoff's law:

$$
d(u)=\sum_{w \in \Gamma(u)}\left(\rho_{u v}-\rho_{w v}\right) \Leftrightarrow d(u)+\sum_{w \in \Gamma(u)} \rho_{w v}=d(u) \rho_{u v}
$$

- Linearity of expectation:
$m_{u v}=\sum_{w \in \Gamma(u)}\left(1+m_{w v}\right) / d(u) \Leftrightarrow d(u)+\sum_{w \in \Gamma(u)} m_{w v}=d(u) m_{u v}$

Proof: $C_{u v}=2 m R_{u v}$

- Use $m_{u v}=\rho_{u v}$ and linearity of resistor network
- $C_{u v}=m_{u v}+m_{v u}=\rho_{u v}+\rho_{v u}$

Proof: $C_{u v}=2 m R_{u v}$

- Use $m_{u v}=\rho_{u v}$ and linearity of resistor network
- $C_{u v}=m_{u v}+m_{v u}=\rho_{u v}+\rho_{v u}$

Proof: $C_{u v}=2 m R_{u v}$

- Use $m_{u v}=\rho_{u v}$ and linearity of resistor network
- $C_{u v}=m_{u v}+m_{v u}=\rho_{u v}+\rho_{v u}$

Proof: $C_{u v}=2 m R_{u v}$

- Use $m_{u v}=\rho_{u v}$ and linearity of resistor network
- $C_{u v}=m_{u v}+m_{v u}=\rho_{u v}+\rho_{v u}$

Proof: $C_{u v}=2 m R_{u v}$

- Use $m_{u v}=\rho_{u v}$ and linearity of resistor network
- $C_{u v}=m_{u v}+m_{v u}=\rho_{u v}+\rho_{v u}$

Proof: $C_{u v}=2 m R_{u v}$

- Use $m_{u v}=\rho_{u v}$ and linearity of resistor network
- $C_{u v}=m_{u v}+m_{v u}=\rho_{u v}+\rho_{v u}$

\Rightarrow Ohm's law: $C_{u v}=2 m R_{u v}$

Graph Traversal

Systematic Graph Exploration

- basis of almost all nontrivial graph algorithms
- goal: inspect each edge exactly once
- 2 Algorithms
- Breadth-First Search
- Depth-First Search

Both construct forests \& partition edges into one of 4 classes:

Graph Traversal

Systematic Graph Exploration

- basis of almost all nontrivial graph algorithms
- goal: inspect each edge exactly once
- 2 Algorithms
- Breadth-First Search
- Depth-First Search

Both construct forests \& partition edges into one of 4 classes:

Graph Traversal

Systematic Graph Exploration

- basis of almost all nontrivial graph algorithms
- goal: inspect each edge exactly once
- 2 Algorithms
- Breadth-First Search
- Depth-First Search

Both construct forests \& partition edges into one of 4 classes:

Graph Traversal

Systematic Graph Exploration

- basis of almost all nontrivial graph algorithms
- goal: inspect each edge exactly once
- 2 Algorithms
- Breadth-First Search
- Depth-First Search

Both construct forests \& partition edges into one of 4 classes:

Graph Traversal

Systematic Graph Exploration

- basis of almost all nontrivial graph algorithms
- goal: inspect each edge exactly once
- 2 Algorithms
- Breadth-First Search
- Depth-First Search

Both construct forests \& partition edges into one of 4 classes:

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
\begin{aligned}
& Q:=\langle s\rangle \quad \text { // current layer } \\
& \text { while } Q \neq\langle \rangle \text { do } \\
& \quad \text { explore nodes } Q \\
& \quad \text { remember node in next layer in } Q^{\prime} \\
& Q:=Q^{\prime}
\end{aligned}
$$

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
\begin{aligned}
& Q:=\langle s\rangle \quad \text { // current layer } \\
& \text { while } Q \neq\langle \rangle \text { do } \\
& \quad \text { explore nodes } Q \\
& \quad \text { remember node in next layer in } Q^{\prime} \\
& Q:=Q^{\prime}
\end{aligned}
$$

Graph

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
Q:=\langle s\rangle \quad \text { // current layer }
$$

while $Q \neq\langle \rangle$ do
explore nodes Q
remember node in next layer in Q^{\prime}
$Q:=Q^{\prime}$
Graph

BFS-Tree

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
Q:=\langle s\rangle \quad \text { // current layer }
$$

while $Q \neq\langle \rangle$ do
explore nodes Q
remember node in next layer in Q^{\prime}
Graph
$Q:=Q^{\prime}$

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
Q:=\langle s\rangle \quad \text { // current layer }
$$

while $Q \neq\langle \rangle$ do
explore nodes Q
remember node in next layer in Q^{\prime}
Graph
$Q:=Q^{\prime}$

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
Q:=\langle s\rangle \quad \text { // current layer }
$$

while $Q \neq\langle \rangle$ do
explore nodes Q
remember node in next layer in Q^{\prime}

$Q:=Q^{\prime}$

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
Q:=\langle s\rangle \quad \text { // current layer }
$$

while $Q \neq\langle \rangle$ do
explore nodes Q
remember node in next layer in Q^{\prime}
Graph
$Q:=Q^{\prime}$

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
Q:=\langle s\rangle \quad \text { // current layer }
$$

while $Q \neq\langle \rangle$ do
explore nodes Q
remember node in next layer in Q^{\prime}
Graph
$Q:=Q^{\prime}$

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
Q:=\langle s\rangle \quad \text { // current layer }
$$

while $Q \neq\langle \rangle$ do
explore nodes Q
remember node in next layer in Q^{\prime}
Graph
$Q:=Q^{\prime}$

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
Q:=\langle s\rangle \quad \text { // current layer }
$$

while $Q \neq\langle \rangle$ do
explore nodes Q
remember node in next layer in Q^{\prime}
Graph
$Q:=Q^{\prime}$

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
Q:=\langle s\rangle \quad \text { // current layer }
$$

while $Q \neq\langle \rangle$ do
explore nodes Q
remember node in next layer in Q^{\prime}
Graph
$Q:=Q^{\prime}$

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
\begin{aligned}
& Q:=\langle s\rangle \quad \text { // current layer } \\
& \text { while } Q \neq\langle \rangle \text { do } \\
& \quad \text { explore nodes } Q \\
& \quad \text { remember node in next layer in } Q^{\prime} \\
& Q:=Q^{\prime}
\end{aligned}
$$

Graph

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
\begin{aligned}
& Q:=\langle s\rangle \quad \text { // current layer } \\
& \text { while } Q \neq\langle \rangle \text { do } \\
& \quad \text { explore nodes } Q \\
& \quad \text { remember node in next layer in } Q^{\prime} \\
& Q:=Q^{\prime}
\end{aligned}
$$

Graph

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
\begin{aligned}
& Q:=\langle s\rangle \quad \text { // current layer } \\
& \text { while } Q \neq\langle \rangle \text { do } \\
& \quad \text { explore nodes } Q \\
& \quad \text { remember node in next layer in } Q^{\prime} \\
& Q:=Q^{\prime}
\end{aligned}
$$

Graph

Breadth First Search

Build tree starting from root node s that connects all nodes reachable from s via shortest paths.

Function bfs(s):

$$
Q:=\langle s\rangle \quad \text { // current layer }
$$

while $Q \neq\langle \rangle$ do
explore nodes Q
remember node in next layer in Q^{\prime}
Graph $Q:=Q^{\prime}$

How to store the tree?

- array stores parents
- not reached: parent[v] = \perp
- root: parent[s] = s

Depth First Search

Explore the graph as far as possible along each branch and return only if you run out of options.
init
foreach $s \in V$ do
if s is not marked then
mark s
// make s a root and grow
root(s)
// a new DFS tree rooted at s
DFS(s, s)
init:
root(s):
dfsPos=1 : 1..n
dfsNum[s]:= dfsPos++
finishingTime=1 : 1..n

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
if w is marked then
traverseNonTreeEdge($v, w)$
else
traverseTreeEdge(v, w)
mark w
DFS (v, w)
backtrack(u, v)

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
if w is marked then
traverseNonTreeEdge($v, w)$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w)
backtrack(u, v)
traverseTreeEdge (v, w) : dfsNum[w]:= dfsPos++
backtrack (u, v) :
finishTime[v]:= finishingTime++

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
if w is marked then
traverseNonTreeEdge($v, w)$ else
traverseTreeEdge(v, w) traverse
mark w
$\mathrm{DFS}(v$,
backtrack (u, v)

DFS (v, w) traver
mark
$\mathrm{DFS}(v$,
backtrack (u, v)
traverseTreeEdge (v, w) : dfsNum[$w]:=$ dfsPos++

DFS-Tree
backtrack (u, v) :
finishTime[v]:= finishingTime++

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w) backtrack(u, v)

backtrack(u, v):

finishTime[v]:= finishingTime++

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w) backtrack(u, v)
backtrack (u, v) :
finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w) backtrack(u,v)
backtrack (u, v) :
finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w) backtrack(u, v)
backtrack (u, v) :
finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w) backtrack(u,v)
backtrack (u, v) :
finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w) backtrack(u,v)
backtrack (u, v) :
finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w) backtrack(u,v)
backtrack (u, v) :
finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w) backtrack(u,v)
backtrack (u, v) :
finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w) backtrack(u, v)

backtrack(u, v):

finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w) backtrack(u, v)

backtrack(u, v):

finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w) backtrack(u, v)

backtrack(u, v):

finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w) backtrack(u, v)
backtrack (u, v) :
finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w)
backtrack(u, v)

backtrack(u, v):

finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS($v, w)$ backtrack(u, v)

backtrack(u, v):

finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w) backtrack(u, v)

backtrack(u, v):

finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS($v, w)$ backtrack(u, v)

backtrack(u, v):

finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
$\begin{array}{ll}\text { if } w \text { is marked then } & \text { traverseTreeEdge }(v, w) \text { : } \\ \text { traverseNonTreeEdge }(v, w) & \text { dfsNum[} w]:=\operatorname{dfsPos}++\end{array}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w)
backtrack(u, v)

backtrack(u, v):

finishTime[v]:= finishingTime++

DFS-Tree

Depth First Search

Procedure DFS(u, v : Nodeld) foreach $(v, w) \in E$ do
if w is marked then
traverseNonTreeEdge($v, w)$
traverseTreeEdge (v, w) :
dfsNum[$w]:=\operatorname{dfsPos++}$ else
traverseTreeEdge(v, w)
mark w
DFS (v, w)
backtrack(u, v)

backtrack(u, v):

finishTime[v]:= finishingTime++

DFS-Tree

DFS: Edge Classification

type (v, w)	dfsNum $[v]<$ dfsNum $[w]$	finishTime $[w]<$ finishTime $[v]$	w is marked
tree	yes	yes	no
forward	yes	yes	yes
backward	no	no	yes
cross	no	yes	yes

DFS-Tree

DFS: Edge Classification

Lemma:

The following properties are equivalent:
(i) G is an acyclic directed graph (DAG)
(ii) DFS on G produces no backward edges
(iii) All edges of G go from larger to smaller finishing times
\Rightarrow Cycle Detection
\Rightarrow Topological Sorting
DFS-Tree

Graph Problems

Finding Shortest Paths in Graphs

Unweighted Graphs ($\forall e \in E: \omega(e)=1)$:

- use BFS
- $\mathrm{O}(n+m)$ time

What about weighted graphs?

Shortest Paths

Input:

- Graph $G=(V, E)$
- Edge weights $\omega: E \rightarrow \mathbb{R}$
- start node s

Output: $\forall v \in V$: Length $\mu(v)$ of shortest path from s to v

$$
\omega\left(\left\langle e_{1}, \ldots, e_{k}\right\rangle\right):=\sum_{i=1}^{k} \omega\left(e_{i}\right)
$$

Applications: Route planning, DNA sequencing, production planning,...

Shortest Paths - Basics

Does a shortest path always exist?

$r=p C q$ is path from s to v
\Rightarrow \# paths from s to v is infinite: $r^{i}=p C^{i} q$

Shortest Paths - Basics

Does a shortest path always exist?

$r=p C q$ is path from s to v
\Rightarrow \# paths from s to v is infinite: $r^{i}=p C^{i} q$
\Rightarrow if C is a negative cycle: $\omega\left(r^{i+1}\right)<\omega\left(r^{i}\right)$
$\omega(C)<0$

Shortest Paths - Basic Definitions

Assumption: nonnegative edge weights \rightsquigarrow no negative cycles
We use 2 Arrays (like in BFS):

- $d[v]$: current (tentative) distance from s to v Invariant: $d[v] \geq \mu(v)$
- parent[v]: predecessor of v on (temp.) path from $s \rightsquigarrow v$
- Initialization:

$$
\begin{array}{ll}
d[s]=0 & \text { parent }[s]=s \\
d[v]=\infty & \text { parent }[v]=\perp
\end{array}
$$

How to improve tentative distance values?

Shortest Paths - Edge Relaxations

Procedure relax $(e=(u, v)$: Edge $)$
if $d[u]+\omega(e)<d[v]$ then
$d[v]=d[u]+\omega(e)$
parent $[v]=u$

Shortest Paths - Edge Relaxations

$$
\begin{gathered}
\text { Procedure relax }(e=(u, v): \text { Edge }) \\
\text { if } d[u]+\omega(e)<d[v] \text { then } \\
d[v]=d[u]+\omega(e) \\
\text { parent }[v]=u
\end{gathered}
$$

Shortest Paths - Edge Relaxations

$$
\begin{gathered}
\text { Procedure relax }(e=(u, v): \text { Edge }) \\
\text { if } d[u]+\omega(e)<d[v] \text { then } \\
d[v]=d[u]+\omega(e) \\
\text { parent }[v]=u
\end{gathered}
$$

Shortest Paths - Edge Relaxations

$$
\begin{gathered}
\text { Procedure relax }(e=(u, v): \text { Edge }) \\
\text { if } d[u]+\omega(e)<d[v] \text { then } \\
d[v]=d[u]+\omega(e) \\
\text { parent }[v]=u
\end{gathered}
$$

Shortest Paths - Dijkstra's Algorithm

initialize d, parent
all nodes are non-scanned
while \exists non-scanned node u with $d[u]<\infty$
$u:=$ non-scanned node v with minimal $d[v]$
relax all edges (u, v) out of u
u is scanned now

Shortest Paths - Dijkstra's Algorithm

initialize d, parent
all nodes are non-scanned
while \exists non-scanned node u with $d[u]<\infty$
$u:=$ non-scanned node v with minimal $d[v]$
relax all edges (u, v) out of u
u is scanned now

Shortest Paths - Dijkstra's Algorithm

initialize d, parent
all nodes are non-scanned
while \exists non-scanned node u with $d[u]<\infty$
$u:=$ non-scanned node v with minimal $d[v]$
relax all edges (u, v) out of u
u is scanned now

Shortest Paths - Dijkstra's Algorithm

initialize d, parent
all nodes are non-scanned
while \exists non-scanned node u with $d[u]<\infty$
$u:=$ non-scanned node v with minimal $d[v]$
relax all edges (u, v) out of u
u is scanned now

Shortest Paths - Dijkstra's Algorithm

initialize d, parent
all nodes are non-scanned
while \exists non-scanned node u with $d[u]<\infty$
$u:=$ non-scanned node v with minimal $d[v]$
relax all edges (u, v) out of u
u is scanned now

Shortest Paths - Dijkstra's Algorithm

initialize d, parent
all nodes are non-scanned
while \exists non-scanned node u with $d[u]<\infty$
$u:=$ non-scanned node v with minimal $d[v]$
relax all edges (u, v) out of u
u is scanned now

Shortest Paths - Dijkstra's Algorithm

initialize d, parent
all nodes are non-scanned
while \exists non-scanned node u with $d[u]<\infty$
$u:=$ non-scanned node v with minimal $d[v]$
relax all edges (u, v) out of u
u is scanned now

Shortest Paths - Dijkstra's Algorithm

initialize d, parent
all nodes are non-scanned
while \exists non-scanned node u with $d[u]<\infty$
$u:=$ non-scanned node v with minimal $d[v]$
relax all edges (u, v) out of u
u is scanned now

Shortest Paths - Dijkstra's Algorithm

initialize d, parent
all nodes are non-scanned
while \exists non-scanned node u with $d[u]<\infty$
$u:=$ non-scanned node v with minimal $d[v]$
relax all edges (u, v) out of u
u is scanned now

Shortest Paths - Dijkstra's Algorithm

initialize d, parent
all nodes are non-scanned
while \exists non-scanned node u with $d[u]<\infty$
$u:=$ non-scanned node v with minimal $d[v]$
relax all edges (u, v) out of u
u is scanned now

Shortest Paths - Dijkstra's Algorithm

Theorem:

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.

Proof: We show: $\forall v \in V$:

- v is reachable $\rightsquigarrow v$ is scanned
- v is scanned $\rightsquigarrow \mu(v)=d[v]$

Shortest Paths - Dijkstra's Algorithm

Theorem:

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.

Proof: We show: $\forall v \in V$:

- v is reachable $\rightsquigarrow v$ is scanned

Shortest Paths - Dijkstra's Algorithm

Theorem:

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.

Proof: We show: $\forall v \in V$:

- v is reachable $\rightsquigarrow v$ is scanned

$\Rightarrow i>1$, because s is scanned

Shortest Paths - Dijkstra's Algorithm

Theorem:

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.

Proof: We show: $\forall v \in V$:

- v is reachable $\rightsquigarrow v$ is scanned

$\Rightarrow i>1$, because s is scanned
$\Rightarrow v_{i-1}$ has been scanned (by definition)

Shortest Paths - Dijkstra's Algorithm

Theorem:

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.

Proof: We show: $\forall v \in V$:

- v is reachable $\rightsquigarrow v$ is scanned

$\Rightarrow i>1$, because s is scanned
$\Rightarrow v_{i-1}$ has been scanned (by definition)
\Rightarrow edge $v_{i-1} \rightarrow v_{i}$ was relaxed

Shortest Paths - Dijkstra's Algorithm

Theorem:

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.

Proof: We show: $\forall v \in V$:

- v is reachable $\rightsquigarrow v$ is scanned

Assumption:
reachable from s, but never scanned
unscanned

a shortest $s-v$ path
$\Rightarrow i>1$, because s is scanned
$\Rightarrow v_{i-1}$ has been scanned (by definition)
\Rightarrow edge $v_{i-1} \rightarrow v_{i}$ was relaxed
$\Rightarrow d\left[v_{i}\right]<\infty$
\Rightarrow contradiction: only nodes x with $d[x]=\infty$ remain unscanned

Shortest Paths - Dijkstra's Algorithm

Theorem:

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.

Proof: We show: $\forall v \in V$:

- v is scanned $\rightsquigarrow \mu(v)=d[v]$

Shortest Paths - Dijkstra's Algorithm

Theorem:

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.

Proof: We show: $\forall v \in V$:

- v is scanned $\rightsquigarrow \mu(v)=d[v]$

Assumption:

v is first scanned node with $\mu(v)<d[v]$

Shortest Paths - Dijkstra's Algorithm

Theorem:

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.

Proof: We show: $\forall v \in V$:

- v is scanned $\rightsquigarrow \mu(v)=d[v]$

Assumption:

v is first scanned node with $\mu(v)<d[v]$

$\Rightarrow v_{i-1}$ was scanned before t (by definition)

Shortest Paths - Dijkstra's Algorithm

Theorem:

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.

Proof: We show: $\forall v \in V$:

- v is scanned $\rightsquigarrow \mu(v)=d[v]$

Assumption:

v is first scanned node with $\mu(v)<d[v]$

$\Rightarrow v_{i-1}$ was scanned before t (by definition)
$\Rightarrow d\left[v_{i-1}\right]=\mu\left(v_{i-1}\right)$ when v_{i-1} is scanned

Shortest Paths - Dijkstra's Algorithm

Theorem:

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.

Proof: We show: $\forall v \in V$:

- v is scanned $\rightsquigarrow \mu(v)=d[v]$

Assumption:

v is first scanned node with $\mu(v)<d[v]$

$\Rightarrow v_{i-1}$ was scanned before t (by definition)
$\Rightarrow d\left[v_{i-1}\right]=\mu\left(v_{i-1}\right)$ when v_{i-1} is scanned
\Rightarrow edge $v_{i-1} \rightarrow v_{i}$ was relaxed

Shortest Paths - Dijkstra's Algorithm

Theorem:

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.
Proof: We show: $\forall v \in V$:

- v is scanned $\rightsquigarrow \mu(v)=d[v]$

Assumption:

v is first scanned node with $\mu(v)<d[v]$

$\Rightarrow v_{i-1}$ was scanned before t (by definition)
$\Rightarrow d\left[v_{i-1}\right]=\mu\left(v_{i-1}\right)$ when v_{i-1} is scanned
\Rightarrow edge $v_{i-1} \rightarrow v_{i}$ was relaxed
$\Rightarrow d\left[v_{i}\right]=d\left[v_{i-1}\right]+\omega\left(v_{i-1}, v_{i}\right)=\mu\left(v_{i-1}\right)+\omega\left(v_{i-1}, v_{i}\right)=\mu\left(v_{i}\right)$

Shortest Paths - Dijkstra's Algorithm

Theorem:

Dijkstra's algorithm solves the single-source shortest-path problem for graphs with nonnegative edge costs.
Proof: We show: $\forall v \in V$:

- v is scanned $\rightsquigarrow \mu(v)=d[v]$

Assumption:

v is first scanned node with $\mu(v)<d[v]$

$\Rightarrow v_{i-1}$ was scanned before t (by definition)
$\Rightarrow d\left[v_{i-1}\right]=\mu\left(v_{i-1}\right)$ when v_{i-1} is scanned
\Rightarrow edge $v_{i-1} \rightarrow v_{i}$ was relaxed
$\Rightarrow d\left[v_{i}\right]=d\left[v_{i-1}\right]+\omega\left(v_{i-1}, v_{i}\right)=\mu\left(v_{i-1}\right)+\omega\left(v_{i-1}, v_{i}\right)=\mu\left(v_{i}\right)$
\Rightarrow at time $t: d\left[v_{i}\right]=\mu\left(v_{i}\right) \leq \mu(v)<d[v]$
$\Rightarrow v_{i}$ is scanned before v ! contradiction!

Dijkstra's Algorithm - Implementation

initialize d, parent
all nodes are non-scanned
while \exists non-scanned node u with $d[u]<\infty$
$u:=$ non-scanned node v with minimal $d[v]$ HOW?
relax all edges (u, v) out of u u is scanned now

Dijkstra's Algorithm - Implementation

Function Dijkstra(s : Nodeld) : NodeArray \times NodeArray

$$
d=\{\infty, \ldots, \infty\} ; \text { parent }[s]:=s ; d[s]:=0 ; \quad \text { Q.insert(s) } \quad / / O(n)
$$

while $Q \neq \emptyset$ do

$$
u:=Q . d e l e t e M i n
$$

foreach edge $e=(u, v) \in E$ do

$$
\text { if } d[u]+c(e)<d[v] \text { then }
$$

$$
d[v]:=d[u]+c(e)
$$

$$
\operatorname{parent}[v]:=u
$$

$$
\begin{aligned}
\| & \leq n \times \\
/ \prime & \leq m \times \\
/ \prime & \leq m \times \\
/ \prime & \leq m \times \\
\| & \leq m \times \\
\| & \leq m \times \\
\| & \leq n \times
\end{aligned}
$$

if $v \in Q$ then Q.decreaseKey (v)
else Q.insert(v)
return (d, parent)

Total Running Time:

$$
T_{\text {Dijkstra }}=\mathrm{O}\left(m \cdot T_{\text {decreaseKey }}(n)+n \cdot\left(T_{\text {deleteMin }}(n)+T_{\text {insert }}(n)\right)\right)
$$

Goal-Directed Search / Pathfinding

Goal: Find distance from s to a specific node t One Solution:
stop Dijkstra as soon as t is removed from PQ

Goal-Directed Search / Pathfinding

Goal: Find distance from s to a specific node t One Solution:
stop Dijkstra as soon as t is removed from PQ A* Search:

- Idea: bias search towards the target
- $\forall v \in V$: heuristic $f(v)$ estimates distance $\mu(v, t)$

- modified distance fct. $\forall e=(u, v) \in E: \bar{c}=c(e)+f(v)-f(u)$

Goal-Directed Search / Pathfinding

Goal: Find distance from s to a specific node t One Solution:
stop Dijkstra as soon as t is removed from PQ
A* Search:

- Idea: bias search towards the target
- $\forall v \in V$: heuristic $f(v)$ estimates distance $\mu(v, t)$

- modified distance fct. $\forall e=(u, v) \in E: \bar{c}=c(e)+f(v)-f(u)$

Optimistic Example: $f(v)=\mu(v, t)$
$\Rightarrow \bar{c}(u, v)=c(u, v)+\mu(v, t)-\mu(u, t)=0$ if (u, v) is on shortest s, t path

\Rightarrow Dijkstra only scans nodes along shortest path!

Goal-Directed Search / Pathfinding

Goal: Find distance from s to a specific node t One Solution:
stop Dijkstra as soon as t is removed from PQ
A* Search:

- Idea: bias search towards the target
- $\forall v \in V$: heuristic $f(v)$ estimates distance $\mu(v, t)$

- modified distance fct. $\forall e=(u, v) \in E: \bar{c}=c(e)+f(v)-f(u)$

Optimistic Example: $f(v)=\mu(v, t)$
$\Rightarrow \bar{c}(u, v)=c(u, v)+\mu(v, t)-\mu(u, t)=0$ if (u, v) is on shortest s, t path

\Rightarrow Dijkstra only scans nodes along shortest path!

Interactive Demo: http://www.ryanpon.com/animate

More on Shortest Paths

- DAGs:
\Rightarrow relax edges in topological order of vertices: $\mathrm{O}(m+n)$
- arbitrary edge weights:
\Rightarrow Bellman-Ford Algorithm (Idea: relax all edges $n-1$ times): $\mathrm{O}(m n)$
- All-Pairs Shortest Paths
- dense graphs (without negative cycles)
\Rightarrow Floyd-Warshall Algorithm: $\mathrm{O}\left(n^{3}\right)$
- non-negative edge weights:
$\Rightarrow n \times$ Dijkstra: $\mathrm{O}(n(m+n \log n))$
- arbitrary edge weights:
$\Rightarrow n \times$ Bellman-Ford: $\mathrm{O}\left(n^{2} m\right)$
$\Rightarrow 1 \times$ Bellman-Ford $+n \times$ Dijkstra: $\mathrm{O}(n(m+n \log n))[1]$
[1] K. Mehlhorn, V. Priebe, G. Schäfer, N. Sivadasan: All-pairs shortest-paths computation in the presence of negative cycles. Inf. Process. Lett. 81(6): 341-343 (2002)

Minimal Spanning Tree (MST)

Given undirected Graph $G=(V, E)$ with edge weights $c(e) \in \mathcal{R}_{+}$

- G connected
\Rightarrow Find a tree (V, T) with minimal weight $\sum_{e \in T} c(e)$ that connects all vertices

Minimal Spanning Tree (MST)

Given undirected Graph $G=(V, E)$ with edge weights $c(e) \in \mathcal{R}_{+}$

- G connected
\Rightarrow Find a tree (V, T) with minimal weight $\sum_{e \in T} c(e)$ that connects all vertices

Vertices unconnected
Non-minimal weight

Minimal Spanning Tree (MST)

Given undirected Graph $G=(V, E)$ with edge weights $c(e) \in \mathcal{R}_{+}$

- G connected
\Rightarrow Find a tree (V, T) with minimal weight $\sum_{e \in T} c(e)$ that connects all vertices

Vertices connected
Non-minimal weight

Minimal Spanning Tree (MST)

Given undirected Graph $G=(V, E)$ with edge weights $c(e) \in \mathcal{R}_{+}$

- G connected
\Rightarrow Find a tree (V, T) with minimal weight $\sum_{e \in T} c(e)$ that connects all vertices

Vertices connected
Minimal weight

Minimal Spanning Tree (MST)

Given undirected Graph $G=(V, E)$ with edge weights $c(e) \in \mathcal{R}_{+}$

- G connected
\Rightarrow Find a tree (V, T) with minimal weight $\sum_{e \in T} c(e)$ that connects all vertices

Vertices connected
Minimal weight

- Gunconnected

Find minimal spanning forest (MSF) that spans all connected components

Applications

Network design

Learning features for face verification

Reduce storage for protein sequencing

Cluster analysis

Von Michael Kauffmann - Eigenes Werk, CC BY 3.0 de, https://commons.wikimedia.org/w/index.php?curid=52231711
By Jimmy answering questions.jpg: Wikimania2009 Beatrice Murchderivative work: Sylenius (talk) - Jimmy answering questions.jpg, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=11309460

Finding MST Edges

- Cut property
- Arbitrary subset $S \subset V$
- Cut edges $C=\{\{u, v\} \in E: u \in S, v \in V \backslash S\} 3$

Finding MST Edges

- Cut property
- Arbitrary subset $S \subset V$
- Cut edges $C=\{\{u, v\} \in E: u \in S, v \in V \backslash S\} 3$

Finding MST Edges

- Cut property
- Arbitrary subset $S \subset V$
- Cut edges $C=\{\{u, v\} \in E: u \in S, v \in V \backslash S\} 3$

Finding MST Edges

- Cut property
- Arbitrary subset $S \subset V$
- Cut edges $C=\{\{u, v\} \in E: u \in S, v \in V \backslash S\} 3$
\Rightarrow Lightest edge in C can be used in an MST

(Proof via exchange with heavier cycle edge)

Finding MST Edges

- Cut property
- Arbitrary subset $S \subset V$
- Cut edges $C=\{\{u, v\} \in E: u \in S, v \in V \backslash S\} 3$
\Rightarrow Lightest edge in C can be used in an MST
 (Proof via exchange with heavier cycle edge)
- Cycle property
- Arbitrary cycle C in G

Finding MST Edges

- Cut property
- Arbitrary subset $S \subset V$
- Cut edges $C=\{\{u, v\} \in E: u \in S, v \in V \backslash S\} 3$
\Rightarrow Lightest edge in C can be used in an MST
 (Proof via exchange with heavier cycle edge)
- Cycle property
- Arbitrary cycle C in G

Finding MST Edges

- Cut property
- Arbitrary subset $S \subset V$
- Cut edges $C=\{\{u, v\} \in E: u \in S, v \in V \backslash S\}$
\Rightarrow Lightest edge in C can be used in an MST
(Proof via exchange with heavier cycle edge)

- Cycle property
- Arbitrary cycle C in G
\Rightarrow Heaviest edge in C is not needed in an MST (Proof via exchange with lighter cycle edge)

Finding MST Edges

- Cut property
- Arbitrary subset $S \subset V$
- Cut edges $C=\{\{u, v\} \in E: u \in S, v \in V \backslash S\}$
\Rightarrow Lightest edge in C can be used in an MST
(Proof via exchange with heavier cycle edge)

- Cycle property
- Arbitrary cycle C in G
\Rightarrow Heaviest edge in C is not needed in an MST
(Proof via exchange with lighter cycle edge)

Essential properties for developing MST algorithms

Jarnik-Prim Algorithm

Use cut property to gradually grow the MST

1. Start with empty MST T
2. Select random start vertex $S=\{s\}$
3. Repeat $n-1$ times
(a) Find edge $\{u, v\}$ fulfilling cut property for S
(b) $S=S \cup\{v\}$
(c) $T=T \cup\{\{u, v\}\}$

Jarnik-Prim Algorithm

Use cut property to gradually grow the MST

1. Start with empty MST T
2. Select random start vertex $S=\{s\}$
3. Repeat $n-1$ times
(a) Find edge $\{u, v\}$ fulfilling cut property for S
(b) $S=S \cup\{v\}$
(c) $T=T \cup\{\{u, v\}\}$

Jarnik-Prim Algorithm

Use cut property to gradually grow the MST

1. Start with empty MST T
2. Select random start vertex $S=\{s\}$
3. Repeat $n-1$ times
(a) Find edge $\{u, v\}$ fulfilling cut property for S
(b) $S=S \cup\{v\}$
(c) $T=T \cup\{\{u, v\}\}$

Jarnik-Prim Algorithm

Use cut property to gradually grow the MST

1. Start with empty MST T
2. Select random start vertex $S=\{s\}$
3. Repeat $n-1$ times
(a) Find edge $\{u, v\}$ fulfilling cut property for S
(b) $S=S \cup\{v\}$
(c) $T=T \cup\{\{u, v\}\}$

Jarnik-Prim Algorithm

Use cut property to gradually grow the MST

1. Start with empty MST T
2. Select random start vertex $S=\{s\}$
3. Repeat $n-1$ times
(a) Find edge $\{u, v\}$ fulfilling cut property for S
(b) $S=S \cup\{v\}$
(c) $T=T \cup\{\{u, v\}\}$

Jarnik-Prim Algorithm

Use cut property to gradually grow the MST

1. Start with empty MST T
2. Select random start vertex $S=\{s\}$
3. Repeat $n-1$ times
(a) Find edge $\{u, v\}$ fulfilling cut property for S
(b) $S=S \cup\{v\}$
(c) $T=T \cup\{\{u, v\}\}$

Jarnik-Prim Algorithm

Use cut property to gradually grow the MST

1. Start with empty MST T
2. Select random start vertex $S=\{s\}$
3. Repeat $n-1$ times
(a) Find edge $\{u, v\}$ fulfilling cut property for S
(b) $S=S \cup\{v\}$
(c) $T=T \cup\{\{u, v\}\}$

Jarnik-Prim Algorithm

Use cut property to gradually grow the MST

1. Start with empty MST T
2. Select random start vertex $S=\{s\}$
3. Repeat $n-1$ times
(a) Find edge $\{u, v\}$ fulfilling cut property for S
(b) $S=S \cup\{v\}$
(c) $T=T \cup\{\{u, v\}\}$

Jarnik-Prim Algorithm

Use cut property to gradually grow the MST

1. Start with empty MST T
2. Select random start vertex $S=\{s\}$
3. Repeat $n-1$ times
(a) Find edge $\{u, v\}$ fulfilling cut property for S
(b) $S=S \cup\{v\}$
(c) $T=T \cup\{\{u, v\}\}$

Jarnik-Prim Algorithm

Use cut property to gradually grow the MST

1. Start with empty MST T
2. Select random start vertex $S=\{s\}$
3. Repeat $n-1$ times
(a) Find edge $\{u, v\}$ fulfilling cut property for S
(b) $S=S \cup\{v\}$
(c) $T=T \cup\{\{u, v\}\}$

\Rightarrow Lightest edge using PQ
Good $\mathcal{O}(m+n \log n)$
using Fibonacci Heaps

Kruskal's Algorithm

Use cut and cycle property to merge subtrees of MST

1. Start with empty MST T
2. Sort edges in ascending order of weight
3. Iterate over all edges $\{u, v\}$
(a) u, v in different subtrees $\Rightarrow T=T \cup\{\{u, v\}\}$ (cut property)
(b) u, v in same subtree \Rightarrow continue (cycle property)

Kruskal's Algorithm

Use cut and cycle property to merge subtrees of MST

1. Start with empty MST T
2. Sort edges in ascending order of weight
3. Iterate over all edges $\{u, v\}$
(a) u, v in different subtrees $\Rightarrow T=T \cup\{\{u, v\}\}$ (cut property)
(b) u, v in same subtree \Rightarrow continue (cycle property)

Kruskal's Algorithm

Use cut and cycle property to merge subtrees of MST

1. Start with empty MST T
2. Sort edges in ascending order of weight
3. Iterate over all edges $\{u, v\}$
(a) u, v in different subtrees $\Rightarrow T=T \cup\{\{u, v\}\}$ (cut property)
(b) u, v in same subtree \Rightarrow continue (cycle property)

Kruskal's Algorithm

Use cut and cycle property to merge subtrees of MST

1. Start with empty MST T
2. Sort edges in ascending order of weight
3. Iterate over all edges $\{u, v\}$
(a) u, v in different subtrees $\Rightarrow T=T \cup\{\{u, v\}\}$ (cut property)
(b) u, v in same subtree \Rightarrow continue (cycle property)

Kruskal's Algorithm

Use cut and cycle property to merge subtrees of MST

1. Start with empty MST T
2. Sort edges in ascending order of weight
3. Iterate over all edges $\{u, v\}$
(a) u, v in different subtrees $\Rightarrow T=T \cup\{\{u, v\}\}$ (cut property)
(b) u, v in same subtree \Rightarrow continue (cycle property)

Kruskal's Algorithm

Use cut and cycle property to merge subtrees of MST

1. Start with empty MST T
2. Sort edges in ascending order of weight
3. Iterate over all edges $\{u, v\}$
(a) u, v in different subtrees $\Rightarrow T=T \cup\{\{u, v\}\}$ (cut property)
(b) u, v in same subtree \Rightarrow continue (cycle property)

Kruskal's Algorithm

Use cut and cycle property to merge subtrees of MST

1. Start with empty MST T
2. Sort edges in ascending order of weight
3. Iterate over all edges $\{u, v\}$
(a) u, v in different subtrees $\Rightarrow T=T \cup\{\{u, v\}\}$ (cut property)
(b) u, v in same subtree \Rightarrow continue (cycle property)

Kruskal's Algorithm

Use cut and cycle property to merge subtrees of MST

1. Start with empty MST T
2. Sort edges in ascending order of weight
3. Iterate over all edges $\{u, v\}$
(a) u, v in different subtrees $\Rightarrow T=T \cup\{\{u, v\}\}$ (cut property)
(b) u, v in same subtree \Rightarrow continue (cycle property)

Kruskal's Algorithm

Use cut and cycle property to merge subtrees of MST

1. Start with empty MST T
2. Sort edges in ascending order of weight
3. Iterate over all edges $\{u, v\}$
(a) u, v in different subtrees $\Rightarrow T=T \cup\{\{u, v\}\}$ (cut property)
(b) u, v in same subtree \Rightarrow continue (cycle property)

\Rightarrow Fast merging of subtrees using Union-Find

Good $\mathcal{O}(m \log m)$

Comparison

Pro Jarnik-Prim

- Asymptotically good for all m, n
- Very fast for $m \gg n$

Pro Kruskal

- Fast for $m=\mathcal{O}(n)$

- Only requires adjacency lists
- Profits from fast sorting (e.g. parallel/integers)
- Additional improvements available (e.g. FilterKruskal)
\Rightarrow Choose algorithm based on structure of graph
- Network
- Directed graph $G=(V, E, c)$
- Source node $s\left(d_{\text {out }}(s)>0\right)$
- Sink node $t\left(d_{\text {in }}(t)>0\right)$
- Edge capacity $c(e)>0$

- Flow $f: E \rightarrow \mathcal{R}^{+}$
- For each edge $e \in E: 0 \leq f(e) \leq c(e)$
- For each vertex $v \in V \backslash\{s, t\}: \sum_{u \in \Gamma_{\text {in }}} f(u, v)=\sum_{u \in \Gamma_{\text {out }}} f(v, u)$
- $\operatorname{val}(f)=\sum_{u \in V} f(s, u)-\sum_{u \in V} f(u, s)=\sum_{u \in V} f(u, t)-\sum_{u \in V} f(t, u)$

- Flow $f: E \rightarrow \mathcal{R}^{+}$
- Flow is non-negative and limited by capacity
- For each vertex $v \in V \backslash\{s, t\}: \sum_{u \in \Gamma_{\text {in }}} f(u, v)=\sum_{u \in \Gamma_{\text {out }}} f(v, u)$
- $\operatorname{val}(f)=\sum_{u \in V} f(s, u)-\sum_{u \in V} f(u, s)=\sum_{u \in V} f(u, t)-\sum_{u \in V} f(t, u)$

- Flow $f: E \rightarrow \mathcal{R}^{+}$
- Flow is non-negative and limited by capacity
- Incoming flow = outgoing flow for each intermediate vertex
- $\operatorname{val}(f)=\sum_{u \in V} f(s, u)-\sum_{u \in V} f(u, s)=\sum_{u \in V} f(u, t)-\sum_{u \in V} f(t, u)$

Flow Networks (2/3)

- Flow $f: E \rightarrow \mathcal{R}^{+}$
- Flow is non-negative and limited by capacity
- Incoming flow = outgoing flow for each intermediate vertex
- Value of flow is outgoing/incoming flow from s / t

Flow Networks (2/3)

- Flow $f: E \rightarrow \mathcal{R}^{+}$
- Flow is non-negative and limited by capacity
- Incoming flow = outgoing flow for each intermediate vertex
- Value of flow is outgoing/incoming flow from s / t
\Rightarrow Find flow f with maximum value

- (Minimum) $s-t$ cuts
- Partition $V=S \cup T$ into disjoint sets S and T
- $s \in S$ and $t \in T$
- Capacity of cut is $\sum\{c(u, v): u \in S, v \in T\}$

- (Minimum) $s-t$ cuts
- Partition $V=S \cup T$ into disjoint sets S and T
- $s \in S$ and $t \in T$
- Capacity of cut is $\sum\{c(u, v): u \in S, v \in T\}$

\Rightarrow Duality: Capacity of min. $s-t$ cut = value of max. $s-t$ flow

Applications

Oil pipelines

Image processing

Traffic flow on highways
Task Queue

Task scheduling
"Trans-Alaska oil pipeline, near Fairbanks" flickr photo by amerune https://flickr.com/photos/amerune/9294639633 shared under a CC (BY) license By Robert Jack Will - http://www.flickr.com/photos/bob406/3860422159/, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=10075775 By QueSera4710 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=31586266
By I, Cburnett, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2233464

Ford Fulkerson Algorithm

- General Idea (augmenting paths)
- Find s - t path with spare capacity
- Sature edge with smallest spare capacity
- Adjust remaining capacities (create residual graph)

Ford Fulkerson Algorithm

- General Idea (augmenting paths)
- Find s - t path with spare capacity
- Sature edge with smallest spare capacity
- Adjust remaining capacities (create residual graph)

Ford Fulkerson Algorithm

- General Idea (augmenting paths)
- Find s - t path with spare capacity
- Sature edge with smallest spare capacity
- Adjust remaining capacities (create residual graph)

Ford Fulkerson Algorithm

- General Idea (augmenting paths)
- Find s - t path with spare capacity
- Sature edge with smallest spare capacity
- Adjust remaining capacities (create residual graph)

Ford Fulkerson Algorithm

- General Idea (augmenting paths)
- Find s - t path with spare capacity
- Sature edge with smallest spare capacity
- Adjust remaining capacities (create residual graph)

Ford Fulkerson Algorithm

- General Idea (augmenting paths)
- Find s - t path with spare capacity
- Sature edge with smallest spare capacity
- Adjust remaining capacities (create residual graph)

Ford Fulkerson Algorithm

- General Idea (augmenting paths)
- Find s - t path with spare capacity
- Sature edge with smallest spare capacity
- Adjust remaining capacities (create residual graph)

Ford Fulkerson Algorithm

- General Idea (augmenting paths)
- Find s - t path with spare capacity
- Sature edge with smallest spare capacity
- Adjust remaining capacities (create residual graph)

Ford Fulkerson Algorithm

- General Idea (augmenting paths)
- Find s - t path with spare capacity
- Sature edge with smallest spare capacity
- Adjust remaining capacities (create residual graph)

No more augmenting path

Ford Fulkerson Algorithm

- General Idea (augmenting paths)
- Find s - t path with spare capacity
- Sature edge with smallest spare capacity
- Adjust remaining capacities (create residual graph)

Goodish $\mathcal{O}(m \cdot \operatorname{val}(f))$

Ford Fulkerson Correctness (1/2)

Trivial: Ford Fulkerson computes valid flow
\Rightarrow Remaining: show that flow value is maximal

- At termination we have no augmenting paths in G_{f}
- Define cut $(S, V \backslash S)$ with $S:=\left\{v \in V: v\right.$ reachable from s in $\left.G_{f}\right\}$

Ford Fulkerson Correctness (2/2)

Lemma 1: For any cut (S, T):

$$
\operatorname{val}(f)=\sum_{e \in E \cap S \times T} f_{e}-\sum_{e \in E \cap T \times S} f_{e}
$$

Lemma 2: For each edge $e \in E: c_{f}(e)=0 \Rightarrow f(e)=0$

Ford Fulkerson Correctness (2/2)

Lemma 1: For any cut (S, T):

$$
\operatorname{val}(f)=\sum_{e \in E \cap S \times T} f_{e}-\sum_{e \in E \cap T \times S} f_{e}
$$

Lemma 2: For each edge $e \in E: c_{f}(e)=0 \Rightarrow f(e)=0$
Observation: For each edge $e \in E \cap S \times T: c_{f}(e)=0 \quad \Rightarrow f(e)=0$

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in E \cap S \times T} f_{e}-\sum_{e \in E \cap T \times S} f_{e} \\
& =\sum_{e \in E \cap S \times T} f_{e}=\text { cut capacity } \\
& \geq \text { maximum flow }
\end{aligned}
$$

Ford Fulkerson Correctness (2/2)

Lemma 1: For any cut (S, T):

$$
\operatorname{val}(f)=\sum_{e \in E \cap S \times T} f_{e}-\sum_{e \in E \cap T \times S} f_{e}
$$

Lemma 2: For each edge $e \in E: c_{f}(e)=0 \Rightarrow f(e)=0$
Observation: For each edge $e \in E \cap S \times T: c_{f}(e)=0 \quad \Rightarrow f(e)=0$

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in E \cap S \times T} f_{e}-\sum_{e \in E \cap T \times S} f_{e} \\
& =\sum_{e \in E \cap S \times T} f_{e}=\text { cut capacity } \\
& \geq \text { maximum flow }
\end{aligned}
$$

\Rightarrow Maximum flow $=$ minimum cut

Shortcomings of Ford Fulkerson

- Dependence on val (f) can lead to long running times

Shortcomings of Ford Fulkerson

- Dependence on val (f) can lead to long running times

Shortcomings of Ford Fulkerson

- Dependence on val (f) can lead to long running times

Shortcomings of Ford Fulkerson

- Dependence on val (f) can lead to long running times

Shortcomings of Ford Fulkerson

- Dependence on val (f) can lead to long running times

Shortcomings of Ford Fulkerson

- Dependence on val (f) can lead to long running times

- Alternatives
- 1973: Dinic in $\mathcal{O}(m n \cdot \log (\operatorname{val}(f)))$
- 1983: Sleator-Tarjan in $\mathcal{O}(m n \cdot \log (n))$
- 1986: Goldberg-Tarjan in $\mathcal{O}\left(m n \cdot \log \left(\frac{n^{2}}{m}\right)\right)$
- 1997: Goldberg-Rao in $\mathcal{O}\left(\min \left\{n^{\frac{2}{3}}, m^{\frac{1}{2}}\right\} \cdot m \log \left(\frac{n^{2}}{m}\right) \log U\right)$
- 2013: Orlin and KRT in $\mathcal{O}(m n)$

Matchings

Given undirected Graph $G=(V, E)$
$M \subseteq E$ is matching $\Leftrightarrow M$ is pairwise non-adjacent
$M \subseteq E$ is maximal matching $\Leftrightarrow M$ is no subset of any other matching in G

Matchings

Given undirected Graph $G=(V, E)$
$M \subseteq E$ is matching $\Leftrightarrow M$ is pairwise non-adjacent
$M \subseteq E$ is maximal matching $\Leftrightarrow M$ is no subset of any other matching in G

$M \subseteq E$ is maximum matching $\Leftrightarrow M$ has largest possible number of edges

Applications

- In general graphs
- Detection of chemical structures of aromatic compounds
- Computational/mathematical chemistry (Hosoya index)
- In bipartite graphs
- Sub-problem for subtree isomorphism
- Sub-problem for transportation problems

Finding Maximum Bipartite Matchings (1/2)

Given undirected bipartite Graph $G=(V=(X, Y), E)$

Finding Maximum Bipartite Matchings (1/2)

Given undirected bipartite Graph $G=(V=(X, Y), E)$

- Algorithm (unit maximum flow)

1. Direct edges from X to Y
2. Add super source s and connect to $X \longleftrightarrow$ unit costs
3. Add super $\operatorname{sink} t$ and connect to Y

Finding Maximum Bipartite Matchings (1/2)

Given undirected bipartite Graph $G=(V=(X, Y), E)$

- Algorithm (unit maximum flow)

1. Direct edges from X to Y
2. Add super source s and connect to $X \longleftrightarrow$ unit costs
3. Add super $\operatorname{sink} t$ and connect to Y
\Rightarrow Reduce problem to maximum $s-t$ flow

Finding Maximum Bipartite Matchings (1/2)

Given undirected bipartite Graph $G=(V=(X, Y), E)$

- Algorithm (unit maximum flow)

1. Direct edges from X to Y
2. Add super source s and connect to $X \longleftrightarrow$ unit costs
3. Add super $\operatorname{sink} t$ and connect to Y
\Rightarrow Reduce problem to maximum $s-t$ flow
Goodish $\mathcal{O}(n m)$

Finding Maximum Bipartite Matchings (2/2)

Can we do better?

- Hopcroft-Karp in $\mathcal{O}(m \sqrt{n})$
- Based on augmenting paths
- Find maximal set of shortest augmenting paths

Finding Maximum Bipartite Matchings (2/2)

Can we do better?

- Hopcroft-Karp in $\mathcal{O}(m \sqrt{n})$
- Based on augmenting paths
- Find maximal set of shortest augmenting paths
- Madry's algorithm using electric flows in $\mathcal{O}\left(m^{\frac{10}{7}}\right)$
- Good for sparse graphs

Finding Maximum Bipartite Matchings (2/2)

Can we do better?

- Hopcroft-Karp in $\mathcal{O}(m \sqrt{n})$
- Based on augmenting paths
- Find maximal set of shortest augmenting paths
- Madry's algorithm using electric flows in $\mathcal{O}\left(m^{\frac{10}{7}}\right)$
- Good for sparse graphs
- Matrix multiplication in $\mathcal{O}\left(n^{2.376}\right)$
- Better in theory for dense graphs
- In practice Hopcroft-Karp still faster

Finding Maximum Bipartite Matchings (2/2)

Can we do better?

- Hopcroft-Karp in $\mathcal{O}(m \sqrt{n})$
- Based on augmenting paths
- Find maximal set of shortest augmenting paths
- Madry's algorithm using electric flows in $\mathcal{O}\left(m^{\frac{10}{7}}\right)$
- Good for sparse graphs
- Matrix multiplication in $\mathcal{O}\left(n^{2.376}\right)$
- Better in theory for dense graphs
- In practice Hopcroft-Karp still faster
- Chandran and Hochbaum in $\mathcal{O}\left(\min \{|X| k, m\}+\sqrt{k} \min \left\{k^{2}, m\right\}\right)$
- Output-sensitive algorithm

Finding Maximum Matchings

- In weighted bipartite graphs
- Find matching with maximum value
- Modified augmenting paths algorithm in $\mathcal{O}\left(n^{2} \log n+n m\right)$

Finding Maximum Matchings

- In weighted bipartite graphs
- Find matching with maximum value
- Modified augmenting paths algorithm in $\mathcal{O}\left(n^{2} \log n+n m\right)$

- In general graphs
- Edmonds' algorithm in $\mathcal{O}\left(n^{2} m\right)$
- Improved version in time $\mathcal{O}(\sqrt{n} m)$

Coloring

Given undirected Graph $G=(V, E)$ (without self-loops)

- Vertex coloring
- Label each vertex with a color
- No two vertices sharing an edge have the same color

Coloring

Given undirected Graph $G=(V, E)$ (without self-loops)

- Vertex coloring
- Label each vertex with a color
- No two vertices sharing an edge have the same color

- k-coloring
- Vertex coloring that uses at most k-colors
- Smallest possible k of G is called chromatic number $\chi(G)$

Related Problems

- Edge coloring
- Label each edge with a color
- No two edges sharing a vertex have the same color

- Improper colorings (i.e. Ramsey theory)
- Label each edge with a color
- Two edges sharing a vertex are allowed the same color
- Example: Friendship theorem

Applications

Map coloring

Sudoku solving

Mobile Radio Frequency Assignment
"exam" flickr photo by krzyzanowskim https://flickr.com/photos/krzakptak/2240483862 shared under a Creative Commons (BY) license
"Sudoku" flickr photo by Jason Cartwright https://flickr.com/photos/jasoncartwright/130182586 shared under a Creative Commons (BY) license By Map_of_USA_four_colours.svg: of the modification : Derfel73) Dbenbennderivative work: Tomwsulcer (talk) - Map_of_USA_four_colours.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=19143208

Finding k-Colorings

- Find vertex coloring with minimum number of colors \Rightarrow Optimization problem is NP-hard

Finding k-Colorings

- Find vertex coloring with minimum number of colors
\Rightarrow Optimization problem is NP-hard
- Exact algorithms for general graphs
- Brute-force search for a k-coloring in $\mathcal{O}\left(k^{n}\right)$
- Best exact algorithm for finding k-coloring in $\mathcal{O}\left(2^{n} n\right)$

Finding k-Colorings

- Find vertex coloring with minimum number of colors
\Rightarrow Optimization problem is NP-hard
- Exact algorithms for general graphs
- Brute-force search for a k-coloring in $\mathcal{O}\left(k^{n}\right)$
- Best exact algorithm for finding k-coloring in $\mathcal{O}\left(2^{n} n\right)$
- Even worse for general graphs
- No constant factor approximations in polynomial time
- Approximable with absolute error guarantee of 1 on planar graphs
\Rightarrow Ugly How to find good heuristics?

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort colors
2. Sort vertices with predefined order
3. Iterate over vertices in sorted order
(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Shortcomings of Greedy Algorithm

- Quality of approximation heavily dependent on vertex ordering

\Rightarrow Finding perfect ordering is NP-hard

Shortcomings of Greedy Algorithm

- Quality of approximation heavily dependent on vertex ordering

\Rightarrow Finding perfect ordering is NP-hard
- Heuristic ordering strategies
- Sort orders by their decreasing degree
- Better upper bound than random ordering

Finding Colorings in Practice

- Tabu search
- Temporarily allow invalid solutions
- Minimize conflicts and discourage repetition

Finding Colorings in Practice

- Tabu search
- Temporarily allow invalid solutions
- Minimize conflicts and discourage repetition

- Reductions
- Remove subgraphs with certain structure
- Subgraphs can be solved exactly

Reduce

Traveling Salesman Problem

TSP is the prototypical optimization problem
Preliminary: Hamiltonian Cycle Problem
Is there a cycle in graph G that visits each vertex exactly once?

$$
\mathbb{M}:=\{G=(V, E): \exists C \subseteq E:|C|=|V|, C \text { is a cycle }\}
$$

Traveling Salesman Problem

TSP is the prototypical optimization problem
Preliminary: Hamiltonian Cycle Problem
Is there a cycle in graph G that visits each vertex exactly once?

$$
\mathbb{M}:=\{G=(V, E): \exists C \subseteq E:|C|=|V|, \mathrm{C} \text { is a cycle }\}
$$

Traveling Salesman Problem

TSP is the prototypical optimization problem

Definition:

Given graph $G=(V, E, \omega)$ find a simple cycle C such that $|C|=|V|$ and

$$
\sum_{e \in C} \omega(e) \text { is minimized. }
$$

Traveling Salesman Problem

TSP is the prototypical optimization problem

Definition:

Given graph $G=(V, E, \omega)$ find a simple cycle C such that $|C|=|V|$ and

$$
\sum_{e \in C} \omega(e) \text { is minimized. }
$$

Traveling Salesman Problem

TSP is the prototypical optimization problem

Definition:

Given graph $G=(V, E, \omega)$ find a simple cycle C such that $|C|=|V|$ and

$$
\sum_{e \in C} \omega(e) \text { is minimized. }
$$

Traveling Salesman Problem

TSP is the prototypical optimization problem

Definition:

Given graph $G=(V, E, \omega)$ find a simple cycle C such that $|C|=|V|$ and

$$
\sum_{e \in C} \omega(e) \text { is minimized. }
$$

- the TSP is NP-hard

If $\omega(e)=c$ for all $e \in E$ then TSP \sim Hamiltonian Cycle

- it is NP-hard to approximate the general TSP within any factor α

$$
\begin{aligned}
& \text { Ugly:NP-hard } \\
& \text { not APX }
\end{aligned}
$$

Traveling Salesman Problem

It is NP-hard to approximate the general TSP within any factor α.
Given HC instance $G=(V, E)$ consider TSP instance $G^{\prime}=(V, V \times V)$ and

$$
\omega(e)= \begin{cases}1 & \text { if } e \in E \\ \alpha n & \text { else }\end{cases}
$$

- if G has $\mathrm{HC} \Leftrightarrow$ there is a TSP tour of weight n in G^{\prime} $\Rightarrow \alpha$-approx. algorithm delivers tour with weight $\leq \alpha n$
- if G has no $\mathrm{HC} \Leftrightarrow$ every TSP tour in G^{\prime} has weight $\geq \alpha n+n-1>\alpha n$
- if α-approx algorithm finds tour with weight $\leq \alpha n$ in G^{\prime} \Rightarrow HC exists in G

Traveling Salesman Problem

It is NP-hard to approximate the general TSP within any factor α.
Given HC instance $G=(V, E)$ consider TSP instance $G^{\prime}=(V, V \times V)$ and

$$
\omega(e)= \begin{cases}1 & \text { if } e \in E \\ \alpha n & \text { else }\end{cases}
$$

- if G has $\mathrm{HC} \Leftrightarrow$ there is a TSP tour of weight n in G^{\prime} $\Rightarrow \alpha$-approx. algorithm delivers tour with weight $\leq \alpha n$
- if G has no $\mathrm{HC} \Leftrightarrow$ every TSP tour in G^{\prime} has weight $\geq \alpha n+n-1>\alpha n$
- if α-approx algorithm finds tour with weight $\leq \alpha n$ in G^{\prime} \Rightarrow HC exists in G

If we restrict the general TSP we can do better

Metric Traveling Salesman Problem

- $G=(V, E, \omega)$ is undirected, connected and obeys the triangle inequality

$$
\forall u, v, w \in V: \omega((u, w)) \leq \omega((u, v))+\omega((v, w))
$$

Metric Traveling Salesman Problem

- $G=(V, E, \omega)$ is undirected, connected and obeys the triangle inequality

$$
\forall u, v, w \in V: \omega((u, w)) \leq \omega((u, v))+\omega((v, w))
$$

- the metric completion of $G=(V, E, \omega)$ is defined as $G^{\prime}=\left(V, V \times V, \omega^{\prime}\right)$ with

$$
\omega^{\prime}(e=(u, v))= \begin{cases}\omega(e) & \text { if } e \in E \\ \omega(u, \ldots, v) & \text { for shortest path from } u \text { to } v \text { in } E\end{cases}
$$

Metric Traveling Salesman Problem

2-Approximation via MST

Lemma
Given $G=(V, E, \omega)$ and its MST T,

$$
\omega(T) \leq \text { weight of any TSP tour of } G \text {. }
$$

This includes optimal mimimum weight tour OPT.

Metric Traveling Salesman Problem

2-Approximation via MST

- given $G=(V, E, \omega), \omega(e)=1$

Metric Traveling Salesman Problem

2-Approximation via MST

- given $G=(V, E, \omega), \omega(e)=1$
- metric completion, $\omega\left(e^{\prime}\right)=2$

Metric Traveling Salesman Problem

2-Approximation via MST

- given $G=(V, E, \omega), \omega(e)=1$
- metric completion, $\omega\left(e^{\prime}\right)=2$
- compute MST $T, \omega(T) \leq$ OPT

Metric Traveling Salesman Problem

2-Approximation via MST

- given $G=(V, E, \omega), \omega(e)=1$
- metric completion, $\omega\left(e^{\prime}\right)=2$
- compute MST $T, \omega(T) \leq$ OPT
double edges of $T, \omega\left(T^{\prime}\right) \leq 2$ PPT

Metric Traveling Salesman Problem

2-Approximation via MST

- given $G=(V, E, \omega), \omega(e)=1$
- metric completion, $\omega\left(e^{\prime}\right)=2$
- compute MST $T, \omega(T) \leq$ OPT
double edges of $T, \omega\left(T^{\prime}\right) \leq 2$ PPT
- compute Eulerian tour

$$
t=\{f, a, f, d, f, b, f, e, f, c, f\}
$$

Metric Traveling Salesman Problem

2-Approximation via MST

- given $G=(V, E, \omega), \omega(e)=1$
- metric completion, $\omega\left(e^{\prime}\right)=2$
- compute MST $T, \omega(T) \leq$ OPT
double edges of $T, \omega\left(T^{\prime}\right) \leq 2$ PPT
- compute Eulerian tour

$$
t=\{f, a, f, d, f, b, f, e, f, c, f\}
$$

- shortcut duplicates, $\omega\left(t^{\prime}\right) \leq \omega(t)$ tria. ineq.

$$
t^{\prime}=\{f, a, d, b, e, c, f\} \Rightarrow \omega\left(t^{\prime}\right)=10 \leq 2 \mathrm{OPT}
$$

Metric Traveling Salesman Problem

2-Approximation via MST

- given $G=(V, E, \omega), \omega(e)=1$
- metric completion, $\omega\left(e^{\prime}\right)=2$
- compute MST $T, \omega(T) \leq$ OPT
- double edges of $T, \omega\left(T^{\prime}\right) \leq 2$ PPT
- compute Eulerian tour

$$
t=\{f, a, f, d, f, b, f, e, f, c, f\}
$$

- shortcut duplicates, $\omega\left(t^{\prime}\right) \leq \omega(t)$ tria. ineq.

$$
t^{\prime}=\{f, a, d, b, e, c, f\} \Rightarrow \omega\left(t^{\prime}\right)=10 \leq 2 \mathrm{OPT}
$$

- optimal tour
$t^{*}=\{f, a, b, c, d, e, f\} \Rightarrow \omega\left(t^{*}\right)=6$

Metric Traveling Salesman Problem

2-Approximation via MST

- given $G=(V, E, \omega), \omega(e)=1$
- metric completion, $\omega\left(e^{\prime}\right)=2$
- compute MST $T, \omega(T) \leq$ OPT
- double edges of $T, \omega\left(T^{\prime}\right) \leq$ 2OPT
- compute Eulerian tour

$$
t=\{f, a, f, d, f, b, f, e, f, c, f\}
$$

- shortcut duplicates, $\omega\left(t^{\prime}\right) \leq \omega(t)$ tria. ineq.

$$
t^{\prime}=\{f, a, d, b, e, c, f\} \Rightarrow \omega\left(t^{\prime}\right)=10 \leq 2 \mathrm{OPT}
$$

- optimal tour

$$
t^{*}=\{f, a, b, c, d, e, f\} \Rightarrow \omega\left(t^{*}\right)=6
$$

Good: $\mathrm{O}(|E|+|V| \log |V|)$

Traveling Salesman Problem

- Metric TSP: $\frac{3}{2}$-approximation known
- Euclidean TSP: metric is Euclidean distance
- Polynomial-time Approximation scheme (PTAS) known

Traveling Salesman Problem

Applications

- manifold applications in planning, logistics and manufacturing
- astronomy: minimize telescope movement between observed objects
- biology: matching genome sequences
- Vehicle Routing Problem: solve TSP for a fleet of vehicles
- Traveling Purchaser Problem: given different marketplaces find mimimum combined cost of traveling and purchasing a list of goods
- many more

Independent Sets

Given undirected Graph $G=(V, E)$
$I \subseteq V$ independent set \Leftrightarrow no two vertices in I are adjacent in G
$I \subseteq V$ maximal independent set
\Leftrightarrow I is no subset of any other independent set

Independent Sets

Given undirected Graph $G=(V, E)$
$I \subseteq V$ independent set \Leftrightarrow no two vertices in I are adjacent in G
$I \subseteq V$ maximal independent set
\Leftrightarrow I is no subset of any other independent set

$I \subseteq V$ maximum independent set (MIS)
$\Leftrightarrow I$ is independent set with largest cardinality

Related Problems

- Vertex cover (VC): Find set of vertices that cover all edges \Rightarrow Complement of MIS is minimum vertex cover (MVC)

MIS

- Clique: Find set of vertices that are pairwise adjacent \Rightarrow MIS in complement graph is maximum clique

MIS

Maximum Clique

Applications

Partitioning of social networks
Map labeling/shortest-path computations

Mesh edge ordering in rendering
Finding protein-protein interactions

[^0]
Finding Maximum Independent Sets

- Find independent set with maximum number of vertices (MIS) \Rightarrow Optimization problem is NP-hard

Finding Maximum Independent Sets

- Find independent set with maximum number of vertices (MIS)
\Rightarrow Optimization problem is NP-hard
- Exact algorithms in general graphs
- Brute-force algorithm in $\mathcal{O}\left(n^{2} 2^{n}\right)$
- Best exact algorithm with polynomial space in $\mathcal{O}\left(1.1996^{n}\right)$

Finding Maximum Independent Sets

- Find independent set with maximum number of vertices (MIS) \Rightarrow Optimization problem is NP-hard
- Exact algorithms in general graphs
- Brute-force algorithm in $\mathcal{O}\left(n^{2} 2^{n}\right)$
- Best exact algorithm with polynomial space in $\mathcal{O}\left(1.1996^{n}\right)$
- Even worse for general graphs
- No constant factor approximations in polynomial time
- Polynomial time approximations for planar and unit disk graphs
\Rightarrow Ugly How to find good heuristics?

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort vertices in buckets by ascending degree
2. Vertices remaining?
(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort vertices in buckets by ascending degree
2. Vertices remaining?
(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort vertices in buckets by ascending degree
2. Vertices remaining?
(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort vertices in buckets by ascending degree
2. Vertices remaining?
(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort vertices in buckets by ascending degree
2. Vertices remaining?
(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort vertices in buckets by ascending degree
2. Vertices remaining?
(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort vertices in buckets by ascending degree
2. Vertices remaining?
(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort vertices in buckets by ascending degree
2. Vertices remaining?
(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort vertices in buckets by ascending degree
2. Vertices remaining?
(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort vertices in buckets by ascending degree
2. Vertices remaining?
(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort vertices in buckets by ascending degree
2. Vertices remaining?
(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors

Greedy Heuristic

Given undirected Graph $G=(V, E)$ with bounded degree Δ

1. Sort vertices in buckets by ascending degree
2. Vertices remaining?
(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors
$\Rightarrow \frac{\Delta+2}{3}$ approximation

Finding Independent Sets in Practice

- Local Search
- Swap vertices to gradually find better solutions
- Use different diversification methods

Finding Independent Sets in Practice

- Local Search
- Swap vertices to gradually find better solutions
- Use different diversification methods

- Reductions
- Find vertices that are contained in any maximum independent set
- Remove vertices to reduce problem size

Reduce

ε-Balanced Graph and Hypergraph Partitioning

Partition (hyper)graph $G=\left(V, E, c: V \rightarrow \mathrm{R}_{>0}, \omega: E \rightarrow \mathrm{R}_{>0}\right)$ into k disjoint blocks V_{1}, \ldots, V_{k} s.t.

- blocks V_{i} are roughly equal-sized:

$$
c\left(V_{i}\right) \leq(1+\varepsilon)\left\lceil\frac{c(V)}{k}\right\rceil
$$

- objective function on edges is minimized

ε-Balanced Graph and Hypergraph Partitioning

Partition (hyper)graph $G=\left(V, E, c: V \rightarrow \mathrm{R}_{>0}, \omega: E \rightarrow \mathrm{R}_{>0}\right)$ into k disjoint blocks V_{1}, \ldots, V_{k} s.t.

- blocks V_{i} are roughly equal-sized:

$$
c\left(V_{i}\right) \leq(1+\varepsilon)\left\lceil\frac{c(V)}{k}\right\rceil
$$

- objective function on edges is minimized

ε-Balanced Graph and Hypergraph Partitioning

Partition (hyper)graph $G=\left(V, E, c: V \rightarrow \mathrm{R}_{>0}, \omega: E \rightarrow \mathrm{R}_{>0}\right)$ into k disjoint blocks V_{1}, \ldots, V_{k} s.t.

- blocks V_{i} are roughly equal-sized:

$$
c\left(V_{i}\right) \leq(1+\varepsilon)\left\lceil\frac{c(V)}{k}\right\rceil
$$

- objective function on edges is minimized

ε-Balanced Graph and Hypergraph Partitioning

Partition (hyper)graph $G=\left(V, E, c: V \rightarrow \mathrm{R}_{>0}, \omega: E \rightarrow \mathrm{R}_{>0}\right)$ into k disjoint blocks V_{1}, \ldots, V_{k} s.t.

- blocks V_{i} are roughly equal-sized:

$$
c\left(V_{i}\right) \leq(1+\varepsilon)\left\lceil\frac{c(V)}{k}\right\rceil
$$

- objective function on edges is minimized

Common Objectives:

- Graphs:
- cut: $\sum_{e \in \mathrm{cut}} \omega(e)$

ε-Balanced Graph and Hypergraph Partitioning

Partition (hyper)graph $G=\left(V, E, c: V \rightarrow \mathrm{R}_{>0}, \omega: E \rightarrow \mathrm{R}_{>0}\right)$ into k disjoint blocks V_{1}, \ldots, V_{k} s.t.

- blocks V_{i} are roughly equal-sized:

$$
c\left(V_{i}\right) \leq(1+\varepsilon)\left\lceil\frac{c(V)}{k}\right\rceil
$$

- objective function on edges is minimized

Common Objectives:

- Graphs:
- cut: $\sum_{e \in \mathrm{cut}} \omega(e)$

ε-Balanced Graph and Hypergraph Partitioning

Partition (hyper)graph $G=\left(V, E, c: V \rightarrow \mathrm{R}_{>0}, \omega: E \rightarrow \mathrm{R}_{>0}\right)$ into k disjoint blocks V_{1}, \ldots, V_{k} s.t.

- blocks V_{i} are roughly equal-sized:

$$
c\left(V_{i}\right) \leq(1+\varepsilon)\left\lceil\frac{c(V)}{k}\right\rceil
$$

- objective function on edges is minimized

Common Objectives:

- Graphs:
- cut: $\sum_{e \in \mathrm{cut}} \omega(e)$
- Hypergraphs:
- cut: $\sum_{e \in \mathrm{cut}} \omega(e)$
- connectivity: $\sum_{e \in \mathrm{cut}}(\lambda-1) \omega(e)$

ε-Balanced Graph and Hypergraph Partitioning

Partition (hyper)graph $G=\left(V, E, c: V \rightarrow \mathrm{R}_{>0}, \omega: E \rightarrow \mathrm{R}_{>0}\right)$ into k disjoint blocks V_{1}, \ldots, V_{k} s.t.

- blocks V_{i} are roughly equal-sized:

$$
c\left(V_{i}\right) \leq(1+\varepsilon)\left\lceil\frac{c(V)}{k}\right\rceil
$$

- objective function on edges is minimized

Common Objectives:

- Graphs:
- cut: $\sum_{e \in \mathrm{cut}} \omega(e)$
- Hypergraphs:
- cut: $\sum_{e \in \mathrm{cut}} \omega(e)$
- connectivity: $\sum_{e \in \mathrm{cut}}(\lambda-1) \omega(e)$
 \# blocks connected by e

Applications

VLSI Design

Warehouse Optimization

Simulation

$\mathbf{R}^{n \times n} \ni A x=b \in \mathbf{R}^{n}$
Scientific Computing

(Hyper)Graph Partitioning Algorithms

- Hypergraph Partitioning is NP-hard
- even finding good approximate solutions for graphs is NP-hard

(Hyper)Graph Partitioning Algorithms

- Hypergraph Partitioning is NP-hard
- even finding good approximate solutions for graphs is NP-hard
\Rightarrow exact solutions only for very small graphs \& small k feasible!
\Rightarrow most successful heuristic: Multilevel Approach

(Hyper)Graph Partitioning Algorithms

- Hypergraph Partitioning is NP-hard
- even finding good approximate solutions for graphs is NP-hard

```
Ugly: NP-hard, not APX
```

\Rightarrow exact solutions only for very small graphs \& small k feasible!
\Rightarrow most successful heuristic: Multilevel Approach
Sophisticated partitioners developed in our group:

- KaHIP - Karlsruhe High Quality Partitioning
- Objective: cut
- https://git.io/vderw
- KaHyPar - Karlsruhe Hypergraph Partitioning
- Objectives: cut, (λ - 1)
- https://git.io/vMBaR

Multilevel Paradigm

Multilevel Paradigm

Multilevel Paradigm

Hill Climbing vs. Local Search

Hill Climbing

find some feasible solution $x \in \mathcal{L}$
$\bar{x} \leftarrow x$
\triangleright best solution found so far
while true do
if $\exists x \in \mathcal{N}(x) \cap \mathcal{L}: f(x)<f(\hat{x})$ then $\bar{x} \leftarrow x$
else return \bar{x}
Local Search
find some feasible solution $x \in \mathcal{L}$
$\hat{x} \leftarrow x$
$\triangleright \hat{x}$ is best solution found so far
while not satisfied with \hat{x} do
$x \leftarrow$ some heuristically chosen element from $\mathcal{N}(x) \cap \mathcal{L}$
if $f(x)<f(\hat{x})$ then $\hat{x} \leftarrow x$

Hill Climbing vs. Local Search

Fiduccia-Mattheyses Algorithm

FM Local Search
while \neg done do
find best move
perform best move
rollback to best solution

can worsen solution

- compute gain $g(v)=d_{\text {ext }}(v)-d_{\text {int }}(v)$
- alternate between blocks
- edge-cut: 7

Fiduccia-Mattheyses Algorithm

FM Local Search
while \neg done do
find best move
perform best move
rollback to best solution

can worsen solution

- compute gain $g(v)=d_{\text {ext }}(v)-d_{\text {int }}(v)$
- alternate between blocks
- edge-cut: 7

Fiduccia-Mattheyses Algorithm

FM Local Search
while \neg done do
find best move
perform best move
rollback to best solution

can worsen solution

- compute gain $g(v)=d_{\text {ext }}(v)-d_{\text {int }}(v)$
- alternate between blocks
- edge-cut: 7

Fiduccia-Mattheyses Algorithm

FM Local Search
while \neg done do
find best move
perform best move
rollback to best solution

can worsen solution

- recalculate gain $g(v)$ of neighbors
- move each node at most once
- edge-cut: 7, 6

Fiduccia-Mattheyses Algorithm

FM Local Search
while \neg done do
find best move
perform best move
rollback to best solution

can worsen solution

- recalculate gain $g(v)$ of neighbors
- move each node at most once
- edge-cut: 7, 6

Fiduccia-Mattheyses Algorithm

FM Local Search
while \neg done do
find best move
perform best move
rollback to best solution

can worsen solution

- recalculate gain $g(v)$ of neighbors
- move each node at most once
- edge-cut: 7, 6,5

Fiduccia-Mattheyses Algorithm

FM Local Search
while \neg done do
find best move
perform best move
rollback to best solution

can worsen solution

- recalculate gain $g(v)$ of neighbors
- move each node at most once
. edge-cut: 7, 6,5,5

Fiduccia-Mattheyses Algorithm

FM Local Search
while \neg done do
find best move
perform best move
rollback to best solution

can worsen solution

- recalculate gain $g(v)$ of neighbors
- move each node at most once
. edge-cut: 7, 6,5,5

Fiduccia-Mattheyses Algorithm

FM Local Search
while \neg done do
find best move
perform best move
rollback to best solution

can worsen solution

- recalculate gain $g(v)$ of neighbors
- move each node at most once
- edge-cut: 7, 6,5,5,6

Fiduccia-Mattheyses Algorithm

FM Local Search
while \neg done do
find best move
perform best move
rollback to best solution

can worsen solution

- recalculate gain $g(v)$ of neighbors
- move each node at most once
- edge-cut: 7, 6,5,5,6

Parallelization

All presented problems have parallel algorithms:

- some problems are well suited for parallelization
- BFS algorithms - especially trees, DAGs
- MST algorithms - local cut or cycle property
- if global decisions are required for exact solutions
- less suitable for parallel processing
- e.g. coloring, independent sets, ...
- often parallelizable greedy heuristics \Rightarrow only need local criteria

Network Analysis

Network Analysis

- Transportation
- Business
- (Online) Social networks
- Technology

- Biology

Complex Networks

- Non-trivial topological features that do not occur in simple networks (meshes, simple random graphs), but often occur in reality
- Small diameter
- Strongly varying degree distribution
- Large number of triangles
- ...

Example Applications

Bioinformatics

- Protein-protein interactions
- Phylogeny trees

Example Applications

Bioinformatics

- Protein-protein interactions
- Phylogeny trees...

Collaborations

- Movies
- Scientific papers
- Politics
- ...

Six degrees of Kevin Bacon
[Seok-Hee Hong]

Network Science

 "Statistics of relational data"
Often

- exploratory in nature
- requires data preprocessing to extract graph
- creates large data sets easily
- requires domain-specific postprocessing for interpretation

NetworKit

NetworKit: parallel tool suite for network analysis

- large collection of network science algorithms
- shared-memory parallel C++ implementation
- Python interface
- suitable for interactive analysis with IPython notebooks

For all introduced measures:
NetworKit IPython call

Degree Distribution

Concept

- Interesting: Distribution of node degrees
- Typically heavy-tailed (especially power law $p(k) \sim k^{-\gamma}$)
- Example: Web graphs

[http://wwv2002.org/CDAOM/poster/164/]
Graph of African web pages early 2000s

Degree Distribution

Concept

- Interesting: Distribution of node degrees
- Typically heavy-tailed (especially power law $p(k) \sim k^{-\gamma}$)
- Example: Web graphs

[http://wwv2002.org/CDROM/poster/164/]

Not heavy tailed, often constant: Meshes

Graph of African web pages early 2000s
[Clauset et al. 2009: Power-law distributions in empirical data]

Degree Distribution

Algorithms

- Visualizations of degree distribution
- powerlaw Python module determines whether distribution fits power law and estimates exponent γ

Good: $\mathrm{O}(|E|)$

$$
\text { dd }=\text { centrality.DegreeCentrality (G) }
$$

[Alstott et al. 2014: powerlaw: a python package for analysis of heavy-tailed distributions.]

Degree Assortativity

Concept

- Formation of connections between nodes with similar/dissimilar degree
- Based on covariance of degrees
- Normalization expressed as correlation coefficient r
- Let $k_{i}:=d(i)$:

assortative

disassortative

$$
\begin{gathered}
\operatorname{cov}\left(k_{i}, k_{j}\right)=\frac{1}{2 m} \sum_{i, j}\left(A_{i j}-\frac{k_{i} k_{j}}{2 m}\right) k_{i} k_{j} \\
r=\frac{\sum_{i, j}\left(A_{i j}-k_{i} k_{j} / 2 m\right) k_{i} k_{j}}{\sum_{i, j}\left(k_{i} \delta_{i j}-k_{i} k_{j} / 2 m\right) k_{i} k_{j}} \quad \delta_{i j}= \begin{cases}0 & i \neq j \\
1 & i=j\end{cases}
\end{gathered}
$$

[Newman: Networks - An Introduction. Chapters 7.13,
8.7] [Newman 2002:

Assortative mixing in networks.]

Degree Assortativity

Algorithm

- Original formula disadvantageous for computation

$$
r=\frac{\sum_{i, j}\left(A_{i j}-k_{i} k_{j} / 2 m\right) k_{i} k_{j}}{\sum_{i, j}\left(k_{i} \delta_{i j}-k_{i} k_{j} / 2 m\right) k_{i} k_{j}} \quad \delta_{i j}= \begin{cases}0 & i \neq j \\ 1 & i=j\end{cases}
$$

- Reformulation (see Newman):

$$
\begin{array}{ccc}
r=\frac{S_{1} S_{e}-S_{2}^{2}}{S_{1} S_{3}-S_{2}^{2}} & S_{e}=\sum_{i, j} A_{i j} k_{i} k_{j}=2 \sum_{\{i, j\} \in E} k_{i} k_{j} \\
S_{1}=\sum_{i} k_{i} & S_{2}=\sum_{i} k_{i}^{2} & S_{3}=\sum_{i} k_{i}^{3}
\end{array}
$$

```
da = correlation.Assortativity(G, dd)
```


k-Core Decomposition

Concept

- Nodes in core k have at least k neighbors that also belong to core $k, k \geq 0$
- Iteratively peeling away nodes of degree k reveals the k-cores

Fig. 1. A k-core decomposition with 5 core shells.
[Baur et al. 2008]

k-Core Decomposition

Concept

- Nodes in core k have at least k neighbors that also belong to core $k, k \geq 0$
- Iteratively peeling away nodes of degree k reveals the k-cores

1: store node degrees in array degree
2: $i \leftarrow 1$
3: while $V \neq \emptyset$ do
4: \quad for each $v \in V$ with degree $[v]<i$ do

Fig. 1. A k-core decomposition with 5 core shells.
[Baur et al. 2008]
5: $\quad . \quad \triangleright$ process v and its neighbors and delete v from G
6: $\quad i \leftarrow i+1$
7: return (i-1, core)

k-Core Decomposition

Algorithm and Implementation

- Bucket data structure
- Each bucket stores nodes with the same current degree
- Additional array to store pointers from each node into its bucket
for each $v \in V$ with degree $[v]<i$ do
2: \quad core $[v] \leftarrow i-1$
3: \quad for each $u \in N(v)$ do
4: \quad degree $[u] \leftarrow$ degree $[u]-1$
5: Remove v from G

$$
\text { coreDec }=\text { centrality. CoreDecomposition(G) Good: O(|E|) }
$$

Diameter

Concept

- Longest shortest path between any two nodes
- Small in most complex networks
- "Six degrees of separation"

Algorithms
[igraph.sourceforge.net]

- Exact: Simple all pairs shortest paths (n shortest path queries)
- In practice faster: iFub
- $\frac{3}{2}$-approximation possible in $\mathrm{O}(|E| \sqrt{|V|})$
diam = distance.Diameter (G)
Goodish: O(|V||E|)
[Crescenzi et al. 2013: On computing the diameter of real-world undirected graphs]
[Roditty, Williams. 2013: Fast Approx. Algorithms for the Diameter and Radius of Sparse Graphs]

Clustering Coefficients

Concept

- Social networks: High ratio of closed triangles ("Friends of friends are often friends")
- CC: Ratio of closed triangles and paths of length 2

Clustering Coefficients

Concept

- Social networks: High ratio of closed triangles ("Friends of friends are often friends")
- CC: Ratio of closed triangles and paths of length 2

$$
C_{g}(G)=\frac{3 \cdot \text { Number of closed triangles }}{\text { Number of connected triads }}
$$

$$
C_{l}(v)=\frac{\text { Number of triangles with } v}{\text { Number of connected triads with } v \text { as middle node }}
$$

Clustering Coefficients

Exact Algorithm

- with parallel node iteration: $O\left(|V| d_{\max }^{2}\right)$ time

Approximation

- Wedge sampling:

Linear-time approximation for weighted graphs with probabilistic absolute error ϵ
cc = globals.ClusteringCoefficient(G)

Good: $\mathrm{O}(|E|)$
[Schank, Wagner 2005: Approximating clustering coefficient and transitivity]

Centrality Measures

Centrality Concept

- How important is a node / an edge?

Eigenvector Centrality

- Consider importance of neighbors:

$$
\begin{aligned}
\forall v \in V: x_{v} & =\frac{1}{\lambda} \sum_{u \in V} A_{v u} x_{u} \\
\lambda \mathbf{x} & =A \mathbf{x} \quad A:=\text { adjacency matrix }
\end{aligned}
$$

Eigenvector to largest eigenvalue

ec = centrality.EigenvectorCentrality (G)
Goodish: $O\left(|V|^{3}\right)$

Centrality Measures

Centrality Concept

- How important is a node / an edge?

PageRank

- Google's first ranking scheme
- variant of eigenvector centrality
- Random surfer model:

$$
\forall v \in V: x_{v}^{(t+1)}=\alpha \cdot \frac{1}{|V|}+(1-\alpha) \sum_{(u \mapsto v) \in E} \frac{x_{u}^{(t)}}{|\{(u \mapsto x) \in E\}|}
$$

```
ec = centrality.PageRank(G, 1e-6)
```

Goodish: O(|V| $\left.{ }^{3}\right)$

Betweenness Centrality

Definition

- $\forall u, v \in V$ in connected graph, there exists at least one shortest path between them
- BC measures of number of shortest paths that pass through a vertex k

$$
C_{B}(k)=\sum_{u, v \in V \backslash\{k\}} \frac{\mid\{k \in S P(u, v) \mid\}}{|S P(u, v)|}
$$

$$
S P(u, v)=\text { shortest paths from } u \text { to } v
$$

Betweenness Centrality

Definition

- $\forall u, v \in V$ in connected graph, there exists at least one shortest path between them
- BC measures of number of shortest paths that pass through a vertex k

$$
C_{B}(k)=\sum_{u, v \in V \backslash\{k\}} \frac{\mid\{k \in S P(u, v) \mid\}}{|S P(u, v)|}
$$

$$
S P(u, v)=\text { shortest paths from } u \text { to } v
$$

Exact Algorithm for BC

- Brandes's alg.: $O\left(|V||E|+|V|^{2} \log |V|\right)$ time

Approximation for BC

- Parallel path sampling with probabilistic absolute error (in (nearly-linear time)
bc = centrality.Betweenness (G)
\square
[Brandes 2001: A faster algorithm for betweenness centrality]
[Riondato, Kornaropoulos 2013: Fast approximation of betweenness centrality through sampling]
[Geisberger et al. 2008: Better Approximation of Betweenness Centrality]

Community Detection (CD)

Community Detection / Graph Clustering

- Find (non-overlapping) internally dense, externally sparse subgraphs
- Goals: Uncover community structure, prepartition network
- number of cluster not known in advance \Leftrightarrow partitioning

Community Detection (CD)

Community Detection / Graph Clustering

- Find (non-overlapping) internally dense, externally sparse subgraphs
- Goals: Uncover community structure, prepartition network
- number of cluster not known in advance \Leftrightarrow partitioning

What constitutes a cluster?

[Girvan, Newman 2002: Community structure in social and biological networks]

CD - Objective Functions

Given a clustering \mathcal{C} for a graph \mathcal{G} :

- Coverage: fraction of intra-cluster edges $\omega(\mathcal{C})$ over all edges

$$
\operatorname{cov}(\mathcal{C}):=\frac{\omega(\mathcal{C})}{|E|}
$$

- Problem: maximal for trivial cluster $(k=1)$

CD - Objective Functions

Given a clustering \mathcal{C} for a graph \mathcal{G} :

- Coverage: fraction of intra-cluster edges $\omega(\mathcal{C})$ over all edges

$$
\operatorname{cov}(\mathcal{C}):=\frac{\omega(\mathcal{C})}{|E|}
$$

- Problem: maximal for trivial cluster $(k=1)$

Bad: NP-hard

- Performance: fraction node pairs that are clustered correctly
- Problem: in sparse networks $\bar{m}^{c}(\mathcal{C})$ dominates \Rightarrow fine clusterings

Bad: NP-hard

CD - Objective Functions

- Modularity: $\operatorname{cov}(\cdot)$ minus expected coverage of random graph with same clustering

$$
\begin{aligned}
\bmod (\mathcal{C}) & =\operatorname{cov}(\mathcal{C})-\mathbb{E}[\operatorname{cov}(\mathcal{C})] \\
& =\frac{\omega(\mathcal{C})}{|E|}-\frac{1}{4|E|^{2}} \sum_{c \in \mathcal{C}}\left(\sum_{v \in C} d(v)\right)^{2}
\end{aligned}
$$

CD - Objective Functions

Modularity: $\operatorname{cov}(\cdot)$ minus expected coverage of random graph with same clustering

favors many clusters with small degree

CD - Objective Functions

- Modularity: $\operatorname{cov}(\cdot)$ minus expected coverage of random graph with same clustering

favors many clusters with small degree
- random graph with same degree distribution
- agrees well with intuitive clustering of graph
- Modularity has some known issues (resolution limit, ...), some can be circumvented
- most popular clustering metric in network analysis

> Ugly: NP-hard, not APX
[Brandes et al. 2006: On Modularity - NP-Completeness and Beyond]
[Dinh et al. 2016: Network Clustering via Maximizing Modularity: Approximation Algorithms and Theoretical Limits]

CD - Algorithms

But in practice well-functioning algorithms available:
parallel label propagation (PLP)

- parallel Louvain method (PLM)
- PLM with refinement (PLMR)

```
cd = community.detectCommunities(G)
```

Good: $\mathrm{O}(|V| \log |V|)$

CD - Algorithms

But in practice well-functioning algorithms available:

- parallel label propagation (PLP)
- parallel Louvain method (PLM)
- PLM with refinement (PLMR)

```
cd = community.detectCommunities(G)
Good: O(|V| log |V|)
```

Louvain Method: two-phase iterative algorithm

- place each node in their own cluster

1. $\forall v$: calculate $\Delta \bmod (\cdot)$ for moving v to any of its neighboring clusters

- perform most effective move
- repeat until no more gain possible

2. contract all clusters to one node

- intra-cluster edges become self loops
- inter-cluster edges represented by weighted edges

Case Studies in Physics

Case Studies in Physics

Graphs can be applied in varied areas of physics

- graphs to gain theoretical insight: Feynman diagrams
- graphs to model physical problems: particle track reconstruction
- graphs to speed up an algorithms: jet clustering

Theoretical Applications

- graph coloring can be applied to Feynman Diagrams to determine the presence of particular Feynman integrals

Theoretical Applications

- graph coloring can be applied to Feynman Diagrams to determine the presence of particular Feynman integrals

The ϕ^{k} theory is compared with the multilinear theory of scalar fields $\phi_{1}, \phi_{2}, \ldots, \phi_{k}$ having the same mass as that of ϕ. In particular, it is shown that Feynman integrals encountered in the ϕ^{3} theory are not necessarily present also in the $\phi_{1}, \phi_{2}, \phi_{3}$ theory, but they are if they correspond to planar Feynman graphs having no tadpole part. Furthermore, a necessary and sufficient condition for the presence of a ϕ^{3} Feynman integral in the ϕ_{1}, ϕ_{2}^{2} theory is found. Those considerations are applications of graph theory, especially of the coloring problem of graphs, to Feynman graphs.
[Nakanishi, Noboru. Quantum field theory and the coloring problem of graphs. Comm. Math. Phys. 32 (1973), no. 2, 167-181.]

Theoretical Applications

- graph coloring can be applied to Feynman Diagrams to determine the presence of particular Feynman integrals

The ϕ^{k} theory is compared with the multilinear theory of scalar fields $\phi_{1}, \phi_{2}, \ldots, \phi_{k}$ having the same mass as that of ϕ. In particular, it is shown that Fevnman intearals encountered in the ϕ^{3} theory are not necessarily present also in the $\phi_{1}, \phi_{2}, \phi_{3}$ the Beyond physics understandingin graphs having no tadpole part. Furthermore, a necessaryof three computer scientists iman integral in the ϕ_{1}, ϕ_{2}^{2} theory is found. Those considerations are applicatioris oi grapillieory, especiany or the coloring problem of graphs, to Feynman graphs.
[Nakanishi, Noboru. Quantum field theory and the coloring problem of graphs. Comm. Math. Phys. 32 (1973), no. 2, 167-181.]

Theoretical Applications

- graph coloring can be applied to Feynman Diagrams to determine the presence of particular Feynman integrals
- further results in condensed matter physics, statistical physics,...
[Estrada, E. (2013): Graph and Network Theory in Physics, ArXiv 1302.4378]

Particle Track Reconstruction

- particles traverse several multi-layer detectors after collision \Rightarrow particularly inner tracker
- energy deposits in detector material are reconstructed as hits
- particle track reconstruction \Rightarrow combinatoral pattern matching problem

Particle Track Reconstruction

Approach most used: Iterative Kalman Filter Track Finding

1. Seeding

- Find hit triplets in inner layers
- Rough track parameters

2. Track Finding

- Extrapolate track outwards
- Extend track by suitable hits

3. Track Fitting

- Estimate track parameter
- Inward and outward smoothing

Particle Track Reconstruction

Approach most used: Iterative Kalman Filter Track Finding

1. Seeding

- Find hit triplets in inner layers
- Rough track parameters

2. Track Finding

- Extrapolate track outwards
- Extend track by suitable hits

3. Track Fitting

- Estimate track parameter
- Inward and outward smoothing

Particle Track Reconstruction

Approach most used: Iterative Kalman Filter Track Finding

1. Seeding

- Find hit triplets in inner layers
- Rough track parameters

2. Track Finding

- Extrapolate track outwards
- Extend track by suitable hits

3. Track Fitting

- Estimate track parameter
- Inward and outward smoothing

Particle Track Reconstruction

Approach most used: Iterative Kalman Filter Track Finding

1. Seeding

- Find hit triplets in inner layers
- Rough track parameters

2. Track Finding

- Extrapolate track outwards
- Extend track by suitable hits

3. Track Fitting

- Estimate track parameter
- Inward and outward smoothing

Particle Track Reconstruction

Approach most used: Iterative Kalman Filter Track Finding

1. Seeding

- Find hit triplets in inner layers
- Rough track parameters

2. Track Finding

- Extrapolate track outwards
- Extend track by suitable hits

3. Track Fitting

- Estimate track parameter
- Inward and outward smoothing

Particle Track Reconstruction

Approach most used: Iterative Kalman Filter Track Finding

1. Seeding

- Find hit triplets in inner layers
- Rough track parameters

2. Track Finding

- Extrapolate track outwards
- Extend track by suitable hits

3. Track Fitting

- Estimate track parameter
- Inward and outward smoothing

Particle Track Reconstruction

Approach most used: Iterative Kalman Filter Track Finding

1. Seeding

- Find hit triplets in inner layers
- Rough track parameters

2. Track Finding

- Extrapolate track outwards
- Extend track by suitable hits

3. Track Fitting

- Estimate track parameter
- Inward and outward smoothing

Particle Track Reconstruction

Approach most used: Iterative Kalman Filter Track Finding

1. Seeding

- Find hit triplets in inner layers
- Rough track parameters

2. Track Finding

- Extrapolate track outwards
- Extend track by suitable hits

3. Track Fitting

- Estimate track parameter
- Inward and outward smoothing

Particle Track Reconstruction

Approach most used: Iterative Kalman Filter Track Finding

1. Seeding

- Find hit triplets in inner layers
- Rough track parameters

2. Track Finding

- Extrapolate track outwards
- Extend track by suitable hits

3. Track Fitting

- Estimate track parameter
- Inward and outward smoothing

Particle Track Reconstruction

Approach most used: Iterative Kalman Filter Track Finding

1. Seeding

- Find hit triplets in inner layers
- Rough track parameters

2. Track Finding

- Extrapolate track outwards
- Extend track by suitable hits

3. Track Fitting

- Estimate track parameter
- Inward and outward smoothing

Particle Track Reconstruction

Approach most used: Iterative Kalman Filter Track Finding

1. Seeding

- Find hit triplets in inner layers
- Rough track parameters

2. Track Finding

- Extrapolate track outwards
- Extend track by suitable hits

3. Track Fitting

- Estimate track parameter
- Inward and outward smoothing

Particle Track Reconstruction

Tracking as graph problem: definition of vertices and edges

$$
G=(V, E, \omega)
$$

- Find triplets in all layer combinations
- $V=\left\{v=\left(h_{1}, h_{2}, h_{3}\right)\right\}$

Particle Track Reconstruction

Tracking as graph problem: definition of vertices and edges

$$
G=(V, E, \omega)
$$

- Find triplets in all layer combinations
- $V=\left\{v=\left(h_{1}, h_{2}, h_{3}\right)\right\}$

Particle Track Reconstruction

Tracking as graph problem: definition of vertices and edges

$$
G=(V, E, \omega)
$$

- Find triplets in all layer combinations
- $V=\left\{v=\left(h_{1}, h_{2}, h_{3}\right)\right\}$

Particle Track Reconstruction

Tracking as graph problem: definition of vertices and edges

$$
G=(V, E, \omega)
$$

- Find triplets in all layer combinations
- $V=\left\{v=\left(h_{1}, h_{2}, h_{3}\right)\right\}$

Particle Track Reconstruction

Tracking as graph problem: definition of vertices and edges

$$
G=(V, E, \omega)
$$

- Find triplets in all layer combinations
- $V=\left\{v=\left(h_{1}, h_{2}, h_{3}\right)\right\}$

Particle Track Reconstruction

Tracking as graph problem: definition of vertices and edges
$G=(V, E, \omega)$

- Find triplets in all layer combinations
- $V=\left\{v=\left(h_{1}, h_{2}, h_{3}\right)\right\}$
- Vertices that share one or two hit(s) are connected by edge
- $E=\left\{e=\left(v_{1}, v_{2}\right): v_{1} \cap v_{2} \neq \emptyset\right\}$

Particle Track Reconstruction

Tracking as graph problem: definition of vertices and edges
$G=(V, E, \omega)$

- defining $\omega(e)$ is the hard part, e.g.
- angular difference $\Delta \phi, \Delta \theta$
- curvature Δc
- χ^{2} of circle fit of all four hits
- solve all-pair-shortest-path problem

Particle Track Reconstruction

Tracking as graph problem: definition of vertices and edges
$G=(V, E, \omega)$

- defining $\omega(e)$ is the hard part, e.g.
- angular difference $\Delta \phi, \Delta \theta$
- curvature Δc
- χ^{2} of circle fit of all four hits
- solve all-pair-shortest-path problem

Challenge:

Weight function must ensure that:

- paths corresponding to valid tracks are lighter than others
- otherwise a fake track is reconstructed
- Jets: collimated spray of hadrons from fragmentation of quark or gluon
- reveal direction and energy original "parton"
- jets are reconstructed from particles found in detector
- various algorithms exist to cluster jets from reconstructed particles e.g. k_{t} algorithm

(C) CMS Collaboration

Jet Clustering

Input: list of particles \mathbf{P}
Output: list of jets J

1: while $\mathbf{P} \neq \emptyset$ do
2: \quad for $(i, j) \in \mathbf{P} \times \mathbf{P}$ do
3: $\quad d_{i, j}=\min \left(k_{t, i}^{2}, k_{t, j}^{2}\right) \cdot \Delta R_{i, j}^{2}$
$\triangleright \mathrm{O}(n)$ times
$\triangleright \mathrm{O}\left(n^{2}\right)$
$\triangleright \mathrm{O}(n)$
5: $\quad d_{i, B}=k_{t, i}^{2}$
6: $\quad d_{\text {min }}=\min \left(d_{i, j}, d_{i, B}\right)$
7: \quad if $d_{\text {min }}=d_{i, j}$ then
$i=$ combine $(i, j), \mathbf{P} \backslash\{j\}$
else
$\mathbf{J} \cup i, \mathbf{P} \backslash\{i\}$
\triangleright finalize jet i

Jet Clustering

Input: list of particles \mathbf{P}
Output: list of jets J
1: while $\mathbf{P} \neq \emptyset$ do
2: \quad for $(i, j) \in \mathbf{P} \times \mathbf{P}$ do
3: $\quad d_{i, j}=\min \left(k_{t, i}^{2}, k_{t, j}^{2}\right) \cdot \Delta R_{i, j}^{2}$

- $k_{t, i}$: transverse momentum

4: \quad for $i \in \mathbf{P}$ do
5: $\quad d_{i, B}=k_{t, i}^{2}$
6: $\quad d_{\text {min }}=\min \left(d_{i, j}, d_{i, B}\right)$
7: if $d_{\text {min }}=d_{i, j}$ then

- $\Delta R_{i, j}^{2}=\left(\eta_{i}-\eta_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}$
- η_{i} : rapidity

8: $\quad i=$ combine $(i, j), \mathbf{P} \backslash\{j\}$
9: else
10: $\quad \mathbf{J} \cup i, \mathbf{P} \backslash\{i\}$

Jet Clustering

Input: list of particles \mathbf{P}
Output: list of jets J
1: while $\mathbf{P} \neq \emptyset$ do
$\triangleright \mathrm{O}(n)$ times
2: \quad for $(i, j) \in \mathbf{P} \times \mathbf{P}$ do
$\triangleright \mathrm{O}\left(n^{2}\right)$
3: $\quad d_{i, j}=\min \left(k_{t, i}^{2}, k_{t, j}^{2}\right) \cdot \Delta R_{i, j}^{2}$
4: \quad for $i \in \mathbf{P}$ do
$\triangleright \mathrm{O}(n)$
5: $\quad d_{i, B}=k_{t, i}^{2}$
6: $\quad d_{\min }=\min \left(d_{i, j}, d_{i, B}\right)$

Goodish: $\mathrm{O}\left(|\mathrm{P}|^{3}\right) \quad$ prohibitive for high multiplicities

Jet Clustering

Improving the $\mathrm{O}\left(n^{3}\right)$ runtime:

Lemma:

If i, j have the smallest $d_{i, j}$ and $k_{t, i}<k_{t, j}$, then $R_{i, j}<R_{i, l}$ for all $I \neq j$.

For minimum $d_{i, j} ; i$ and j geometrically nearest-neighbors on (η, ϕ)-plane
[Cacciari M. and Salam, G.P., Dispelling the N^{3} myth for the k_{t} jet-finder]

Jet Clustering

1: for $i \in \mathbf{P}$ do
2: $\quad \mathcal{N}_{i}=$ findNearestNeighbor (i)
3: $\quad d_{i}=\min \left(k_{t, i}^{2}, k_{t, \mathcal{N}_{i}}^{2}\right) \cdot \Delta R_{i, \mathcal{N}_{i}}^{2}, d_{i, B}=k_{t, i}^{2}$
4: while $\mathbf{P} \neq \emptyset$ do
5: $\quad d_{\text {min }}=\min \left(d_{i}, d_{i, B}\right)$
$\triangleright \mathrm{O}(n)$ times
$\triangleright \mathrm{O}(n)$
6: \quad if $d_{\text {min }}=d_{i}$ then
$i=$ combine $\left(i, \mathcal{N}_{i}\right), \mathbf{P} \backslash\left\{\mathcal{N}_{i}\right\} \quad \triangleright$ merge i and \mathcal{N}_{i}, delete \mathcal{N}_{i}
else

$$
\mathbf{J} \cup i, \mathbf{P} \backslash\{i\}
$$

10: \quad for particles j with $\mathcal{N}_{j}=i$ do
\triangleright finalize jet i
$\triangleright \mathrm{O}(1)$ many

11: $\quad \mathcal{N}_{j}=$ findNearestNeighbor (j)
12: \quad for $j \in \mathbf{P}$ do
13:

$$
\begin{equation*}
\mathcal{N}_{j}=\text { updateNearestNeighbor }(j, i) \tag{1}
\end{equation*}
$$

Jet Clustering

1: for $i \in \mathbf{P}$ do
2: $\quad \mathcal{N}_{i}=$ findNearestNeighbor (i)
3: $\quad d_{i}=\min \left(k_{t, i}^{2}, k_{t, \mathcal{N}_{i}}^{2}\right) \cdot \Delta R_{i, \mathcal{N}_{i}}^{2}, d_{i, B}=k_{t, i}^{2}$
$\triangleright \mathrm{O}(n)$ times
4: while $\mathbf{P} \neq \emptyset$ do
5: $\quad d_{\text {min }}=\min \left(d_{i}, d_{i, B}\right)$
6: \quad if $d_{\text {min }}=d_{i}$ then
7: $\quad i=$ combine $\left(i, \mathcal{N}_{i}\right), \mathbf{P} \backslash\left\{\mathcal{N}_{i}\right\}$
\triangleright merge i and \mathcal{N}_{i}, delete \mathcal{N}_{i}
8: else

Goodish: O $\left(|\mathbf{P}|^{2}\right) \quad$ - but we can do better!

$$
\begin{equation*}
\mathcal{N}_{j}=\text { updateNearestNeighbor }(j, i) \tag{13}
\end{equation*}
$$

Jet Clustering

Enter geometric graphs. Given a point set \mathbf{P} in \mathbb{R}^{2}

Jet Clustering

Enter geometric graphs. Given a point set \mathbf{P} in \mathbb{R}^{2}
A triangulation $T(\mathbf{P})$ is the subdivision of the convex hull of \mathbf{P} into triangles such that

- the vertices of $T(\mathbf{P})$ coincide with \mathbf{P}
- any two triangles of $T(\mathbf{P})$ intersect in a common edge or not at all

Jet Clustering

Enter geometric graphs. Given a point set \mathbf{P} in \mathbb{R}^{2}
A Delaunay triangulation $D T(\mathbf{P})$ is a triangulation such that no point of \mathbf{P} is inside the circumcircle of any simplex of $D T(\mathbf{P})$.

Jet Clustering

Enter geometric graphs. Given a point set \mathbf{P} in \mathbb{R}^{2}
A Delaunay triangulation $D T(\mathbf{P})$ is a triangulation such that no point of \mathbf{P} is inside the circumcircle of any simplex of $D T(\mathbf{P})$.

Jet Clustering

Enter geometric graphs. Given a point set \mathbf{P} in \mathbb{R}^{2}
A Delaunay triangulation $D T(\mathbf{P})$ is a triangulation such that no point of \mathbf{P} is inside the circumcircle of any simplex of $D T(\mathbf{P})$.

Jet Clustering

Enter geometric graphs. Given a point set \mathbf{P} in \mathbb{R}^{2}
A Delaunay triangulation $D T(\mathbf{P})$ is a triangulation such that no point of \mathbf{P} is inside the circumcircle of any simplex of $D T(\mathbf{P})$.

- nearest-neighbor graph of \mathbf{P} is a subgraph of $D T(\mathbf{P})$
- $D T(\mathbf{P})$ can be constructed in $O(n \log n)$
- $D T(\mathbf{P})$ can be updated in $O(\log n)$

Jet Clustering

1: construct $D T(\mathbf{P})$
$\triangleright O(n \log n)$
2: $\mathbf{f o r} i \in \mathbf{P}$ do
3: $\quad d_{i}=\min \left(k_{t, i}^{2}, k_{t, \mathcal{N}_{i}}^{2}\right) \cdot \Delta R_{i, \mathcal{N}_{i}}^{2}, d_{i, B}=k_{t, i}^{2}$
4: construct binary binary trees $T_{d_{i}}, T_{d_{i, B}}$
5: while $\mathbf{P} \neq \emptyset$ do
6: $\quad d_{\text {min }}=\min \left(d_{i}, d_{i, B}\right)$
7: \quad if $d_{\text {min }}=d_{i}$ then
8: $\quad i=\operatorname{combine}\left(i, \mathcal{N}_{i}\right), \mathbf{P} \backslash\left\{\mathcal{N}_{i}\right\}$
\triangleright merge i and \mathcal{N}_{i}, delete \mathcal{N}_{i}
9: else
10: $\quad \mathbf{J} \cup i, \mathbf{P} \backslash\{i\}$
11: update $D T(\mathbf{P})$
\triangleright finalize jet i

12: update $T_{d_{i}}, T_{d_{i, B}}$
$\triangleright O(\log n)$
$\triangleright O(\log n)$

Jet Clustering

1: construct $D T(\mathbf{P})$
$\triangleright O(n \log n)$
2: for $i \in \mathbf{P}$ do
3: $\quad d_{i}=\min \left(k_{t, i}^{2}, k_{t, \mathcal{N}_{i}}^{2}\right) \cdot \Delta R_{i, \mathcal{N}_{i}}^{2}, d_{i, B}=k_{t, i}^{2}$
4: construct binary binary trees $T_{d_{i}}, T_{d_{i, B}}$
$\triangleright O(n \log n)$
5: while $\mathbf{P} \neq \emptyset$ do
6: $\quad d_{\text {min }}=\min \left(d_{i}, d_{i, B}\right)$
$\triangleright O(\log n)$
7: \quad if $d_{\text {min }}=d_{i}$ then
8: $\quad i=\operatorname{combine}\left(i, \mathcal{N}_{i}\right), \mathbf{P} \backslash\left\{\mathcal{N}_{i}\right\}$
\triangleright merge i and \mathcal{N}_{i}, delete \mathcal{N}_{i}

Good: $\mathrm{O}(|\mathbf{P}| \log |\mathbf{P}|)$

Tutorial

Credits

The slides of this course are partially based on the following lectures/talks:

- P. Sanders - Algorithmen I
- P. Sanders - Algorithmen II
- P. Sanders, R. van Stee - Approximations- und Online-Algorithmen
- C. Schulz - Graphpartitionierung und Graphenclustern in Theorie und Praxis
- H. Meyerhenke - Algorithmische Methoden zur Netzwerkanalyse
- Henning Meyerhenke - NetworKit: A Parallel Interactive Tool Suite for Analyzing Massive Networks
- H. Meyerhenke - Network Analysis with NetworKit: Interactive, Feature-rich, Fast
- S. Schlag - k-way Hypergraph Partitioning via n-Level Recursive Bisection
- D. Funke - Parallel Triplet Finding for Particle Track Reconstruction

[^0]: "3D Social Networking" flickr photo by ccPixs.com https://flickr.com/photos/86530412@N02/7975205041 shared under a Creative Commons (BY) license

