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Shortest Paths

Minimum Spanning Trees

Maximum Flows

Maximum Matchings

Coloring

Traveling Salesman

Independent Sets

(Hyper-)graph Partitioning

slides available at:
http://algo2.iti.kit.edu/documents/graph_theory.pdf
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Algorithm Engineering
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Algorithm Engineering
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(Caricatured) Traditional View: Algorithm Theory
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Gaps Between Theory & Practice
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Algorithmics as Algorithm Engineering
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Algorithm Engineering ↔Algorithm Theory

Conclusion:
algorithm engineering is a wider view on algorithmics
(but no revolution. None of the ingredients is really new)

rich methodology

better coupling to applications

experimental algorithmics � algorithm engineering

algorithm theory ⊂ algorithm engineering

sometimes different theoretical questions

algorithm theory may still yield the strongest, deepest and most persistent
results within algorithm engineering
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Theoretical Foundations
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Algorithm Characterization

An algorithm can be characterized by:
runtime behaviour

(main) memory consumption

I/O operations (e.g. hard drive)

number and size of messages sent/received over network
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Algorithm Characterization

Given input I, we assume the runtime depends only on the size |I| =: n

T (n) := . . .
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Algorithm Characterization

Given input I, we assume the runtime depends only on the size |I| =: n

T (n) := . . .

m ← 1
2

�
I0 + In−1

�

return m

T (n) = 3

Output: undef.

Examples
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Algorithm Characterization

Given input I, we assume the runtime depends only on the size |I| =: n

T (n) := . . .

Examples

Require: I sorted
m ← 1

2

�
I0 + In−1

�

return m

T (n) = 3

Output: avg(I)
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Algorithm Characterization

Given input I, we assume the runtime depends only on the size |I| =: n

T (n) := . . .

Examples

Require: I sorted
m ← 1

2

�
I0 + In−1

�

return m

T (n) = 3

Output: avg(I)

a ← ∞, b ← 0
for i ∈ I do

if i < a then a ← i
if i > b then b ← i

m ← a+b
2

return m

T (n) = 2n + 2

Output: avg(I)

15
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Algorithm Characterization

Given input I, we assume the runtime depends only on the size |I| =: n

T (n) := . . .

Examples

Require: I sorted
m ← 1

2

�
I0 + In−1

�

return m

T (n) = 3

Output: avg(I)

for i ∈ [0, |I|− 1) do
for j ∈ [0, |I|− i − 1) do

if Ij > Ij+1 then
swap(Ij , Ij+1)

m ← 1
2

�
I0 + In−1

�

return m

T (n) = 3n2 + 3

Output: avg(I)

Side effect: sorted I
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Algorithm Characterization

Given input I, we assume the runtime depends only on the size |I| =: n

T (n) := . . .

Examples

Require: I sorted
m ← 1

2

�
I0 + In−1

�

return m

T (n) = 3

Output: avg(I)

for i ∈ [0, |I|− 1) do
for j ∈ [0, |I|− i − 1) do

if Ij > Ij+1 then
swap(Ij , Ij+1)

m ← In−1

for i ∈ I do
Ii ← Ii

m

T (n) = 3n2 + 2n + 1

Side effect: norm., sort. I
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Bachmann-Landau Notation

Consider T (n) = 3n2 + 2n + 1:
counting constant factors is tidious and can be architecture-dependant

n2 term clearly dominates lower order terms for sufficiently large n
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Bachmann-Landau Notation

Consider T (n) = 3n2 + 2n + 1:
counting constant factors is tidious and can be architecture-dependant

n2 term clearly dominates lower order terms for sufficiently large n

Enter Big-O notation

For upper bounds: f (n) ∈ O(g(n))
|f | is bounded above by g asymptotically (up to a constant factor)

“g(n) grows at least as fast as f (n)”

Formally,
∃k > 0 : ∃n0 : ∀n > n0 : |f (n)| ≤ k · g(n)
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Bachmann-Landau Notation

n

t T (n)Given T (n):
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Bachmann-Landau Notation

Given T (n):

n

t T (n)

O(n)

T (n) �∈ O(n)
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Bachmann-Landau Notation

Given T (n):

T (n) �∈ O(n)

n

t T (n)

O(n)

O
�
n2
�

T (n) ∈ O
�
n2
�
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Bachmann-Landau Notation

Given T (n):

T (n) �∈ O(n)

T (n) ∈ O
�
n2
�

T (n) ∈ O
�
n3
�

Tight bounds are preferred

n

t T (n)
O
�
n2
�
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Bachmann-Landau Notation

For lower bounds: f (n) ∈ Ω (g(n))
|f | is bounded below by g asymptotically (up to a constant factor)

“g(n) grows at most as fast as f (n)”

Formally,
∃k > 0 : ∃n0 : ∀n > n0 : f (n) ≥ k · g(n)
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Bachmann-Landau Notation

Given T (n):

n

t

T (n)
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T (n)

O(n)
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Bachmann-Landau Notation

For tight bounds: f (n) ∈ Θ(g(n))
|f | is bounded both above and below by g asymptotically

“g(n) grows at as fast as f (n)”

Formally,

∃k1, k2 > 0 : ∃n0 : ∀n > n0 : k1 · g(n) ≤ f (n) ≥ k2 · g(n)

f (n) ∈ O(g(n)) & f (n) ∈ Ω (g(n)) ⇔ f (n) ∈ Θ(g(n))
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Algorithm Characterization

Given input I, we assume the runtime depends only on the size |I| =: n

sorted ← true, i ← 0
while i < |I|− 1 & sorted do

if Ii > Ii+1 then
sorted ← false

inc(i)
if ¬sorted then

for i ∈ [0, |I|− 1) do
for j ∈ [0, |I|− i − 1) do

if Ij > Ij+1 then
swap(Ij , Ij+1)
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Algorithm Characterization

Given input I, we assume the runtime depends only on the size |I| =: n

sorted ← true, i ← 0
while i < |I|− 1 & sorted do

if Ii > Ii+1 then
sorted ← false

inc(i)
if ¬sorted then

for i ∈ [0, |I|− 1) do
for j ∈ [0, |I|− i − 1) do

if Ij > Ij+1 then
swap(Ij , Ij+1)

sorted input:

Isorted = {1, 2, 3, 4, 5, 6}
T (n) = 2n + 2 ∈ O(n)
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Algorithm Characterization

Given input I, we assume the runtime depends only on the size |I| =: n

sorted ← true, i ← 0
while i < |I|− 1 & sorted do

if Ii > Ii+1 then
sorted ← false

inc(i)
if ¬sorted then

for i ∈ [0, |I|− 1) do
for j ∈ [0, |I|− i − 1) do

if Ij > Ij+1 then
swap(Ij , Ij+1)

sorted input:

Isorted = {1, 2, 3, 4, 5, 6}
T (n) = 2n + 2 ∈ O(n)

descending input:

Idesc = {6, 5, 4, 3, 2, 1}
T (n) = 3n2 + 5 ∈ O

�
n2�

21
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Algorithm Characterization

Given input I, we assume the runtime depends only on the size |I| =: n

sorted ← true, i ← 0
while i < |I|− 1 & sorted do

if Ii > Ii+1 then
sorted ← false

inc(i)
if ¬sorted then

for i ∈ [0, |I|− 1) do
for j ∈ [0, |I|− i − 1) do

if Ij > Ij+1 then
swap(Ij , Ij+1)

sorted input:

Isorted = {1, 2, 3, 4, 5, 6}
T (n) = 2n + 2 ∈ O(n)

descending input:

Idesc = {6, 5, 4, 3, 2, 1}
T (n) = 3n2 + 5 ∈ O

�
n2�

almost sorted input:

Iworst = {1, 2, 3, 4, 6, 5}
T (n) = 3n2 + 2n + 2

∈ O
�
n2 + n

�
∈ O

�
n2�
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Algorithm Characterization

Given input I, we assume the runtime depends only on the size |I| =: n

To characterize an algorithm in theory:
consider the worst case input

determine tight upper bounds

21
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Algorithm Characterization

Given input I, we assume the runtime depends only on the size |I| =: n

To characterize an algorithm in theory:
consider the worst case input

determine tight upper bounds

To characterize an algorithm in practice:
consider the instances at hand, often average case inputs

determine bounds for the expected running time

21
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Problem Characterization

In general we consider algorithms for two kinds of problems:
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Problem Characterization

In general we consider algorithms for two kinds of problems:

Decision Problem:
Given an input I, decide whether it belongs to a well-defined set M.
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Problem Characterization

In general we consider algorithms for two kinds of problems:

Decision Problem:
Given an input I, decide whether it belongs to a well-defined set M.

Example: Boolean Satisfiability Problem (SAT)
Given a propositional logic formula

φ
�
X, {∨,∧,¬}

�
with variables X = {x1, x2, . . . , xn},

is there an assigment χ : X → {true, false}n such that φ is satisfied?
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Problem Characterization

In general we consider algorithms for two kinds of problems:

Decision Problem:
Given an input I, decide whether it belongs to a well-defined set M.

Example: Boolean Satisfiability Problem (SAT)
Given a propositional logic formula

φ
�
X, {∨,∧,¬}

�
with variables X = {x1, x2, . . . , xn},

is there an assigment χ : X → {true, false}n such that φ is satisfied?

φ1 := (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

22
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Problem Characterization

In general we consider algorithms for two kinds of problems:

Decision Problem:
Given an input I, decide whether it belongs to a well-defined set M.

Example: Boolean Satisfiability Problem (SAT)
Given a propositional logic formula

φ
�
X, {∨,∧,¬}

�
with variables X = {x1, x2, . . . , xn},

is there an assigment χ : X → {true, false}n such that φ is satisfied?

φ1 := (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

χ1 := X → truen ⇒ φ1 → true

22
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Problem Characterization

In general we consider algorithms for two kinds of problems:

Decision Problem:
Given an input I, decide whether it belongs to a well-defined set M.

Example: Boolean Satisfiability Problem (SAT)
Given a propositional logic formula

φ
�
X, {∨,∧,¬}

�
with variables X = {x1, x2, . . . , xn},

is there an assigment χ : X → {true, false}n such that φ is satisfied?

φ2 :=(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

∧(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

∧(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)
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Problem Characterization

In general we consider algorithms for two kinds of problems:

Decision Problem:
Given an input I, decide whether it belongs to a well-defined set M.

Example: Boolean Satisfiability Problem (SAT)
Given a propositional logic formula

φ
�
X, {∨,∧,¬}

�
with variables X = {x1, x2, . . . , xn},

is there an assigment χ : X → {true, false}n such that φ is satisfied?

φ2 :=(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

∧(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

∧(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

⇒ φ2 not satisfiable e.g. χ2 := X → truen
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Problem Characterization

In general we consider algorithms for two kinds of problems:

Optimization Problem:
Given a set L of feasible solutions and cost function f : L → R,
find x∗ ∈ L such that

f (x∗) ≤ f (x) ∀x ∈ L.
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Problem Characterization

In general we consider algorithms for two kinds of problems:

Optimization Problem:
Given a set L of feasible solutions and cost function f : L → R,
find x∗ ∈ L such that

f (x∗) ≤ f (x) ∀x ∈ L.
Example: Max-SAT
Given a propositional logic formula φ with variables X,
which assigment χ maximizes the number of satisifed clauses #(φ,χ)?
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Problem Characterization

In general we consider algorithms for two kinds of problems:

Optimization Problem:
Given a set L of feasible solutions and cost function f : L → R,
find x∗ ∈ L such that

f (x∗) ≤ f (x) ∀x ∈ L.
Example: Max-SAT
Given a propositional logic formula φ with variables X,
which assigment χ maximizes the number of satisifed clauses #(φ,χ)?

φ :=(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

∧(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

∧(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)
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Problem Characterization

In general we consider algorithms for two kinds of problems:

Optimization Problem:
Given a set L of feasible solutions and cost function f : L → R,
find x∗ ∈ L such that

f (x∗) ≤ f (x) ∀x ∈ L.
Example: Max-SAT
Given a propositional logic formula φ with variables X,
which assigment χ maximizes the number of satisifed clauses #(φ,χ)?

φ :=(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

∧(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

∧(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

χt : X → truen ⇒ #(φ,χt ) = 7

22
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Problem Characterization

In general we consider algorithms for two kinds of problems:

Optimization Problem:
Given a set L of feasible solutions and cost function f : L → R,
find x∗ ∈ L such that

f (x∗) ≤ f (x) ∀x ∈ L.
Example: Max-SAT
Given a propositional logic formula φ with variables X,
which assigment χ maximizes the number of satisifed clauses #(φ,χ)?

φ :=(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

∧(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

∧(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

χf : X → falsen ⇒ #(φ,χf ) = 7

22
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Problem Characterization

In general we consider algorithms for two kinds of problems:

Optimization Problem:
Given a set L of feasible solutions and cost function f : L → R,
find x∗ ∈ L such that

f (x∗) ≤ f (x) ∀x ∈ L.
Example: Max-SAT
Given a propositional logic formula φ with variables X,
which assigment χ maximizes the number of satisifed clauses #(φ,χ)?

φ :=(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3)

∧(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

∧(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3)

χm : X → {true, false, false} ⇒ #(φ,χm) = 7

22
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Problem Characterization

In general we consider algorithms for two kinds of problems:

1. Optimization Problem:
asks for the minimum cost solution x∗ ∈ L

2. Optimal Value Problem:
asks for minimal cost function value f (·)

3. Decision Problem:
given a parameter k ∈ R, asks ∃x ∈ L with f (x) ≤ k?

22
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Problem Characterization

In general we consider algorithms for two kinds of problems:

1. Optimization Problem:
asks for the minimum cost solution x∗ ∈ L

2. Optimal Value Problem:
asks for minimal cost function value f (·)

3. Decision Problem:
given a parameter k ∈ R, asks ∃x ∈ L with f (x) ≤ k?

solves

solves

22
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Complexity Classes

algorithm characeterized by its upper bound

problem characterized by its lower bound, i.e.

no possible algorithm can solve the problem faster than T (n)

for many interesting problems lower bounds still unkown

P ⊂ NP ? P = NP

Complexity classes group problems of similar characteristics

23
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Complexity Classes

algorithm characeterized by its upper bound

problem characterized by its lower bound, i.e.

no possible algorithm can solve the problem faster than T (n)

for many interesting problems lower bounds still unkown

P ⊂ NP ? P = NP

Complexity classes group problems of similar characteristics

c�S. Raskhodnikova
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Complexity Classes

algorithm characeterized by its upper bound

problem characterized by its lower bound, i.e.

no possible algorithm can solve the problem faster than T (n)

for many interesting problems lower bounds still unkown

P ⊂ NP ? P = NP

Complexity classes group problems of similar characteristics

c�G. Kuperberg
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The Good – The Bad

Complexity Class P:
Problems decidable by a deterministic machine in polynomial time

T (n) ∈ O
�
nd� for constant d .

c�PEA
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The Good – The Bad

Complexity Class P:
Problems decidable by a deterministic machine in polynomial time

T (n) ∈ O
�
nd� for constant d .

Examples:
Circuit Value Problem (CVP)

Linear programming

Primality testing

c�PEA

24
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The Good – The Bad

Complexity Class P:
Problems decidable by a deterministic machine in polynomial time

T (n) ∈ O
�
nd� for constant d .

Remarks:
polynomial time algorithms are considered efficient

in practice, algorithms ∈ O
�
n2
�

infeasible for large inputs

algorithms ∈ O(n log n) desirable

c�PEA
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The Good – The Bad

Complexity Class P:
Problems decidable by a deterministic machine in polynomial time

T (n) ∈ O
�
nd� for constant d .

Complexity Class NP:
Problems decidable by a non-deterministic machine in polynomial time.

or

Set of decison problems with efficiently verifiable-proof for “yes” instances.

c�PEA

24
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The Good – The Bad

Complexity Class P:
Problems decidable by a deterministic machine in polynomial time

T (n) ∈ O
�
nd� for constant d .

Complexity Class NP:
Problems decidable by a non-deterministic machine in polynomial time.

or

Set of decison problems with efficiently verifiable-proof for “yes” instances.

Examples
Boolean Satisfiability Problem (SAT)

Knapsack Problem

Subset sum problem

c�PEA

24



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

The Good – The Bad

NP-complete:
Problem L is NP-complete iff
1. L ∈ NP

2. L is NP-hard:
every problem G ∈ NP can be reduced in polynomial time to L
⇔ NP-complete problem G can be reduced in polynomial time to L.

c�PEA
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The Good – The Bad

NP-complete:
Problem L is NP-complete iff
1. L ∈ NP

2. L is NP-hard:
every problem G ∈ NP can be reduced in polynomial time to L
⇔ NP-complete problem G can be reduced in polynomial time to L.

NP

NP-complete

NP-hard

P

c�PEA
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The Bad

Many interesting optimization problems are NP-hard

Approximation algorithms:
Instead of exact solution x∗, compute approximate solution x̃ in polynomial
time with provable goodness guarantee f (n)

x̃
x∗ ≤ f (n).

c�PEA
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The Bad

Complexity Class APX:
Problems approximable to a constant factor c in polynomial time,

f (n) = c.

c�PEA
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The Bad

Complexity Class APX:
Problems approximable to a constant factor c in polynomial time,

f (n) = c.
Complexity Class PTAS:
Problems approximable to any factor 1 + �

f (n) = 1 + � ∀� > 0,

with runtime polynomial in n but possibly exponential in 1
�

.

c�PEA
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The Bad

Complexity Class APX:
Problems approximable to a constant factor c in polynomial time,

f (n) = c.
Complexity Class PTAS:
Problems approximable to any factor 1 + �

f (n) = 1 + � ∀� > 0,

with runtime polynomial in n but possibly exponential in 1
�

.

Complexity Class FPTAS:
PTAS with runtime polynomial in n and 1

�
.

c�PEA

27
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The Bad

Many interesting optimization problems are NP-hard

Approximation algorithms:
Instead of exact solution x∗, compute approximate solution x̃ in polynomial
time with provable goodness guarantee f (n)

x̃
x∗ ≤ f (n).

⊂ APX
Bin packing

PTAS
Makespan scheduling

FPTAS
Knapsack ⊂

c�PEA
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The Ugly

Some problems cannot be approximated efficiently

c�PEA
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The Ugly

Some problems cannot be approximated efficiently

Example: Minimum Set Cover
Given a universe U = {1, 2, . . . , n} and a collection S of m subsets of U,
with

�
s∈S = U, find a minimal subfamily C ⊆ S with

�
c∈C = U

Min set cover cannot be approximated to (1−o(1)) · log n, unless P = NP.

c�PEA
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The Ugly

Some problems cannot be approximated efficiently

Example: Minimum Set Cover
Given a universe U = {1, 2, . . . , n} and a collection S of m subsets of U,
with

�
s∈S = U, find a minimal subfamily C ⊆ S with

�
c∈C = U

Min set cover cannot be approximated to (1−o(1)) · log n, unless P = NP.

there can be polynomial time heuristics for these problems

work good in practice, but without proven guarantee

c�PEA
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The Good – The Bad – The Ugly

Good : ≤ O(n log n)

Goodish: ≥ O
�
n2�

Bad:NP-hard

APX

Ugly:NP-hard

not APX

c�PEA
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Graph Theory
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Graph Theory

[sayasaya2011.wordpress.com]

[Martin Grandjean, via Wikimedia Commons]

�

Foundation: 7 Bridges of Köngisberg (L. Euler, 1736)
Problem: Walk through Königsberg crossing each bridge exacly once

[Bogdan Giuşcă, via Wikimedia Commons]

Today: widely used to model relationships between objects

Social Networks
Transportation
Internet
Protein Interaction
...

[Barrett Lyon / The Opte Project]

32



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Graphs: Notation & Definitions

v1 v2

v3

v4

v5

v6

v7

V = {v1, v2, v3, v4, v5, v6, v7}
E = {(v1, v2), (v1, v3), (v1, v4), . . . }
n = |V |
m = |E |

Graph G = (V , E)
vertices edges
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Graphs: Notation & Definitions

v1 v2

v3

v4

v5

v6

v7

e1 = (v1, v2) is incident to v1,v2

v1 & v2 are adjacent
degree d(v ): # incident edges

V = {v1, v2, v3, v4, v5, v6, v7}
E = {(v1, v2), (v1, v3), (v1, v4), . . . }
n = |V |
m = |E |

Graph G = (V , E)
vertices edges
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Graphs: Notation & Definitions

v1 v2

v3

v4

v5

v6

v7

e1 = (v1, v2) is incident to v1,v2

v1 & v2 are adjacent

multiedges

degree d(v ): # incident edges

V = {v1, v2, v3, v4, v5, v6, v7}
E = {(v1, v2), (v1, v3), (v1, v4), . . . }
n = |V |
m = |E |

Graph G = (V , E)
vertices edges
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Graphs: Notation & Definitions

v1 v2

v3

v4

v5

v6

v7

e1 = (v1, v2) is incident to v1,v2

v1 & v2 are adjacent

multiedges self-loop

degree d(v ): # incident edges

V = {v1, v2, v3, v4, v5, v6, v7}
E = {(v1, v2), (v1, v3), (v1, v4), . . . }
n = |V |
m = |E |

Graph G = (V , E)
vertices edges
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Graphs: Notation & Definitions

v1 v2

v3

v4

v5

v6

v7

e1 = (v1, v2) is incident to v1,v2

v1 & v2 are adjacent

multiedges self-loop

simple graph: no self-loops & multiedges

degree d(v ): # incident edges

V = {v1, v2, v3, v4, v5, v6, v7}
E = {(v1, v2), (v1, v3), (v1, v4), . . . }
n = |V |
m = |E |

Graph G = (V , E)
vertices edges

33
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Graphs: Notation & Definitions

Weighted Graphs:

vertex weights c : V → R
edge weights ω : E → R

34
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Graphs: Notation & Definitions

Weighted Graphs:

vertex weights c : V → R
edge weights ω : E → R

Directed Graphs:

in-degree din(v )
out-degree dout (v )

34



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Graphs: Notation & Definitions

Weighted Graphs:

vertex weights c : V → R
edge weights ω : E → R

Directed Graphs:

in-degree din(v )
out-degree dout (v )

Planar Graphs: can be drawn without edge crossings

�
K4 K4 K5

not planar

34
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Graphs: Notation & Definitions

Cyclic Graphs
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Graphs: Notation & Definitions

Cyclic Graphs

Acyclic Graphs

�
Tree

DAG

root

leaf
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Graphs: Notation & Definitions

Cyclic Graphs

Acyclic Graphs

�
Tree

DAG

root

leaf

Sparse/Dense Graphs

m = O(n) m = Θ
�
n2
�
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Graphs: Notation & Definitions

Hypergraphs: generalization of graphs

hyperedges connect ≥ 2 vertices
can represent d-ary relationships
E ⊆ P(V ) \ ∅
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Graphs: Notation & Definitions

Hypergraphs: generalization of graphs

hyperedges connect ≥ 2 vertices
can represent d-ary relationships
E ⊆ P(V ) \ ∅

Bipartite Graphs: ∀(u, v ) ∈ E : (u ∈ A ∧ v ∈ B) ∨ (v ∈ A ∧ u ∈ B)

A

B

36
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Graph Representations

Unordered Edge Sequence

1

2

3

4
5

6
(1,2),(2,3),(4,5),(3,4),(1,3),(3,6),(3,5),(6,2)

+ simple
+ add edges in O(1)

– navigation in Θ(m)
– remove edges in Θ(m)

37
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Graph Representations

Unordered Edge Sequence

1

2

3

4
5

6
(1,2),(2,3),(4,5),(3,4),(1,3),(3,6),(3,5),(6,2)

+ simple
+ add edges in O(1)

– navigation in Θ(m)

Adjacency Array
1 2 3 4 5 6

1

2 3

3

3

4

4 5 6

7 7

4 2

8 9

– remove edges in Θ(m)

edge endpoints

index of first outgoing edge
V

E
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Graph Representations

Unordered Edge Sequence

1

2

3

4
5

6
(1,2),(2,3),(4,5),(3,4),(1,3),(3,6),(3,5),(6,2)

+ simple
+ add edges in O(1)

– navigation in Θ(m)

Adjacency Array
1 2 3 4 5 6

1

2 3

3

3

4

4 5 6

7 7

4 2

8 9

+ navigation easy: outgoing edges E [V [v ]], . . . , E [V [V + 1] − 1]
+ remove edges: easy via explicit end indices
– add edges

– remove edges in Θ(m)

edge endpoints

index of first outgoing edge
V

E

37
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Graph Representations

Adjacency List

1

2

3

5

61 2 3 4 5 6

+ adding edges: easy
+ removing edges: easy

– up to 3x more space
– slower (more cache misses)

+ navigation: easy

2

3

3 4

6

4 2

5

4
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Graph Representations

Adjacency Matrix

1

2

3

5

6

+ space efficient for very dense graphs
+ query (u, v ) ∈ E? easy

– space inefficient otherwise
– navigation in O(n)

+ edge insertions/deletions in O(1)

4

A ∈ {0, 1}n×n with A(i , j) = [(i , j) ∈ E ]

A =




0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0




+ connects graph theory with linear algebra

Example: C = Ak ⇒ Cij = # paths of length k from i to j

39
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Graph Representations

Summary:
edge sequence

adjacency array

adjacency list

adjacency matrix

no data structure fits all needs!}

40
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Graph Representations

Summary:
edge sequence

adjacency array

adjacency list

adjacency matrix

no data structure fits all needs!}
Key Takeaways:

Choice of DS depends on

operations needed
frequency of operations
static or dynamic?

Adjacency Array → best DS for static graphs

Matrices rarely used in practice

40
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Graph Traversal

41
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Random Walks

Given undirected Graph G = (V , E)

Random walk in G

Random walker that stands at one vertex at each point in time
Each edge is taken with same probability

?

1
3

1
3

1
3
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Random Walks

Given undirected Graph G = (V , E)

Random walk in G

Random walker that stands at one vertex at each point in time
Each edge is taken with same probability

?

1
3

1
3

1
3

Interesting properties

muv := expected number of steps from vertex u to v
Cuv := expected number of steps from vertex u to u via v

u
v

42
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Applications

Image segmentation Model share prices in economics

Model Brownian motion and diffusion Estimate size of WWW

By The Opte Project - Originally from the English Wikipedia; CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1538544
By Katrina.Tuliao - https://www.tradergroup.org, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=12262407
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Example

Lollipop graph Ln

First n
2 vertices form clique

Second n
2 vertices form path ”glued” to clique

L16
u v

44
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Example

Lollipop graph Ln

First n
2 vertices form clique

Second n
2 vertices form path ”glued” to clique

L16
u v

⇒ muv ∈ Θ(n3)

⇒ mvu ∈ Θ(n2)

How to efficiently model this problem?

44
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Resistance Networks

Model graph as network N(G) of electrical resistors

Graph has to be undirected, connected and loop-free
Replace each edge with resistor of 1Ω

45
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Resistance Networks

Model graph as network N(G) of electrical resistors

Graph has to be undirected, connected and loop-free
Replace each edge with resistor of 1Ω

⇒ We can measure the effective resistance Ruv between u and v

⇒ We now proof that Cuv = 2mRuv

u

v

45



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Lemma: muv = ρuv

u

v

Add electric current d(x) to every vertex x ∈ V

Remove total current of 2m at vertex v

2A

2A

2A

3A
1A

10A

46
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Lemma: muv = ρuv

u

v

Add electric current d(x) to every vertex x ∈ V

Remove total current of 2m at vertex v

2A

2A

2A

3A
1A

10A
ρuv

Kirchoff’s law:
d(u) =

�
w∈Γ (u)(ρuv − ρwv ) ⇔ d(u) +

�
w∈Γ (u) ρwv = d(u)ρuv
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Lemma: muv = ρuv

u

v

Add electric current d(x) to every vertex x ∈ V

Remove total current of 2m at vertex v

2A

2A

2A

3A
1A

10A
ρuv

Kirchoff’s law:
d(u) =

�
w∈Γ (u)(ρuv − ρwv ) ⇔ d(u) +

�
w∈Γ (u) ρwv = d(u)ρuv

Linearity of expectation:
muv =

�
w∈Γ (u)(1 + mwv )/d(u) ⇔ d(u) +

�
w∈Γ (u) mwv = d(u)muv

46
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Lemma: muv = ρuv

u

v

Add electric current d(x) to every vertex x ∈ V

Remove total current of 2m at vertex v

2A

2A

2A

3A
1A

10A
ρuv

Kirchoff’s law:
d(u) =

�
w∈Γ (u)(ρuv − ρwv ) ⇔ d(u) +

�
w∈Γ (u) ρwv = d(u)ρuv

Linearity of expectation:
muv =

�
w∈Γ (u)(1 + mwv )/d(u) ⇔ d(u) +

�
w∈Γ (u) mwv = d(u)muv
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Proof: Cuv = 2mRuv

Use muv = ρuv and linearity of resistor network

u

v

Cuv = muv + mvu = ρuv + ρvu

47
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Proof: Cuv = 2mRuv

Use muv = ρuv and linearity of resistor network

u

v

2A

2A

2A

3A
1A

10A
muv

Cuv = muv + mvu = ρuv + ρvu
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Proof: Cuv = 2mRuv

Use muv = ρuv and linearity of resistor network

u

v

2A

2A

2A

3A
1A

10A

mvu

Cuv = muv + mvu = ρuv + ρvu

47
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Proof: Cuv = 2mRuv

Use muv = ρuv and linearity of resistor network

u

v

2A

2A

2A

3A
1A

10A

mvu

Cuv = muv + mvu = ρuv + ρvu

47
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Proof: Cuv = 2mRuv

Use muv = ρuv and linearity of resistor network

u

v

Cuv = muv + mvu = ρuv + ρvu

10A

10A

muv + mvu

47
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Proof: Cuv = 2mRuv

Use muv = ρuv and linearity of resistor network

u

v

Cuv = muv + mvu = ρuv + ρvu

10A

10A

muv + mvu

⇒ Ohm’s law: Cuv = 2mRuv

47
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Graph Traversal

Systematic Graph Exploration

basis of almost all nontrivial graph algorithms

goal: inspect each edge exactly once

2 Algorithms

Breadth-First Search
Depth-First Search

Both construct forests & partition edges into one of 4 classes:

48
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Graph Traversal

Systematic Graph Exploration

basis of almost all nontrivial graph algorithms

goal: inspect each edge exactly once

2 Algorithms

Breadth-First Search
Depth-First Search

Both construct forests & partition edges into one of 4 classes:

tree

48
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Graph Traversal

Systematic Graph Exploration

basis of almost all nontrivial graph algorithms

goal: inspect each edge exactly once

2 Algorithms

Breadth-First Search
Depth-First Search

Both construct forests & partition edges into one of 4 classes:

forward

treetree
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Graph Traversal

Systematic Graph Exploration

basis of almost all nontrivial graph algorithms

goal: inspect each edge exactly once

2 Algorithms

Breadth-First Search
Depth-First Search

Both construct forests & partition edges into one of 4 classes:

forward

backwardtreetree

forward

48



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Graph Traversal

Systematic Graph Exploration

basis of almost all nontrivial graph algorithms

goal: inspect each edge exactly once

2 Algorithms

Breadth-First Search
Depth-First Search

Both construct forests & partition edges into one of 4 classes:

forward

backwardtree

cross

tree

forward

backward

48
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Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49
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Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

Graph

s

d c

b

g

e
f

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49
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Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

s
0

Graph BFS-Tree

s

d c

b

g

e
f

s

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

s

d

0

1

Graph BFS-Tree

s

d c

b

g

e
f

s

d

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

s

d c

0

1

Graph BFS-Tree

s

d c

b

g

e
f

s

d c

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

s

d c b

0

1

Graph BFS-Tree

s

d c

b

g

e
f

s

d c

b

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

s

d c b

0

1

2f

Graph BFS-Tree

s

d c

b

g

e
f

s

d c

b

f

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

s

d c b

0

1

2ef

Graph BFS-Tree

s

d c

b

g

e
f

s

d c

b

f
eee

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

s

d c b

0

1

2ef

Graph BFS-Tree

s

d c

b

g

e
f

s

d c

b

f
eeee

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

s

d c b

0

1

2ef

Graph BFS-Tree

s

d c

b

g

e
f

s

d c

b

f
eeee

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

s

d c b

0

1

2ef

Graph BFS-Tree

s

d c

b

g

e
f

s

d c

b

f
eeee

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

s

d c b

g

0

1

2

3

ef

Graph BFS-Tree

s

d c

b

g

e
f

s

d c

b

f
e

g

eee

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

s

d c b

g

0

1

2

3

ef

Graph BFS-Tree

s

d c

b

g

e
f

s

d c

b

f
e

g

eee

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Breadth First Search

Build tree starting from root node s that connects all nodes reachable
from s via shortest paths.

s

d c b

g

0

1

2

3

ef

Graph BFS-Tree

s

d c

b

g

e
f

s

d c

b

f
e

g

eee

Function bfs(s) :
Q:= �s� // current layer
while Q �= �� do

explore nodes Q
remember node in next layer in Q�

Q:= Q�

49



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Breadth First Search
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How to store the tree?
array stores parents

not reached: parent[v ] = ⊥
root: parent[s] = s
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Depth First Search

init
foreach s ∈ V do

if s is not marked then
mark s // make s a root and grow
root(s) // a new DFS tree rooted at s
DFS(s, s)

root(s):
dfsNum[s]:= dfsPos++

init:
dfsPos=1 : 1..n
finishingTime=1 : 1..n

Explore the graph as far as possible along each branch and return only if
you run out of options.
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Depth First Search

Procedure DFS(u, v : NodeId)
foreach (v , w) ∈ E do

if w is marked then
traverseNonTreeEdge(v , w)

else
traverseTreeEdge(v , w)
mark w
DFS(v , w)

backtrack(u, v )
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DFS: Edge Classification

type dfsNum[v ] < finishTime[w ] < w is
(v , w) dfsNum[w ] finishTime[v ] marked
tree yes yes no
forward yes yes yes
backward no no yes
cross no yes yes
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DFS: Edge Classification

⇒ Cycle Detection
⇒ Topological Sorting

Lemma:
The following properties are equivalent:
(i) G is an acyclic directed graph (DAG)
(ii) DFS on G produces no backward edges
(iii) All edges of G go from larger to smaller finishing times
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Graph Problems
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Finding Shortest Paths in Graphs

Unweighted Graphs (∀e ∈ E : ω(e) = 1):

d

c

b

g

0 1 2 3

e

f

s

use BFS

O(n + m) time

What about weighted graphs?

1
1 1

1

3 3

s t
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Shortest Paths

Input:
Graph G = (V , E)

Edge weights ω : E → R
start node s

Output: ∀v ∈ V : Length µ(v ) of shortest path from s to v

µ(v ) := min{ω(p) : p is path from s to v}

ω(�e1, . . . , ek�) :=
�k

i=1 ω(ei )

Applications: Route planning, DNA sequencing, production planning,...
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Shortest Paths - Basics

Does a shortest path always exist?

. . .s v. . .C
p q

r = pCq is path from s to v

⇒ # paths from s to v is infinite: r i = pCiq
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Shortest Paths - Basics

Does a shortest path always exist?

. . .s v. . .C
p q

r = pCq is path from s to v

⇒ # paths from s to v is infinite: r i = pCiq

⇒ if C is a negative cycle: ω(r i+1) < ω(r i )

ω(C) < 0
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Shortest Paths - Basic Definitions

Assumption: nonnegative edge weights � no negative cycles

We use 2 Arrays (like in BFS):

d [v ]: current (tentative) distance from s to v
Invariant: d [v ] ≥ µ(v )

parent[v ]: predecessor of v on (temp.) path from s � v

Initialization:

. . .

s

v

d [v ]

d [s] = 0
d [v ] = ∞

parent[s]=s
parent[v ]= ⊥

How to improve tentative distance values?
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Shortest Paths - Edge Relaxations

. . .
. . .

u�

u

s

d [u�]

d [v ] = d [u�] + ω(u�, v )

v

Procedure relax(e = (u, v ) : Edge)
if d [u] + ω(e) < d [v ] then

d [v ] = d [u] + ω(e)
parent[v ] = u
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Shortest Paths - Dijkstra’s Algorithm

∞

∞∞

∞

∞

initialize d , parent
all nodes are non-scanned
while ∃ non-scanned node u with d [u] < ∞

u := non-scanned node v with minimal d [v ]
relax all edges (u, v ) out of u
u is scanned now
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Shortest Paths - Dijkstra’s Algorithm

Theorem:
Dijkstra’s algorithm solves the single-source shortest-path problem for
graphs with nonnegative edge costs.

Proof: We show: ∀v ∈ V :
v is reachable � v is scanned

v is scanned � µ(v ) = d [v ]
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Proof: We show: ∀v ∈ V :
v is reachable � v is scanned

v is scanned � µ(v ) = d [v ]

⇒ i > 1, because s is scanned
⇒ vi−1 has been scanned (by definition)
⇒ edge vi−1 → vi was relaxed
⇒ d [vi ] < ∞
⇒ contradiction: only nodes x with d [x ] = ∞ remain unscanned

scanned� �� �
s = v1 −→ v2 −→ · · · −→ vi−1 −→

unscanned����
vi −→ · · · −→

never scanned� �� �
vk = v� �� �

a shortest s–v path

reachable from s, but
Assumption:
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Shortest Paths - Dijkstra’s Algorithm

Theorem:
Dijkstra’s algorithm solves the single-source shortest-path problem for
graphs with nonnegative edge costs.

Proof: We show: ∀v ∈ V :
v is scanned � µ(v ) = d [v ]

⇒ vi−1 was scanned before t (by definition)
⇒ d [vi−1] = µ(vi−1) when vi−1 is scanned
⇒ edge vi−1 → vi was relaxed
⇒ d [vi ] = d [vi−1] + ω(vi−1, vi ) = µ(vi−1) + ω(vi−1, vi ) = µ(vi )
⇒ at time t : d [vi ] = µ(vi ) ≤ µ(v ) < d [v ]
⇒ vi is scanned before v ! contradiction!
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Dijkstra’s Algorithm - Implementation

∞

∞∞

∞

∞

10

initialize d , parent
all nodes are non-scanned
while ∃ non-scanned node u with d [u] < ∞

u := non-scanned node v with minimal d [v ]
relax all edges (u, v ) out of u
u is scanned now
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Dijkstra’s Algorithm - Implementation

Function Dijkstra(s : NodeId) : NodeArray×NodeArray
d = {∞, . . . ,∞}; parent[s]:= s; d [s] := 0; Q.insert(s) // O(n)
while Q �= ∅ do

u := Q.deleteMin // ≤ n×
foreach edge e = (u, v ) ∈ E do // ≤ m×

if d [u] + c(e) < d [v ] then // ≤ m×
d [v ]:= d [u] + c(e) // ≤ m×
parent[v ] := u // ≤ m×
if v ∈ Q then Q.decreaseKey(v ) // ≤ m×
else Q.insert(v ) // ≤ n×

return (d , parent)

Total Running Time:

TDijkstra = O
�
m · TdecreaseKey(n) + n · (TdeleteMin(n) + Tinsert(n))

�
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Goal-Directed Search / Pathfinding

Goal: Find distance from s to a specific node t

One Solution:
stop Dijkstra as soon as t is removed from PQ

s t
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Goal-Directed Search / Pathfinding

Goal: Find distance from s to a specific node t

One Solution:
stop Dijkstra as soon as t is removed from PQ

s t

A* Search:
Idea: bias search towards the target

∀v ∈ V : heuristic f (v ) estimates distance µ(v , t)

modified distance fct. ∀e = (u, v ) ∈ E : c = c(e) + f (v ) − f (u)

s t
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Goal-Directed Search / Pathfinding

Goal: Find distance from s to a specific node t

One Solution:
stop Dijkstra as soon as t is removed from PQ

s t

A* Search:
Idea: bias search towards the target

∀v ∈ V : heuristic f (v ) estimates distance µ(v , t)

modified distance fct. ∀e = (u, v ) ∈ E : c = c(e) + f (v ) − f (u)

s t

Optimistic Example: f (v ) = µ(v , t)
⇒ c(u, v ) = c(u, v ) + µ(v , t) − µ(u, t) = 0 if (u, v ) is on shortest s, t path

s → · · · → u
c(u,v )−→

µ(v ,t)� �� �
v→ · · · →t� �� �
µ(u,t)

⇒ Dijkstra only scans nodes along
shortest path!
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Goal-Directed Search / Pathfinding

Goal: Find distance from s to a specific node t

One Solution:
stop Dijkstra as soon as t is removed from PQ

s t

A* Search:
Idea: bias search towards the target

∀v ∈ V : heuristic f (v ) estimates distance µ(v , t)

modified distance fct. ∀e = (u, v ) ∈ E : c = c(e) + f (v ) − f (u)

s t

Optimistic Example: f (v ) = µ(v , t)
⇒ c(u, v ) = c(u, v ) + µ(v , t) − µ(u, t) = 0 if (u, v ) is on shortest s, t path

s → · · · → u
c(u,v )−→

µ(v ,t)� �� �
v→ · · · →t� �� �
µ(u,t)

⇒ Dijkstra only scans nodes along
shortest path!

Interactive Demo: http://www.ryanpon.com/animate
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More on Shortest Paths

DAGs:
⇒ relax edges in topological order of vertices: O(m + n)

arbitrary edge weights:
⇒ Bellman-Ford Algorithm (Idea: relax all edges n − 1 times): O(m n)

All-Pairs Shortest Paths

dense graphs (without negative cycles)
⇒ Floyd–Warshall Algorithm: O

�
n3
�

non-negative edge weights:
⇒ n × Dijkstra: O(n(m + n log n))
arbitrary edge weights:
⇒ n × Bellman-Ford: O

�
n2 m

�

⇒ 1× Bellman-Ford + n × Dijkstra: O(n(m + n log n)) [1]

[1] K. Mehlhorn, V. Priebe, G. Schäfer, N. Sivadasan: All-pairs shortest-paths computation in the presence of
negative cycles. Inf. Process. Lett. 81(6): 341-343 (2002)
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Minimal Spanning Tree (MST)

Given undirected Graph G = (V , E) with edge weights c(e) ∈ R+

G connected
⇒ Find a tree (V,T) with minimal weight

�
e∈T c(e) that connects all vertices

2

41

3
5

6 7
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Minimal Spanning Tree (MST)

Given undirected Graph G = (V , E) with edge weights c(e) ∈ R+

G connected
⇒ Find a tree (V,T) with minimal weight

�
e∈T c(e) that connects all vertices

2

41

3
5

6 7
Vertices unconnected

Non-minimal weight
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Given undirected Graph G = (V , E) with edge weights c(e) ∈ R+

G connected
⇒ Find a tree (V,T) with minimal weight

�
e∈T c(e) that connects all vertices
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3
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Given undirected Graph G = (V , E) with edge weights c(e) ∈ R+

G connected
⇒ Find a tree (V,T) with minimal weight

�
e∈T c(e) that connects all vertices

2
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3
5
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Vertices connected

Minimal weight
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Minimal Spanning Tree (MST)

Given undirected Graph G = (V , E) with edge weights c(e) ∈ R+

G connected
⇒ Find a tree (V,T) with minimal weight

�
e∈T c(e) that connects all vertices

2

41

3
5

6 7
Vertices connected

Minimal weight

G unconnected
Find minimal spanning forest (MSF) that spans all connected components
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Applications

Network design

Cluster analysisLearning features for face verification

Reduce storage for protein sequencing

Von Michael Kauffmann - Eigenes Werk, CC BY 3.0 de, https://commons.wikimedia.org/w/index.php?curid=52231711
By Jimmy answering questions.jpg: Wikimania2009 Beatrice Murchderivative work: Sylenius (talk) - Jimmy answering questions.jpg, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=11309460
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Finding MST Edges

Cut property

Arbitrary subset S ⊂ V
Cut edges C = {{u, v} ∈ E : u ∈ S, v ∈ V \ S} 3

5

7

2
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Finding MST Edges

Cut property

Arbitrary subset S ⊂ V
Cut edges C = {{u, v} ∈ E : u ∈ S, v ∈ V \ S} 3

5

7

2

S

⇒ Lightest edge in C can be used in an MST
(Proof via exchange with heavier cycle edge)
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Finding MST Edges

Cut property

Arbitrary subset S ⊂ V
Cut edges C = {{u, v} ∈ E : u ∈ S, v ∈ V \ S} 3

5

7

2

S

⇒ Lightest edge in C can be used in an MST

Cycle property

Arbitrary cycle C in G

(Proof via exchange with heavier cycle edge)

⇒ Heaviest edge in C is not needed in an MST

3

5

7

2(Proof via exchange with lighter cycle edge)
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Finding MST Edges

Cut property

Arbitrary subset S ⊂ V
Cut edges C = {{u, v} ∈ E : u ∈ S, v ∈ V \ S} 3

5

7

2

S

⇒ Lightest edge in C can be used in an MST

Cycle property

Arbitrary cycle C in G

(Proof via exchange with heavier cycle edge)

⇒ Heaviest edge in C is not needed in an MST

3

5

7

2(Proof via exchange with lighter cycle edge)

Essential properties for developing MST algorithms
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Jarnik-Prim Algorithm

4

Use cut property to gradually grow the MST

1. Start with empty MST T

2. Select random start vertex S = {s}
3. Repeat n − 1 times

(a) Find edge {u, v} fulfilling cut property for S
(b) S = S ∪ {v}
(c) T = T ∪ {{u, v}}

3

6

5

7
9

2

1
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Jarnik-Prim Algorithm

4

Use cut property to gradually grow the MST

1. Start with empty MST T

2. Select random start vertex S = {s}
3. Repeat n − 1 times

(a) Find edge {u, v} fulfilling cut property for S
(b) S = S ∪ {v}
(c) T = T ∪ {{u, v}}

3

6

5

7
9

2

1

O(m + n log n)
using Fibonacci Heaps

⇒ Lightest edge using PQ

Good
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Kruskal’s Algorithm

1. Start with empty MST T

2. Sort edges in ascending order of weight

3. Iterate over all edges {u, v}
(a) u, v in different subtrees ⇒ T = T ∪ {{u, v}} (cut property)
(b) u, v in same subtree ⇒ continue (cycle property)

Use cut and cycle property to merge subtrees of MST

43

6

5

7
9

2

1

71
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Kruskal’s Algorithm

1. Start with empty MST T

2. Sort edges in ascending order of weight

3. Iterate over all edges {u, v}
(a) u, v in different subtrees ⇒ T = T ∪ {{u, v}} (cut property)
(b) u, v in same subtree ⇒ continue (cycle property)

Use cut and cycle property to merge subtrees of MST
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Kruskal’s Algorithm

1. Start with empty MST T

2. Sort edges in ascending order of weight

3. Iterate over all edges {u, v}
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Kruskal’s Algorithm

1. Start with empty MST T

2. Sort edges in ascending order of weight

3. Iterate over all edges {u, v}
(a) u, v in different subtrees ⇒ T = T ∪ {{u, v}} (cut property)
(b) u, v in same subtree ⇒ continue (cycle property)

Use cut and cycle property to merge subtrees of MST

43

6

5

7
9

2

1

O(m log m)

⇒ Fast merging of subtrees
using Union-Find

Good
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Comparison

Pro Jarnik-Prim
Asymptotically good for all m, n

Very fast for m � n

Pro Kruskal
Fast for m = O(n)

Only requires adjacency lists

Profits from fast sorting (e.g. parallel/integers)

Additional improvements available (e.g. FilterKruskal)

⇒ Choose algorithm based on structure of graph
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Flow Networks (1/3)

Network

Directed graph G = (V , E , c)
Source node s (dout(s) > 0)
Sink node t (din(t) > 0)
Edge capacity c(e) > 0

s t

10

10

10

4

4

4

8

12
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Flow Networks (2/3)

Flow f : E → R+

For each edge e ∈ E : 0 ≤ f (e) ≤ c(e)
For each vertex v ∈ V \ {s, t} :

�
u∈Γin

f (u, v ) =
�

u∈Γout
f (v , u)

val(f ) =
�

u∈V f (s, u) −�
u∈V f (u, s) =

�
u∈V f (u, t) −�

u∈V f (t , u)

s t

10

10

10

4

4

4

8

12
10

8

4
4

2

8

12

6
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Flow Networks (2/3)

s t

10

10

10

4

4

4

8

12
10

8

4
4

2

8

12

6

Flow f : E → R+

Flow is non-negative and limited by capacity
For each vertex v ∈ V \ {s, t} :

�
u∈Γin

f (u, v ) =
�

u∈Γout
f (v , u)

val(f ) =
�

u∈V f (s, u) −�
u∈V f (u, s) =

�
u∈V f (u, t) −�

u∈V f (t , u)
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Flow Networks (2/3)

s t

10

10

10

4

4

4

8

12
10

8

4
4

2

8

12

6

Flow f : E → R+

Flow is non-negative and limited by capacity
Incoming flow = outgoing flow for each intermediate vertex
val(f ) =

�
u∈V f (s, u) −�

u∈V f (u, s) =
�

u∈V f (u, t) −�
u∈V f (t , u)
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Flow Networks (2/3)

s t

10

10

10

4

4

4

8

12
10

8

4
4

2

8

12

6

Flow f : E → R+

Flow is non-negative and limited by capacity
Incoming flow = outgoing flow for each intermediate vertex
Value of flow is outgoing/incoming flow from s/t
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Flow Networks (2/3)

s t

10

10

10

4

4

4

8

12
10

8

4
4

2

8

12

6

Flow f : E → R+

Flow is non-negative and limited by capacity
Incoming flow = outgoing flow for each intermediate vertex
Value of flow is outgoing/incoming flow from s/t

⇒ Find flow f with maximum value
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Flow Networks (3/3)

(Minimum) s − t cuts

Partition V = S ∪ T into disjoint sets S and T
s ∈ S and t ∈ T

s t

10

10

10

4

4

4

8

12S

T

Capacity of cut is
�{c(u, v ) : u ∈ S, v ∈ T}

75



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Flow Networks (3/3)

(Minimum) s − t cuts

Partition V = S ∪ T into disjoint sets S and T
s ∈ S and t ∈ T

s t

10

10

10

4

4

4

8

12S

T

Capacity of cut is
�{c(u, v ) : u ∈ S, v ∈ T}

⇒ Duality: Capacity of min. s − t cut = value of max. s − t flow
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Applications

Oil pipelines Traffic flow on highways

Image processing Task scheduling

”Trans-Alaska oil pipeline, near Fairbanks” flickr photo by amerune https://flickr.com/photos/amerune/9294639633 shared under a CC (BY) license
By Robert Jack Will - http://www.flickr.com/photos/bob406/3860422159/, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=10075775
By QueSera4710 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=31586266
By I, Cburnett, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2233464
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Ford Fulkerson Algorithm

General Idea (augmenting paths)

Find s − t path with spare capacity
Sature edge with smallest spare capacity
Adjust remaining capacities (create residual graph)

s t

10

10

10

4

4

4

8

12

77
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Ford Fulkerson Algorithm

General Idea (augmenting paths)

Find s − t path with spare capacity
Sature edge with smallest spare capacity
Adjust remaining capacities (create residual graph)

s t

10

10

10

4

4

4

8

12
+10
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Ford Fulkerson Algorithm

General Idea (augmenting paths)

Find s − t path with spare capacity
Sature edge with smallest spare capacity
Adjust remaining capacities (create residual graph)

s t
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4

4

4
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Ford Fulkerson Algorithm

General Idea (augmenting paths)

Find s − t path with spare capacity
Sature edge with smallest spare capacity
Adjust remaining capacities (create residual graph)

s t

10

4

4

4

8

0

0

2

+4
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Ford Fulkerson Algorithm

General Idea (augmenting paths)

Find s − t path with spare capacity
Sature edge with smallest spare capacity
Adjust remaining capacities (create residual graph)

s t

4

4

0

0

2

6

0
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Ford Fulkerson Algorithm

General Idea (augmenting paths)

Find s − t path with spare capacity
Sature edge with smallest spare capacity
Adjust remaining capacities (create residual graph)
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Ford Fulkerson Algorithm

General Idea (augmenting paths)

Find s − t path with spare capacity
Sature edge with smallest spare capacity
Adjust remaining capacities (create residual graph)
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Ford Fulkerson Algorithm

General Idea (augmenting paths)

Find s − t path with spare capacity
Sature edge with smallest spare capacity
Adjust remaining capacities (create residual graph)

s t

0

0

0

2
0

2

2

2

No more augmenting path
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Ford Fulkerson Algorithm

General Idea (augmenting paths)

Find s − t path with spare capacity
Sature edge with smallest spare capacity
Adjust remaining capacities (create residual graph)

s t

0

0

0

2
0

2

2

2

O(m · val(f ))Goodish
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Ford Fulkerson Correctness (1/2)

Trivial: Ford Fulkerson computes valid flow
⇒ Remaining: show that flow value is maximal

At termination we have no augmenting paths in Gf

Define cut (S, V \ S) with S := {v ∈ V : v reachable from s in Gf}

s t

0

0

0

2
0

2

2

2

S
V \ S
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Ford Fulkerson Correctness (2/2)

Lemma 1: For any cut (S, T ):

Lemma 2: For each edge e ∈ E : cf (e) = 0 ⇒ f (e) = 0

val(f ) =
�

e∈E∩S×T fe −
�

e∈E∩T×S fe

S → T edges T → S edges

79
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Ford Fulkerson Correctness (2/2)

Lemma 1: For any cut (S, T ):

Lemma 2: For each edge e ∈ E : cf (e) = 0 ⇒ f (e) = 0

val(f ) =
�

e∈E∩S×T fe −
�

e∈E∩T×S fe

S → T edges T → S edges

Observation: For each edge e ∈ E ∩ S × T : cf (e) = 0 ⇒ f (e) = 0
Lemma 2

val(f ) =
Lemma 1�

e∈E∩S×T fe −
�

e∈E∩T×S fe

=
�

e∈E∩S×T fe = cut capacity

≥ maximum flow
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Ford Fulkerson Correctness (2/2)

Lemma 1: For any cut (S, T ):

Lemma 2: For each edge e ∈ E : cf (e) = 0 ⇒ f (e) = 0

val(f ) =
�

e∈E∩S×T fe −
�

e∈E∩T×S fe

S → T edges T → S edges

Observation: For each edge e ∈ E ∩ S × T : cf (e) = 0 ⇒ f (e) = 0
Lemma 2

val(f ) =
Lemma 1�

e∈E∩S×T fe −
�

e∈E∩T×S fe

=
�

e∈E∩S×T fe = cut capacity

≥ maximum flow

⇒ Maximum flow = minimum cut
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Shortcomings of Ford Fulkerson

Dependence on val(f ) can lead to long running times

s t
100 100

100100

1
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Shortcomings of Ford Fulkerson

Dependence on val(f ) can lead to long running times

s t
1

Alternatives

1973: Dinic in O(mn · log(val(f )))
1983: Sleator-Tarjan in O(mn · log(n))

1986: Goldberg-Tarjan in O(mn · log( n2

m ))

1997: Goldberg-Rao in O(min{n
2
3 , m

1
2 } · m log( n2

m ) log U)
2013: Orlin and KRT in O(mn)

99

9999

99
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Matchings

Given undirected Graph G = (V , E)

M ⊆ E is matching ⇔ M is pairwise non-adjacent

M ⊆ E is maximal matching ⇔ M is no subset of any other matching in G
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Matchings

Given undirected Graph G = (V , E)

M ⊆ E is matching ⇔ M is pairwise non-adjacent

M ⊆ E is maximal matching ⇔ M is no subset of any other matching in G

M ⊆ E is maximum matching ⇔ M has largest possible number of edges

81
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Applications

In general graphs

Detection of chemical structures of aromatic compounds
Computational/mathematical chemistry (Hosoya index)

In bipartite graphs

Sub-problem for subtree isomorphism
Sub-problem for transportation problems

?∼=
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Finding Maximum Bipartite Matchings (1/2)

Given undirected bipartite Graph G = (V = (X , Y ), E)

YX
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Finding Maximum Bipartite Matchings (1/2)

Given undirected bipartite Graph G = (V = (X , Y ), E)

Algorithm (unit maximum flow)

1. Direct edges from X to Y
2. Add super source s and connect to X
3. Add super sink t and connect to Y

s t

unit costs
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Finding Maximum Bipartite Matchings (1/2)

Given undirected bipartite Graph G = (V = (X , Y ), E)

Algorithm (unit maximum flow)

1. Direct edges from X to Y
2. Add super source s and connect to X
3. Add super sink t and connect to Y

⇒ Reduce problem to maximum s − t flow

s t

unit costs
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Finding Maximum Bipartite Matchings (1/2)

Given undirected bipartite Graph G = (V = (X , Y ), E)

O(nm)

Algorithm (unit maximum flow)

1. Direct edges from X to Y
2. Add super source s and connect to X
3. Add super sink t and connect to Y

⇒ Reduce problem to maximum s − t flow

s t

unit costs

Goodish
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Finding Maximum Bipartite Matchings (2/2)

Can we do better?

Hopcroft-Karp in O(m
√

n)

Based on augmenting paths
Find maximal set of shortest augmenting paths
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Finding Maximum Bipartite Matchings (2/2)

Can we do better?

Hopcroft-Karp in O(m
√

n)

Based on augmenting paths
Find maximal set of shortest augmenting paths

Madry’s algorithm using electric flows in O(m
10
7 )

Good for sparse graphs
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Finding Maximum Bipartite Matchings (2/2)

Can we do better?

Hopcroft-Karp in O(m
√

n)

Based on augmenting paths
Find maximal set of shortest augmenting paths

Matrix multiplication in O(n2.376)

Better in theory for dense graphs
In practice Hopcroft-Karp still faster

Madry’s algorithm using electric flows in O(m
10
7 )

Good for sparse graphs
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Finding Maximum Bipartite Matchings (2/2)

Can we do better?

Hopcroft-Karp in O(m
√

n)

Based on augmenting paths
Find maximal set of shortest augmenting paths

Matrix multiplication in O(n2.376)

Better in theory for dense graphs
In practice Hopcroft-Karp still faster

Madry’s algorithm using electric flows in O(m
10
7 )

Good for sparse graphs

Chandran and Hochbaum in O(min{|X |k , m} +
√

kmin{k2, m})

Output-sensitive algorithm
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Finding Maximum Matchings

In weighted bipartite graphs

Find matching with maximum value
Modified augmenting paths algorithm in O(n2 log n + nm)

1
3

4

8 5

7 2
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Finding Maximum Matchings

In weighted bipartite graphs

Find matching with maximum value
Modified augmenting paths algorithm in O(n2 log n + nm)

In general graphs

Edmonds’ algorithm in O(n2m)
Improved version in time O(

√
nm)

1
3

4

8 5

7 2
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Coloring

Vertex coloring

Label each vertex with a color
No two vertices sharing an edge have the same color

Given undirected Graph G = (V , E) (without self-loops)
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Coloring

Vertex coloring

Label each vertex with a color
No two vertices sharing an edge have the same color

k -coloring

Vertex coloring that uses at most k -colors
Smallest possible k of G is called chromatic number χ(G)

Given undirected Graph G = (V , E) (without self-loops)

χ(G) = 3χ(G) = 4
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Related Problems

Edge coloring

Label each edge with a color
No two edges sharing a vertex have the same color

Improper colorings (i.e. Ramsey theory)

Label each edge with a color
Two edges sharing a vertex are allowed the same color
Example: Friendship theorem

χ�(G) = 4χ�(G) = 5
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Applications

Task/Exam scheduling Sudoku solving

Map coloring Mobile Radio Frequency Assignment
”exam” flickr photo by krzyzanowskim https://flickr.com/photos/krzakptak/2240483862 shared under a Creative Commons (BY) license
”Sudoku” flickr photo by Jason Cartwright https://flickr.com/photos/jasoncartwright/130182586 shared under a Creative Commons (BY) license
By Map of USA four colours.svg: of the modification : Derfel73) Dbenbennderivative work: Tomwsulcer (talk) - Map of USA four colours.svg, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=19143208
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Finding k -Colorings

Find vertex coloring with minimum number of colors
⇒ Optimization problem is NP-hard
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Finding k -Colorings

Find vertex coloring with minimum number of colors
⇒ Optimization problem is NP-hard

Exact algorithms for general graphs

Brute-force search for a k -coloring in O(kn)
Best exact algorithm for finding k -coloring in O(2nn)
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Finding k -Colorings

Find vertex coloring with minimum number of colors
⇒ Optimization problem is NP-hard

Exact algorithms for general graphs

Brute-force search for a k -coloring in O(kn)
Best exact algorithm for finding k -coloring in O(2nn)

How to find good heuristics?

Even worse for general graphs

No constant factor approximations in polynomial time
Approximable with absolute error guarantee of 1 on planar graphs

Ugly⇒
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Greedy Heuristic

1. Sort colors

2. Sort vertices with predefined order

3. Iterate over vertices in sorted order

(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

Given undirected Graph G = (V , E) with bounded degree Δ
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2. Sort vertices with predefined order
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Greedy Heuristic

1. Sort colors

2. Sort vertices with predefined order

3. Iterate over vertices in sorted order
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Greedy Heuristic

1. Sort colors

2. Sort vertices with predefined order

3. Iterate over vertices in sorted order

(a) Color vertex with smallest color not used by any neighbor
(b) Add new color if necessary

0

4

7
13

2

5

68
9

⇒ At most Δ + 1 colors

O(n + m)

Given undirected Graph G = (V , E) with bounded degree Δ

Good
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Shortcomings of Greedy Algorithm

Quality of approximation heavily dependent on vertex ordering

3
2
1
0

7
6
5
4

6
4
2
0

7
5
3
1

⇒ Finding perfect ordering is NP-hard
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Shortcomings of Greedy Algorithm

Quality of approximation heavily dependent on vertex ordering

3
2
1
0

7
6
5
4

6
4
2
0

7
5
3
1

⇒ Finding perfect ordering is NP-hard

Heuristic ordering strategies

Sort orders by their decreasing degree
Better upper bound than random ordering
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Finding Colorings in Practice

Tabu search

Temporarily allow invalid solutions
Minimize conflicts and discourage repetition

f (c) = 2 f (c) = 1

Swap
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Finding Colorings in Practice

Reductions

Remove subgraphs with certain structure
Subgraphs can be solved exactly

Tabu search

Temporarily allow invalid solutions
Minimize conflicts and discourage repetition

f (c) = 2 f (c) = 1

Reduce

Swap
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Traveling Salesman Problem

Preliminary: Hamiltonian Cycle Problem
Is there a cycle in graph G that visits each vertex exactly once?

M := {G = (V , E) : ∃C ⊆ E : |C| = |V |, C is a cycle}

C1C2

TSP is the prototypical optimization problem
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Traveling Salesman Problem

Definition:
Given graph G = (V , E ,ω) find a simple cycle C such that |C| = |V | and

�

e∈C

ω(e) is minimized.

TSP is the prototypical optimization problem
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Traveling Salesman Problem

Definition:
Given graph G = (V , E ,ω) find a simple cycle C such that |C| = |V | and

�

e∈C

ω(e) is minimized.

1

1

1

1
√

2√
2

TSP is the prototypical optimization problem
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Traveling Salesman Problem

Definition:
Given graph G = (V , E ,ω) find a simple cycle C such that |C| = |V | and

�

e∈C

ω(e) is minimized.

1

1

1

1
√

2√
2

1

1

1

1

ω(C) = 4

TSP is the prototypical optimization problem
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Traveling Salesman Problem

Definition:
Given graph G = (V , E ,ω) find a simple cycle C such that |C| = |V | and

�

e∈C

ω(e) is minimized.

the TSP is NP-hard
If ω(e) = c for all e ∈ E then TSP ∼ Hamiltonian Cycle

it is NP-hard to approximate the general TSP within any factor α

TSP is the prototypical optimization problem

Ugly:NP-hard

not APX
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Traveling Salesman Problem

It is NP-hard to approximate the general TSP within any factor α.

Given HC instance G = (V , E) consider TSP instance G� = (V , V × V ) and

ω(e) =

�
1 if e ∈ E

αn else

if G has HC ⇔ there is a TSP tour of weight n in G�

⇒ α-approx. algorithm delivers tour with weight ≤ αn

if G has no HC ⇔ every TSP tour in G� has weight ≥ αn + n − 1 > αn

if α-approx algorithm finds tour with weight ≤ αn in G�

⇒ HC exists in G

95



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Traveling Salesman Problem

It is NP-hard to approximate the general TSP within any factor α.

Given HC instance G = (V , E) consider TSP instance G� = (V , V × V ) and

ω(e) =

�
1 if e ∈ E

αn else

if G has HC ⇔ there is a TSP tour of weight n in G�

⇒ α-approx. algorithm delivers tour with weight ≤ αn

if G has no HC ⇔ every TSP tour in G� has weight ≥ αn + n − 1 > αn

if α-approx algorithm finds tour with weight ≤ αn in G�

⇒ HC exists in G

If we restrict the general TSP we can do better
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Metric Traveling Salesman Problem

G = (V , E ,ω) is undirected, connected and obeys the triangle inequality

∀u, v , w ∈ V : ω((u, w)) ≤ ω((u, v )) + ω((v , w))

u

v

w
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Metric Traveling Salesman Problem

G = (V , E ,ω) is undirected, connected and obeys the triangle inequality

∀u, v , w ∈ V : ω((u, w)) ≤ ω((u, v )) + ω((v , w))

the metric completion of G = (V , E ,ω) is defined as G� = (V , V ×V ,ω�)
with

ω�(e = (u, v )) =

�
ω(e) if e ∈ E

ω(u, . . . , v ) for shortest path from u to v in E

1

1

1

1

1

1

1

1 2
2

metric
compl.
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Metric Traveling Salesman Problem

2-Approximation via MST

Lemma
Given G = (V , E ,ω) and its MST T ,

ω(T ) ≤ weight of any TSP tour of G.

This includes optimal mimimum weight tour OPT.
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Metric Traveling Salesman Problem

2-Approximation via MST

given G = (V , E ,ω), ω(e) = 1

a

b

cd

e

f
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Metric Traveling Salesman Problem

2-Approximation via MST

given G = (V , E ,ω), ω(e) = 1
metric completion, ω(e�) = 2 a

b

cd

e

f
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Metric Traveling Salesman Problem

2-Approximation via MST

given G = (V , E ,ω), ω(e) = 1
metric completion, ω(e�) = 2
compute MST T , ω(T ) ≤ OPT

a

b

cd

e

f
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Metric Traveling Salesman Problem

2-Approximation via MST

given G = (V , E ,ω), ω(e) = 1
metric completion, ω(e�) = 2
compute MST T , ω(T ) ≤ OPT
double edges of T , ω(T �) ≤ 2OPT

a

b

cd

e

f
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Metric Traveling Salesman Problem

2-Approximation via MST

given G = (V , E ,ω), ω(e) = 1
metric completion, ω(e�) = 2
compute MST T , ω(T ) ≤ OPT
double edges of T , ω(T �) ≤ 2OPT
compute Eulerian tour

t = {f , a, f , d , f , b, f , e, f , c, f}

a

b

cd

e

f
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Metric Traveling Salesman Problem

2-Approximation via MST

given G = (V , E ,ω), ω(e) = 1
metric completion, ω(e�) = 2
compute MST T , ω(T ) ≤ OPT
double edges of T , ω(T �) ≤ 2OPT
compute Eulerian tour

t = {f , a, f , d , f , b, f , e, f , c, f}
shortcut duplicates, ω(t �) ≤ ω(t) tria. ineq.

t � = {f , a, d , b, e, c, f} ⇒ ω(t �) = 10 ≤ 2OPT
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optimal tour

t∗ = {f , a, b, c, d , e, f} ⇒ ω(t∗) = 6
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Good: O
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|E | + |V | log |V |
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Traveling Salesman Problem

Metric TSP: 3
2 -approximation known

Euclidean TSP: metric is Euclidean distance

Polynomial-time Approximation scheme (PTAS) known
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Traveling Salesman Problem

Applications
manifold applications in planning, logistics and manufacturing

astronomy: minimize telescope movement between observed objects

biology: matching genome sequences

Vehicle Routing Problem: solve TSP for a fleet of vehicles

Traveling Purchaser Problem: given different marketplaces
find mimimum combined cost of traveling and purchasing a list of goods

many more
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Independent Sets

Given undirected Graph G = (V , E)

I ⊆ V independent set ⇔ no two vertices in I are adjacent in G
I ⊆ V maximal independent set

⇔ I is no subset of any other independent set

100



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Independent Sets

Given undirected Graph G = (V , E)

I ⊆ V independent set ⇔ no two vertices in I are adjacent in G
I ⊆ V maximal independent set

⇔ I is no subset of any other independent set

I ⊆ V maximum independent set (MIS)
⇔ I is independent set with largest cardinality
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Related Problems

Vertex cover (VC): Find set of vertices that cover all edges

Clique: Find set of vertices that are pairwise adjacent

⇒ Complement of MIS is minimum vertex cover (MVC)

⇒ MIS in complement graph is maximum clique

MIS MVC

MIS Maximum Clique
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Applications

Map labeling/shortest-path computations

Finding protein-protein interactions

Partitioning of social networks

Mesh edge ordering in rendering

”3D Social Networking” flickr photo by ccPixs.com https://flickr.com/photos/86530412@N02/7975205041 shared under a Creative Commons (BY) license
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Finding Maximum Independent Sets

Find independent set with maximum number of vertices (MIS)
⇒ Optimization problem is NP-hard
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Finding Maximum Independent Sets

Find independent set with maximum number of vertices (MIS)
⇒ Optimization problem is NP-hard

Exact algorithms in general graphs

Brute-force algorithm in O(n22n)
Best exact algorithm with polynomial space in O(1.1996n)
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Finding Maximum Independent Sets

Find independent set with maximum number of vertices (MIS)
⇒ Optimization problem is NP-hard

Exact algorithms in general graphs

Brute-force algorithm in O(n22n)
Best exact algorithm with polynomial space in O(1.1996n)

Even worse for general graphs

No constant factor approximations in polynomial time
Polynomial time approximations for planar and unit disk graphs

How to find good heuristics?Ugly⇒
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Greedy Heuristic

Given undirected Graph G = (V , E) with bounded degree Δ

1. Sort vertices in buckets by ascending degree

2. Vertices remaining?

(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors
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Greedy Heuristic

Given undirected Graph G = (V , E) with bounded degree Δ

1. Sort vertices in buckets by ascending degree

2. Vertices remaining?

(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors
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Greedy Heuristic

Given undirected Graph G = (V , E) with bounded degree Δ

1. Sort vertices in buckets by ascending degree

2. Vertices remaining?

(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors
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Greedy Heuristic

Given undirected Graph G = (V , E) with bounded degree Δ

1. Sort vertices in buckets by ascending degree

2. Vertices remaining?

(a) Select random vertex from bucket with lowest degree
(b) Add vertex to independent set
(c) Remove neighboring vertices
(d) Decrease degree of next neighbors

O(n + m)

⇒ Δ+2
3 approximation

Good
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Finding Independent Sets in Practice

Local Search

Swap vertices to gradually find better solutions
Use different diversification methods

Swap
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Finding Independent Sets in Practice

Local Search

Swap vertices to gradually find better solutions
Use different diversification methods

Reductions

Find vertices that are contained in any maximum independent set
Remove vertices to reduce problem size

Swap

Reduce
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ε-Balanced Graph and Hypergraph Partitioning

Partition (hyper)graph G = (V , E , c : V → R>0,ω : E → R>0)
into k disjoint blocks V1, . . . , Vk s.t.

blocks Vi are roughly equal-sized:

c(Vi) ≤ (1 + ε)
�c(V )

k

�
objective function on edges is minimized
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blocks Vi are roughly equal-sized:

c(Vi) ≤ (1 + ε)
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objective function on edges is minimized
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�
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Hypergraphs:
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�
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ε-Balanced Graph and Hypergraph Partitioning

Partition (hyper)graph G = (V , E , c : V → R>0,ω : E → R>0)
into k disjoint blocks V1, . . . , Vk s.t.

blocks Vi are roughly equal-sized:

c(Vi) ≤ (1 + ε)
�c(V )

k

�
objective function on edges is minimized

Common Objectives:
Graphs:

cut:
�

e∈cut ω(e)

Hypergraphs:

cut:
�

e∈cut ω(e)
connectivity:

�
e∈cut(λ− 1) ω(e)

# blocks connected by e

imbalance parameter
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Applications

Rn×n � Ax = b ∈ Rn

VLSI Design

Route Planning Simulation Scientific Computing

Warehouse Optimization Complex Networks
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(Hyper)Graph Partitioning Algorithms

Hypergraph Partitioning is NP-hard

even finding good approximate solutions for graphs is NP-hard
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(Hyper)Graph Partitioning Algorithms

Hypergraph Partitioning is NP-hard

even finding good approximate solutions for graphs is NP-hard

⇒ exact solutions only for very small graphs & small k feasible!
⇒ most successful heuristic: Multilevel Approach
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(Hyper)Graph Partitioning Algorithms

Hypergraph Partitioning is NP-hard

even finding good approximate solutions for graphs is NP-hard

⇒ exact solutions only for very small graphs & small k feasible!
⇒ most successful heuristic: Multilevel Approach

Sophisticated partitioners developed in our group:
KaHIP – Karlsruhe High Quality Partitioning

Objective: cut
https://git.io/vderw

KaHyPar – Karlsruhe Hypergraph Partitioning

Objectives: cut, (λ− 1)
https://git.io/vMBaR

Ugly: NP-hard, not APX
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Multilevel Paradigm
C

oa
rs

en
in

g

contract

match / cluster

input hypergraph

· · ·

· · ·

109



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Multilevel Paradigm
C

oa
rs

en
in

g

contract

match / cluster

input hypergraph

initial
partitioning

· · ·

· · ·

109



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Multilevel Paradigm
C
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rs

en
in

g

U
nc
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en
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contract uncontract

match / cluster local search

output partitioninput hypergraph

initial
partitioning

· · ·

· · · · · ·

· · ·
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Hill Climbing vs. Local Search

find some feasible solution x ∈ L
x̂ ← x � x̂ is best solution found so far
while not satisfied with x̂ do

x ← some heuristically chosen element from N (x) ∩ L
if f (x) < f (x̂) then

x̂ ← x

Local Search

find some feasible solution x ∈ L
x̄ ← x � best solution found so far
while true do

if ∃x ∈ N (x) ∩ L : f (x) < f (x̂) then
x̄ ← x

else
return x̄ � local optimum found

Hill Climbing
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Fiduccia-Mattheyses Algorithm
FM Local Search

while ¬ done do
find best move
perform best move

rollback to best solution

can worsen solution

cu
t

moves

rollback

compute gain g(v ) = dext(v ) − dint(v )

alternate between blocks

edge-cut: 7
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Fiduccia-Mattheyses Algorithm
FM Local Search
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Parallelization

All presented problems have parallel algorithms:

some problems are well suited for parallelization

BFS algorithms – especially trees, DAGs
MST algorithms – local cut or cycle property

if global decisions are required for exact solutions

less suitable for parallel processing
e.g. coloring, independent sets, . . .
often parallelizable greedy heuristics ⇒ only need local criteria
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Network Analysis
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Network Analysis
Transportation

Business

(Online) Social networks

Technology

Biology
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Complex Networks
Non-trivial topological features that do not occur in simple networks (meshes, simple
random graphs), but often occur in reality

Small diameter
Strongly varying degree distribution
Large number of triangles
...

Airfoil mesh Social network
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Example Applications
Bioinformatics

Protein-protein interactions

Phylogeny trees

...

PPI network
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Example Applications
Bioinformatics

Protein-protein interactions

Phylogeny trees

...

Collaborations

Movies

Scientific papers

Politics

...

PPI network

Six degrees of Kevin Bacon
[Seok-Hee Hong]
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Network Science

Often

exploratory in nature

requires data preprocessing to extract
graph

creates large data sets easily

requires domain-specific postprocess-
ing for interpretation

”Statistics of relational data”

[sayasaya2011.wordpress.com/]
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NetworKit

NetworKit: parallel tool suite for network analysis
large collection of network science algorithms

shared-memory parallel C++ implementation

Python interface

suitable for interactive analysis with IPython notebooks

For all introduced measures: NetworKit IPython call
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Degree Distribution
Concept

Interesting: Distribution of node degrees

Typically heavy-tailed
(especially power law p(k ) ∼ k−γ)

Example: Web graphs

Graph of African web pages early 2000s
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Degree Distribution
Concept

Interesting: Distribution of node degrees

Typically heavy-tailed
(especially power law p(k ) ∼ k−γ)

Example: Web graphs

Graph of African web pages early 2000s

Not heavy tailed, often constant: Meshes

[Clauset et al. 2009: Power-law distributions in empirical data]
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Degree Distribution

[Alstott et al. 2014: powerlaw: a python package for analysis of heavy-tailed distributions. ]

Algorithms

Visualizations of degree distribution

powerlaw Python module determines whether distri-
bution fits power law and estimates exponent γ Good: O

�
|E |

�

dd = centrality.DegreeCentrality(G)
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Degree Assortativity
Concept

Formation of connections between
nodes with similar/dissimilar degree

Based on covariance of degrees

Normalization expressed as correlation
coefficient r

Let ki := d(i):

cov(ki , kj ) =
1

2m

�

i ,j

�
Aij − ki kj

2m

�
ki kj

r =

�
i ,j (Aij − ki kj/2m)ki kj�

i ,j (kiδi j − ki kj/2m)ki kj
δi j =

�
0 i �= j

1 i = j

[Newman: Networks – An
Introduction. Chapters 7.13,

8.7] [Newman 2002:
Assortative mixing in

networks. ]
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Degree Assortativity
Algorithm

Original formula disadvantageous for computation

Reformulation (see Newman):

r =

�
i ,j (Aij − ki kj/2m)ki kj�

i ,j (kiδi j − ki kj/2m)ki kj
δi j =

�
0 i �= j

1 i = j

r =
S1Se − S2

2

S1S3 − S2
2

Se =
�

i ,j

Aij ki kj = 2
�

{i ,j}∈E

ki kj

S1 =
�

i

ki S2 =
�

i

k2
i S3 =

�

i

k3
i

Good: O
�
|E |

�
da = correlation.Assortativity(G, dd)
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k -Core Decomposition

[Baur et al. 2008]

Concept

Nodes in core k have at least k neigh-
bors that also belong to core k , k ≥ 0

Iteratively peeling away nodes of degree
k reveals the k -cores
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k -Core Decomposition

[Baur et al. 2008]

Concept

Nodes in core k have at least k neigh-
bors that also belong to core k , k ≥ 0

Iteratively peeling away nodes of degree
k reveals the k -cores

1: store node degrees in array degree
2: i ← 1
3: while V �= ∅ do
4: for each v ∈ V with degree[v ] < i do
5: . . . � process v and its neighbors and delete v from G

6: i ← i + 1
7: return (i-1, core)
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k -Core Decomposition
Algorithm and Implementation

Bucket data structure

Each bucket stores nodes with the same current degree

Additional array to store pointers from each node into its bucket

1: for each v ∈ V with degree[v ] < i do
2: core[v ] ← i − 1
3: for each u ∈ N(v ) do
4: degree[u] ← degree[u] − 1

5: Remove v from G

Good: O
�
|E |

�
coreDec = centrality.CoreDecomposition(G)

124



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Diameter

[igraph.sourceforge.net]

Concept

Longest shortest path between any two nodes

Small in most complex networks

“Six degrees of separation”

Algorithms

Exact: Simple all pairs shortest paths
(n shortest path queries)

In practice faster: iFub

3
2 -approximation possible in O

�
|E |

�
|V |

�

[Crescenzi et al. 2013: On computing the diameter of real-world undirected graphs]

[Roditty, Williams. 2013: Fast Approx. Algorithms for the Diameter and Radius of Sparse Graphs]

Goodish: O
�
|V | |E |

�
diam = distance.Diameter(G)
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Clustering Coefficients
Concept

Social networks: High ratio of closed triangles
(“Friends of friends are often friends”)

CC: Ratio of closed triangles and paths of length 2
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Clustering Coefficients

Cg (G) =
3 · Number of closed triangles

Number of connected triads

Cl (v ) =
Number of triangles with v

Number of connected triads with v as middle node

Concept

Social networks: High ratio of closed triangles
(“Friends of friends are often friends”)

CC: Ratio of closed triangles and paths of length 2

triangle = 3 triads

triad
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Clustering Coefficients

[Schank, Wagner 2005: Approximating clustering coefficient and transitivity]

Exact Algorithm

with parallel node iteration: O(|V | d2
max) time

Approximation

Wedge sampling:
Linear-time approximation for weighted graphs with probabilistic absolute error �

Good: O
�
|E |

�
cc = globals.ClusteringCoefficient(G)
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Centrality Measures
Centrality Concept

How important is a node / an edge?

Eigenvector Centrality

Consider importance of neighbors:

∀v ∈ V : xv =
1
λ

�

u∈V

Avuxu

λx = Ax

Eigenvector to largest eigenvalue

ec = centrality.EigenvectorCentrality(G) Goodish: O
�
|V |3

�

A := adjacency matrix
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Centrality Measures
Centrality Concept

How important is a node / an edge?

Goodish: O
�
|V |3

�
ec = centrality.PageRank(G, 1e-6)

PageRank example

PageRank

Google’s first ranking scheme

variant of eigenvector centrality

Random surfer model:

∀v ∈ V : x (t+1)
v = α· 1

|V | +(1−α)
�

(u �→v )∈E

x (t)
u

|{(u �→ x) ∈ E}|
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Betweenness Centrality
Definition

∀u, v ∈ V in connected graph, there exists at least one shortest path between them

BC measures of number of shortest paths that pass through a vertex k

CB(k ) =
�

u,v∈V\{k}

|{k ∈ SP(u, v )|}
|SP(u, v )|

[Brandes, 2001]

SP(u, v ) = shortest paths from u to v
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Betweenness Centrality
Definition

∀u, v ∈ V in connected graph, there exists at least one shortest path between them

BC measures of number of shortest paths that pass through a vertex k

CB(k ) =
�

u,v∈V\{k}

|{k ∈ SP(u, v )|}
|SP(u, v )|

Exact Algorithm for BC

Brandes’s alg.: O(|V | |E | + |V |2 log |V |) time

Approximation for BC

Parallel path sampling with probabilistic absolute error (in (nearly-)linear time)

[Brandes 2001: A faster algorithm for betweenness centrality]
[Riondato, Kornaropoulos 2013: Fast approximation of betweenness centrality through sampling]
[Geisberger et al. 2008: Better Approximation of Betweenness Centrality]

SP(u, v ) = shortest paths from u to v

Goodish: Õ
�
|V |3

�
bc = centrality.Betweenness(G)
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Community Detection (CD)
Community Detection / Graph Clustering

Find (non-overlapping) internally dense, externally
sparse subgraphs

Goals: Uncover community structure,
prepartition network

number of cluster not known in advance ⇔ partitioning
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Community Detection (CD)
Community Detection / Graph Clustering

Find (non-overlapping) internally dense, externally
sparse subgraphs

Goals: Uncover community structure,
prepartition network

number of cluster not known in advance ⇔ partitioning

[wolfram.com]

What constitutes a cluster?

[survey: Schaeffer 07, Fortunato 10]

[Girvan, Newman 2002: Community structure in social and biological networks]
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CD – Objective Functions
Given a clustering C for a graph G:

Coverage: fraction of intra-cluster edges ω(C) over all edges

cov(C) :=
ω(C)
|E |

Problem: maximal for trivial cluster (k = 1) Bad: NP-hard
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CD – Objective Functions
Given a clustering C for a graph G:

Coverage: fraction of intra-cluster edges ω(C) over all edges

cov(C) :=
ω(C)
|E |

Problem: maximal for trivial cluster (k = 1)

Performance: fraction node pairs that are clustered correctly

perf(C) :=
m(C) + m̄c(C)
1
2 |V | (|V |− 1)

Problem: in sparse networks m̄c(C) dominates ⇒ fine clusterings

m(C) := |{(u, v ) ∈ E : C(u) = C(v )}|
m̄c (C) := |{u, v ∈ V :C(u) �= C(v )

& (u, v ) �∈ E}|

Bad: NP-hard

Bad: NP-hard
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CD – Objective Functions

Modularity: cov(·) minus expected coverage of random graph with same clustering

mod(C) = cov(C) − E [cov(C)]

=
ω(C)
|E | − 1

4 |E |2
�

C∈C

��

v∈C

d(v )

�2
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CD – Objective Functions

Modularity: cov(·) minus expected coverage of random graph with same clustering

mod(C) = cov(C) − E [cov(C)]

=
ω(C)
|E | − 1

4 |E |2
�

C∈C

��

v∈C

d(v )

�2

favors many edges in cluster

favors many clusters with small degree
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CD – Objective Functions

Modularity: cov(·) minus expected coverage of random graph with same clustering

mod(C) = cov(C) − E [cov(C)]

=
ω(C)
|E | − 1

4 |E |2
�

C∈C

��

v∈C

d(v )

�2

random graph with same degree distribution
agrees well with intuitive clustering of graph
Modularity has some known issues (resolution limit, ...), some can be circumvented
most popular clustering metric in network analysis

favors many edges in cluster

favors many clusters with small degree

[Brandes et al. 2006: On Modularity – NP-Completeness and Beyond]
[Dinh et al. 2016: Network Clustering via Maximizing Modularity: Approximation Algorithms and Theoretical Limits]

Ugly: NP-hard, not APX
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CD – Algorithms
But in practice well-functioning algorithms available:

parallel label propagation (PLP)

parallel Louvain method (PLM)

PLM with refinement (PLMR)

cd = community.detectCommunities(G) Good: O
�
|V | log |V |

�

134



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

CD – Algorithms
But in practice well-functioning algorithms available:

parallel label propagation (PLP)

parallel Louvain method (PLM)

PLM with refinement (PLMR)

cd = community.detectCommunities(G) Good: O
�
|V | log |V |

�

Louvain Method: two-phase iterative algorithm

place each node in their own cluster

1. ∀v : calculate Δmod(·) for moving v to any of its neighboring clusters
perform most effective move
repeat until no more gain possible

2. contract all clusters to one node
intra-cluster edges become self loops
inter-cluster edges represented by weighted edges
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Case Studies in Physics

135



Demian Hespe, Tobias Heuer and Sebastian Lamm – Fundamental Graph Algorithms Institute of Theoretical Informatics
Algorithmics Group

Case Studies in Physics

Graphs can be applied in varied areas of physics

graphs to gain theoretical insight: Feynman diagrams

graphs to model physical problems: particle track reconstruction

graphs to speed up an algorithms: jet clustering

c�CMS Collaboration
c�Joel Holdsworth
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Theoretical Applications

graph coloring can be applied to Feynman Diagrams to determine the
presence of particular Feynman integrals
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Theoretical Applications

graph coloring can be applied to Feynman Diagrams to determine the
presence of particular Feynman integrals

The φk theory is compared with the multilinear theory of scalar fields φ1,φ2, . . . ,φk having the same mass as
that of φ. In particular, it is shown that Feynman integrals encountered in the φ3 theory are not necessarily present
also in the φ1,φ2,φ3 theory, but they are if they correspond to planar Feynman graphs having no tadpole part.
Furthermore, a necessary and sufficient condition for the presence of a φ3 Feynman integral in the φ1,φ2

2 theory
is found. Those considerations are applications of graph theory, especially of the coloring problem of graphs, to
Feynman graphs.

[Nakanishi, Noboru. Quantum field theory and the coloring problem of graphs. Comm. Math. Phys. 32 (1973), no. 2, 167–181.]
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Theoretical Applications

graph coloring can be applied to Feynman Diagrams to determine the
presence of particular Feynman integrals

The φk theory is compared with the multilinear theory of scalar fields φ1,φ2, . . . ,φk having the same mass as
that of φ. In particular, it is shown that Feynman integrals encountered in the φ3 theory are not necessarily present
also in the φ1,φ2,φ3 theory, but they are if they correspond to planar Feynman graphs having no tadpole part.
Furthermore, a necessary and sufficient condition for the presence of a φ3 Feynman integral in the φ1,φ2

2 theory
is found. Those considerations are applications of graph theory, especially of the coloring problem of graphs, to
Feynman graphs.

[Nakanishi, Noboru. Quantum field theory and the coloring problem of graphs. Comm. Math. Phys. 32 (1973), no. 2, 167–181.]

Beyond physics understanding
of three computer scientists
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Theoretical Applications

graph coloring can be applied to Feynman Diagrams to determine the
presence of particular Feynman integrals
further results in condensed matter physics, statistical physics,. . .
[Estrada, E. (2013): Graph and Network Theory in Physics, ArXiv 1302.4378]
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Particle Track Reconstruction

particles traverse several multi-layer detectors after collision
⇒ particularly inner tracker

energy deposits in detector material are reconstructed as hits

particle track reconstruction ⇒ combinatoral pattern matching problem

c�CMS Collaboration
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Particle Track Reconstruction

1. Seeding

Find hit triplets in inner layers
Rough track parameters

2. Track Finding

Extrapolate track outwards
Extend track by suitable hits

3. Track Fitting

Estimate track parameter
Inward and outward smoothing

Approach most used: Iterative Kalman Filter Track Finding
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Particle Track Reconstruction
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Find hit triplets in inner layers
Rough track parameters

2. Track Finding

Extrapolate track outwards
Extend track by suitable hits

3. Track Fitting

Estimate track parameter
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Approach most used: Iterative Kalman Filter Track Finding
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Rough track parameters
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Particle Track Reconstruction

1. Seeding

Find hit triplets in inner layers
Rough track parameters

2. Track Finding

Extrapolate track outwards
Extend track by suitable hits

3. Track Fitting

Estimate track parameter
Inward and outward smoothing

Approach most used: Iterative Kalman Filter Track Finding
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Particle Track Reconstruction

1. Seeding

Find hit triplets in inner layers
Rough track parameters

2. Track Finding

Extrapolate track outwards
Extend track by suitable hits

3. Track Fitting

Estimate track parameter
Inward and outward smoothing

Approach most used: Iterative Kalman Filter Track Finding

Track discarded
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Particle Track Reconstruction

1. Seeding

Find hit triplets in inner layers
Rough track parameters

2. Track Finding

Extrapolate track outwards
Extend track by suitable hits

3. Track Fitting

Estimate track parameter
Inward and outward smoothing

Approach most used: Iterative Kalman Filter Track Finding
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Particle Track Reconstruction

1. Seeding

Find hit triplets in inner layers
Rough track parameters

2. Track Finding

Extrapolate track outwards
Extend track by suitable hits

3. Track Fitting

Estimate track parameter
Inward and outward smoothing

Approach most used: Iterative Kalman Filter Track Finding

Track candidate discarded

139
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Particle Track Reconstruction

1. Seeding

Find hit triplets in inner layers
Rough track parameters

2. Track Finding

Extrapolate track outwards
Extend track by suitable hits

3. Track Fitting

Estimate track parameter
Inward and outward smoothing

Approach most used: Iterative Kalman Filter Track Finding
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Particle Track Reconstruction

1. Seeding

Find hit triplets in inner layers
Rough track parameters

2. Track Finding

Extrapolate track outwards
Extend track by suitable hits

3. Track Fitting

Estimate track parameter
Inward and outward smoothing

Approach most used: Iterative Kalman Filter Track Finding
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Particle Track Reconstruction

G = (V , E ,ω)
Find triplets in all layer combinations

V = {v = (h1, h2, h3)}

Tracking as graph problem: definition of vertices and edges
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Particle Track Reconstruction

G = (V , E ,ω)
Find triplets in all layer combinations

V = {v = (h1, h2, h3)}

Tracking as graph problem: definition of vertices and edges

t1
t2

t3
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Particle Track Reconstruction

G = (V , E ,ω)
Find triplets in all layer combinations

V = {v = (h1, h2, h3)}

Tracking as graph problem: definition of vertices and edges

t �1
t �2

t �3
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Particle Track Reconstruction

G = (V , E ,ω)
Find triplets in all layer combinations

V = {v = (h1, h2, h3)}

Tracking as graph problem: definition of vertices and edges

t4

t5
t6 t �5
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Particle Track Reconstruction

G = (V , E ,ω)
Find triplets in all layer combinations

V = {v = (h1, h2, h3)}

Tracking as graph problem: definition of vertices and edges

t7

t8

t9 t �8
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Particle Track Reconstruction

G = (V , E ,ω)
Find triplets in all layer combinations

V = {v = (h1, h2, h3)}

Tracking as graph problem: definition of vertices and edges

Vertices that share one or two hit(s)
are connected by edge

E = {e = (v1, v2) : v1 ∩ v2 �= ∅}

t �1
t �2

t �3

t4

t5
t6 t �5

t7

t8

t9 t �8

t1
t2

t3

t �1 t �2 t �3

t4 t5 t6t �5

t7 t8 t9t �8

t1 t2 t3
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Particle Track Reconstruction

G = (V , E ,ω)
defining ω(e) is the hard part, e.g.

angular difference Δφ, Δθ
curvature Δc
χ2 of circle fit of all four hits

solve all-pair-shortest-path problem

Tracking as graph problem: definition of vertices and edges

t �1 t �2 t �3

t4 t5 t6t �5

t7 t8 t9t �8

t1 t2 t3

Goodish: O
�
|V |3

�
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Particle Track Reconstruction

G = (V , E ,ω)
defining ω(e) is the hard part, e.g.

angular difference Δφ, Δθ
curvature Δc
χ2 of circle fit of all four hits

solve all-pair-shortest-path problem

Tracking as graph problem: definition of vertices and edges

t �1 t �2 t �3

t4 t5 t6t �5

t7 t8 t9t �8

t1 t2 t3

Challenge:
Weight function must ensure that:

paths corresponding to valid tracks are lighter than others

otherwise a fake track is reconstructed

Goodish: O
�
|V |3

�
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Jet Clustering

Jets: collimated spray of hadrons from fragmentation of quark or gluon

reveal direction and energy original “parton”

jets are reconstructed from particles found in detector

various algorithms exist to cluster jets from reconstructed particles
e.g. kt algorithm

c�CMS Collaboration
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Jet Clustering

Input: list of particles P
Output: list of jets J

1: while P �= ∅ do � O(n) times
2: for (i , j) ∈ P×P do � O

�
n2
�

3: di ,j = min(k2
t ,i , k2

t ,j ) · ΔR2
i ,j

4: for i ∈ P do � O(n)
5: di ,B = k2

t ,i

6: dmin = min(di ,j , di ,B) � O
�
n2
�

7: if dmin = di ,j then
8: i = combine(i , j),P \ {j} � merge i and j , delete j
9: else

10: J ∪ i ,P \ {i} � finalize jet i
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Jet Clustering

Input: list of particles P
Output: list of jets J

1: while P �= ∅ do � O(n) times
2: for (i , j) ∈ P×P do � O

�
n2
�

3: di ,j = min(k2
t ,i , k2

t ,j ) · ΔR2
i ,j

4: for i ∈ P do � O(n)
5: di ,B = k2

t ,i

6: dmin = min(di ,j , di ,B) � O
�
n2
�

7: if dmin = di ,j then
8: i = combine(i , j),P \ {j} � merge i and j , delete j
9: else

10: J ∪ i ,P \ {i} � finalize jet i

kt ,i : transverse momentum

ΔR2
i ,j = (ηi − ηj )2 + (φi − φj )2

ηi : rapidity
φi : azimuth
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Jet Clustering

Input: list of particles P
Output: list of jets J

1: while P �= ∅ do � O(n) times
2: for (i , j) ∈ P×P do � O

�
n2
�

3: di ,j = min(k2
t ,i , k2

t ,j ) · ΔR2
i ,j

4: for i ∈ P do � O(n)
5: di ,B = k2

t ,i

6: dmin = min(di ,j , di ,B) � O
�
n2
�

7: if dmin = di ,j then
8: i = combine(i , j),P \ {j} � merge i and j , delete j
9: else

10: J ∪ i ,P \ {i} � finalize jet i

prohibitive for high multiplicitiesGoodish: O
�
|P|3

�
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Jet Clustering

Improving the O
�
n3
�

runtime:

Lemma:
If i , j have the smallest di ,j and kt ,i < kt ,j , then Ri ,j < Ri ,l for all l �= j .

For minimum di ,j : i and j geometrically nearest-neighbors on (η,φ)-plane

[Cacciari M. and Salam, G.P., Dispelling the N3 myth for the kt jet-finder ]
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Jet Clustering

1: for i ∈ P do
2: Ni = findNearestNeighbor(i) � O(n)
3: di = min(k2

t ,i , k2
t ,Ni

) · ΔR2
i ,Ni

, di ,B = k2
t ,i

4: while P �= ∅ do � O(n) times
5: dmin = min(di , di ,B) � O(n)
6: if dmin = di then
7: i = combine(i ,Ni ),P \ {Ni} � merge i and Ni , delete Ni

8: else
9: J ∪ i ,P \ {i} � finalize jet i

10: for particles j with Nj = i do � O(1) many
11: Nj = findNearestNeighbor(j)

12: for j ∈ P do
13: Nj = updateNearestNeighbor(j , i) � O(1)
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Jet Clustering

1: for i ∈ P do
2: Ni = findNearestNeighbor(i) � O(n)
3: di = min(k2

t ,i , k2
t ,Ni

) · ΔR2
i ,Ni

, di ,B = k2
t ,i

4: while P �= ∅ do � O(n) times
5: dmin = min(di , di ,B) � O(n)
6: if dmin = di then
7: i = combine(i ,Ni ),P \ {Ni} � merge i and Ni , delete Ni

8: else
9: J ∪ i ,P \ {i} � finalize jet i

10: for particles j with Nj = i do � O(1) many
11: Nj = findNearestNeighbor(j)

12: for j ∈ P do
13: Nj = updateNearestNeighbor(j , i) � O(1)

– but we can do better!Goodish: O
�
|P|2

�
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Jet Clustering

Enter geometric graphs. Given a point set P in R2
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Jet Clustering

Enter geometric graphs. Given a point set P in R2

A triangulation T (P) is the subdivision of the
convex hull of P into triangles such that

the vertices of T (P) coincide with P

any two triangles of T (P) intersect in a
common edge or not at all
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Jet Clustering

Enter geometric graphs. Given a point set P in R2

A Delaunay triangulation DT (P) is a triangulation such
that no point of P is inside the circumcircle of any sim-
plex of DT (P).
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Jet Clustering

Enter geometric graphs. Given a point set P in R2

A Delaunay triangulation DT (P) is a triangulation such
that no point of P is inside the circumcircle of any sim-
plex of DT (P).
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Jet Clustering

Enter geometric graphs. Given a point set P in R2

A Delaunay triangulation DT (P) is a triangulation such
that no point of P is inside the circumcircle of any sim-
plex of DT (P).

nearest-neighbor graph of P is a subgraph of
DT (P)

DT (P) can be constructed in O(n log n)

DT (P) can be updated in O(log n)
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Jet Clustering

1: construct DT (P) � O(n log n)
2: for i ∈ P do
3: di = min(k2

t ,i , k2
t ,Ni

) · ΔR2
i ,Ni

, di ,B = k2
t ,i � O(1)

4: construct binary binary trees Tdi , Tdi ,B � O(n log n)
5: while P �= ∅ do � O(n) times
6: dmin = min(di , di ,B) � O(log n)
7: if dmin = di then
8: i = combine(i ,Ni ),P \ {Ni} � merge i and Ni , delete Ni

9: else
10: J ∪ i ,P \ {i} � finalize jet i

11: update DT (P) � O(log n)
12: update Tdi , Tdi ,B � O(log n)
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Jet Clustering

1: construct DT (P) � O(n log n)
2: for i ∈ P do
3: di = min(k2

t ,i , k2
t ,Ni

) · ΔR2
i ,Ni

, di ,B = k2
t ,i � O(1)

4: construct binary binary trees Tdi , Tdi ,B � O(n log n)
5: while P �= ∅ do � O(n) times
6: dmin = min(di , di ,B) � O(log n)
7: if dmin = di then
8: i = combine(i ,Ni ),P \ {Ni} � merge i and Ni , delete Ni

9: else
10: J ∪ i ,P \ {i} � finalize jet i

11: update DT (P) � O(log n)
12: update Tdi , Tdi ,B � O(log n)

Good: O
�
|P| log |P|

�
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Tutorial
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Credits

The slides of this course are partially based on the following lectures/talks:

P. Sanders - Algorithmen I

P. Sanders - Algorithmen II

P. Sanders, R. van Stee - Approximations- und Online-Algorithmen

C. Schulz - Graphpartitionierung und Graphenclustern in Theorie und Praxis

H. Meyerhenke - Algorithmische Methoden zur Netzwerkanalyse

Henning Meyerhenke - NetworKit: A Parallel Interactive Tool Suite for Analyzing Mas-
sive Networks

H. Meyerhenke - Network Analysis with NetworKit: Interactive, Feature-rich, Fast

S. Schlag - k-way Hypergraph Partitioning via n-Level Recursive Bisection

D. Funke - Parallel Triplet Finding for Particle Track Reconstruction
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