Advanced Data Structures

Simon Gog – gog@kit.edu
Dynamic Perfect Hashing

What we want:
- $O(1)$ lookup time (as in static perfect hashing)
- Keys not known in advance
- Good expected performance for insert

Cuckoo hashing

- Uses two hash functions h_1 and h_2
- Key x stored either at position $h_1(x)$ or at $h_2(x)$
- At most one key per position in the hash table
- Worst case lookup time: $O(1)$
- Removing a key is also constant
- Insertion of a key is $O(1)$ expected, amortized
Cuckoo hashing

00 lookup(x)
01 \(i \leftarrow h(x) \)
02 if \(T[h_1(x)] = x \) or \(T[h_2(x)] = x \) then
05 return true
06 return false

00 insert(x)
01 if lookup(x) then
02 return
03 \(p \leftarrow h_1(x) \)
04 for \(i \leftarrow 0 \) to \(n - 1 \) do
05 if \(T[p] = \perp \) then
06 \(T[p] \leftarrow x; \) return
08 swap(x, \(T[p] \))
09 \(p \leftarrow h_1 + (p = h_1(x))(x) \)
10 rehash(); insert(x)
The *cuckoo (undirected) graph* consists of:
- m nodes (one for each table entry)
- For each key x there is an edge connecting $h_1(x)$ and $h_2(x)$

Example

- Including key x_5 causes a cycle. Are cycles dangerous? What is the probability of getting a cycle?
- Including key x_6 will result in a rehash
The *cuckoo (undirected) graph* consists of:
- m nodes (one for each table entry)
- For each key x there is an edge connecting $h_1(x)$ and $h_2(x)$

Example
- Including key x_5 causes a cycle. Are cycles dangerous? What is the probability of getting a cycle?
- Including key x_6 will result in a rehash.
The *cuckoo (undirected) graph* consists of
- m nodes (one for each table entry)
- For each key x there is an edge connecting $h_1(x)$ and $h_2(x)$

Example
- Including key x_5 causes a cycle. Are cycles dangerous? What is the probability of getting a cycle?
- Including key x_6 will result in a rehash
The cuckoo (undirected) graph consists of
- m nodes (one for each table entry)
- For each key x there is an edge connecting $h_1(x)$ and $h_2(x)$

Example
- Including key x_5 causes a cycle. Are cycles dangerous? What is the probability of getting a cycle?
- Including key x_6 will result in a rehash
The *cuckoo (undirected) graph* consists of
- m nodes (one for each table entry)
- For each key x there is an edge connecting $h_1(x)$ and $h_2(x)$

Example
- Including key x_5 causes a cycle. Are cycles dangerous? What is the probability of getting a cycle?
- Including key x_6 will result in a rehash
The *cuckoo (undirected) graph* consists of:
- m nodes (one for each table entry)
- For each key x there is an edge connecting $h_1(x)$ and $h_2(x)$

Example
- Including key x_5 causes a cycle. Are cycles dangerous? What is the probability of getting a cycle?
- Including key x_6 will result in a rehash
The *cuckoo (undirected) graph* consists of:

- m nodes (one for each table entry)
- For each key x there is an edge connecting $h_1(x)$ and $h_2(x)$

Example

- Including key x_5 causes a cycle. Are cycles dangerous? What is the probability of getting a cycle?
- Including key x_6 will result in a rehash
Assumptions

- Keys have the same size and can be compared in constant time.
- Two hash functions h_1 and h_2 which map to $[m]$. The probability for any function value $h_i(x)$ to be a particular value in $[m]$ is $\frac{1}{m}$. Function values are independent of each other.
- Fixed upper bound n on the number of keys in the set S.
Cuckoo hashing – analysis

Lemma ([1])
For any position i and j, and any $c > 1$, if $m \geq 2cn$ then the probability that in the undirected cuckoo graph there exists a path from i to j of length $\ell \geq 1$, which is a shortest path from i to j, is at most $\frac{1}{c^\ell m}$.

Proof (by induction)

- Base case: $\ell = 1$
- For each $x \in S$ we have
 $\Pr(x \text{ mapped to node } i \text{ and } j) = \frac{2}{m^2}$, since either
 $h_1(x) = i \land h_2(x) = j$ or $h_1(x) = j \land h_2(x) = i$
- Using union bound, we get that the probability that there is an edge between i and j is at most

$$\sum_{x \in S} \frac{2}{m^2} \leq \frac{2n}{m^2} \leq \frac{n}{m} \leq \frac{m}{2c} \leq \frac{1}{cm}$$
Proof continued

- Inductive step: \(\ell > 1 \) and lemma holds for length \(\leq \ell - 1 \)
- If there is a path between \(i \) and \(j \) of length \(\ell \) but not shorter than \(\ell \) then there must be a position \(k \) such that
 - \(A \) there is a shortest path of length \(\ell - 1 \) from \(i \) to \(k \) that does not go through \(j \), and
 - \(B \) there is an edge from \(k \) to \(j \)
- \(\Pr(A) \leq \frac{1}{c^{\ell-1} m} \), by induction hypothesis and the fact the requirement „does not go through \(j \)” makes the probability even smaller
- \(\Pr(B|A) = \sum_{x \in S} \frac{2}{m^2} \leq \frac{1}{cm} \)
- \(\Pr(A \text{ and } B) = \Pr(A) \cdot \Pr(B|A) \leq \frac{1}{c^{\ell-1} m} \cdot \frac{1}{cm} = \frac{1}{c^\ell m^2} \)
- Sum of all possible \(k \) and using union bound gives an upper bound on the probability of a shortest path of length \(\ell \) between \(i \) and \(j \) of \(\frac{1}{c^\ell m} \) \(\square \)
Cuckoo hashing – analysis

- Two keys are in the same bucket if a path connects \(\{ h_1(x), h_2(x) \} \) and \(\{ h_1(y), h_2(y) \} \) in the cuckoo graph (there are 4 possible ways to do this)

- Probability of two keys \(x \neq y \) to be in the same bucket can be upper bounded by

\[
4 \sum_{\ell=1}^{\infty} \frac{1}{c^\ell m} = \frac{4}{(c - 1)m} = O\left(\frac{1}{m} \right)
\]
Cuckoo hashing – analysis

- Assume there are no cycles in the cuckoo graph
- From the previous lecture we know that the time for an operation is bounded by the number of elements in the bucket
- With the same analysis we get that the expected time per operation is $O(1)$ and $O(1)$ worst case on lookups (Assuming $m \geq 2cn$).

Next, analysis of the cost of rehashing...
Cuckoo hashing – analysis

Rehashing

- Consider sequence of operations involving ϵn insertions (e.g. $\epsilon = 0.1$)
- Let S' be the set of keys that exists at some time during insertions
- How likely is a cycle (=path from node i back to itself)? With the previous lemma we can upper bound that a position i is involved in a cycle

$$\sum_{\ell=1}^{\infty} \frac{1}{c^\ell m} = \frac{1}{(c - 1)m}$$

- Using union bound, we get an upper bound for the probability that there is at least one cycle:

$$\sum_{i=1}^{m} \frac{1}{(c - 1)m} = \frac{1}{(c - 1)}$$
Cuckoo hashing – analysis

Rehashing

- For $c = 3$, the probability is at most $\frac{1}{2}$ that a cycle occurs (i.e. a rehash could be required) during the ϵn insertions.
- The probability of two rehashes (caused by a second independent cycle) is $\frac{1}{4}$, and so on.
- I.e. the expected number of rehashes during ϵn insertions is at most

 $$\sum_{i=1}^{\infty} \frac{1}{2^i} = 1$$

- If a rehash takes $O(n)$ time (show why?) the expected amortized time of rehashes over ϵn insertions is $O\left(\frac{1}{\epsilon}\right)$, i.e. constant.
Cuckoo hashing – analysis

Global rebuilding

- Adapt the size of the hash table to the number of keys.
- Whenever the set becomes too small/large compared to the size of the hash table, a new smaller/larger hash table is created.
- To guarantee constant expected amortized cost per operation the size should be decreased/increased by a constant factor.
Our assumption of true randomness is not realistic.

Original work uses concept of \((c, k)\)-universal hash functions. Here the hash values of any choice of \(k\) keys are independent.

It can be shown that cuckoo hashing still performs well using \((c, k)\)-universal hash functions: Perform a rehash if a key cannot be inserted after \(k = \log n\) steps (instead of \(n\) in true randomness case).

Siegel [FOCS 1989] showed that \((1, O(\log n))\)-universal hash functions exists (taking \(O(\log n)\) space and can be evaluated in \(O(1)\) time)