Advanced Data Structures

Simon Gog – gog@kit.edu
Definition

A succinct data structure uses space „close” to the information-theoretical lower bound, but still supports operations time-efficiently.

Let L be the information-theoretical lower bound to represent a class of objects. Then a data structure which still supports time-efficient operations is called

- **implicit**, if it takes $L + O(1)$ bits of space
- **succinct**, if it takes $L + o(L)$ bits of space
- **compact**, if it takes $O(L)$ bits of space
Example: Succinct indexable dictionary

Example 1

Represent a subset $S \subset [n]$ and support operations:

- $member(i)$ returns if $i \in S$
- $rank(i) = |\{s \mid s \in S \land s < i\}|$
- $select(j) = \min\{k \mid rank(k + 1) = j \land k \in [n]\}$
- $predecessor$ and $successor$ can be answered by using $rank$ and $select$

There are 2^n different subsets, i.e. we need $\log 2^n = n$ bits of space to distinguish between dictionaries.
Example: Succinct indexable dictionary

Solution
Use a bitvector b of length n with

\[
\begin{align*}
b[i] &= \begin{cases}
1 & \text{if } i \in S \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]

plus $o(n)$-space indexes to answer

- $rank(i, 1, b) = \sum_{j=0}^{i-1} b[i]$
- $select(j, 1, b) = \min\{ i \mid rank(i + 1, 1, b) = j \}$
Example: Succinct indexable dictionary

\(o(n) \) rank index (Jacobson, FOCS 1989)

- Partition \(b \) into super blocks of size \(\alpha = \lceil \log^2 n \rceil \)
- Store absolute count \(A[i] = \sum_{k=0}^{\alpha \cdot i - 1} b[k] \) for each block \(i \) in \(\log n \) bits
- Partition each super block into blocks of size \(bs = \beta = \lceil \frac{1}{2} \log n \rceil \)
- Store relative count \(R[i, j] = (\sum_{k=0}^{\beta j - 1} b[k + \alpha i]) - A[i] \) for each block \(j \) in super block \(i \).
- Use „four Russian trick” for blocks of size \(\beta \). Pre-compute lookup table LTB of size \(2^\beta \beta \log \beta = o(n) \)
- Total space: \(\frac{n \log n}{\alpha} + \frac{n \log \log^2 n}{\beta} + O(1) = o(n) \) bits
Example: Succinct indexable dictionary

A simple solution to select: binary search over the $o(n)$-space rank structure.

$O(n)$ select structure

- See blackboard.
First consider binary trees
Number of \(n \)-node binary trees: \(C_n = \frac{1}{n+1}(2n)_n \)
We need \(\log C_n = 2n + o(n) \) bits (using Sterling’s Approximation)
Operations: \(\text{parent}(v) \), \(\text{leftchild}(v) \), \(\text{rightchild}(v) \)
Succinct representation of trees

- In a very balanced binary tree (like in a heap) operations are easy
- Let 0 be the root identifier
 - $\text{parent}(v) = \left\lfloor \frac{v-1}{2} \right\rfloor$ for $v > 0$
 - $\text{leftchild}(v) = 2v + 1$
 - $\text{rightchild}(v) = 2v + 2$
- For unbalanced trees the space would be 2^d bits, where d is the maximum depth of a node.

Proposal of Jacobson (FOCS 1989):
1. Mark all the nodes of the tree with a 1.
2. Add external nodes to the tree, and mark them all with 0-bits.
3. Read off the bits marking the nodes of the tree in (left-to-right) level-order.
Succinct representation of trees

\[b = 111111010010110000000000 \]

\[\text{rank}(0, 1, b) = 0 \]
\[\text{rank}(1, 1, b) = 1 \]
\[\text{rank}(2, 1, b) = 2 \]
Succinct representation of trees

- b contains n set bits and is of length $2n + 1$.
- A node is represented by the position of its corresponding 1-bit in b.
 - $leftchild(v) = 2 \cdot rank(v) + 1$
 - $rightchild(v) = 2 \cdot rank(v) + 2$
 - $parent(v) = select(\lfloor \frac{v-1}{2} \rfloor + 1, 1, b)$ for $v > 0$
- Total space (including rank and select): $2n + o(n)$ bits

Jaboson also considered rooted, ordered tree with degree higher than 2.
LOUDS – level order unary degree sequence
LOUDS – level order unary degree sequence
LOUDS – level order unary degree sequence

unary decoding of out degree → 01

pseudo root
LOUDS – level order unary degree sequence

LOUDS sequence = 0100010011010101111
Each node (except the pseudo root) is represented twice:
- Once as „0” in the child list of its parent
- Once as the terminal („1”) in its child list

Represent node v by the index of its corresponding „0”

I.e. $root$ corresponds to „0”
LOUDS – level order unary degree sequence

00 is_leaf(v)
01 \(id \leftarrow \text{rank}(v, 0, \text{LOUDS}) \)
02 \(p \leftarrow \text{select}(id + 1, 1, \text{LOUDS}) \)
03 \text{if } p + 1 = \text{LOUDS.size()} \text{ or } \text{LOUDS}[p + 1] = 1 \text{ then}
04 \text{return } \text{true}
05 \text{return } \text{false}

00 out_degree(v)
01 \text{if } is_leaf(v) \text{ then}
02 \text{return } 0
03 \(id \leftarrow \text{rank}(v, 0, \text{LOUDS}) \)
04 \text{return } \text{select}(id + 2, 1, \text{LOUDS}) - \text{select}(id + 1, 1, \text{LOUDS}) - 1
LOUDS – level order unary degree sequence

Get i-th child of v and parent:

00 `child(v,i)`
01 `if i > out_degree(v) then`
02 `return ⊥`
03 `id ← rank(v, 0, LOUDS)`
04 `return select(id + 1, 1, LOUDS) + i`

00 `parent(v)`
01 `if is_root(v) then`
02 `return ⊥`
01 `pid ← rank(v, 1, LOUDS)`
04 `return select(pid, 0, LOUDS)`
Conclusion

- Total space for LOUDS representation is $2n + 1 + o(n)$ bits
- All operations take constant time