Advanced Data Structures
Simon Gog – gog@kit.edu
Preliminaries

- 5 ETCS
- Lectures in German, slides in English
- Prerequisites
 - Lecture Algorithmen (II)
 - Interest in discrete, combinatorial problems
- Oral exam (20-25 minutes)
- Course homepage: http://algo2.iti.kit.edu/3086.php
 - Will contain covered material
 - Hints for LaTeX and mathematical writing
 - List of topics for mini-seminar (will be held at the end of semester)
- gog@kit.edu (room 220)
- Previous edition of this lecture by Johannes Fischer
Content

- Hash functions (static/dynamic)
- Predecessor data structures
- Orthogonal range search structures
- Space-efficient structure for trees, graphs, and binary relations
- Text indexing structures (exact and approximate matching)
- Sketching data structures
- Top-k structures (top-k querying, top-k completion)
Hashing
Hashing

- Given a set S of n objects from a large universe U of size u
- Map elements of S fast to natural numbers $\{0, 1, \ldots, m\}$ with $m \in O(n)$
- Used to implement associative arrays
Hashing

- Known from Algo I: chaining/linear probing. Time complexity for lookup $O(1)$ expected time
- Perfect hashing (for a static set of keys): $O(1)$ worst case time
- Cuckoo hashing (dynamic set of keys): $O(1)$ worst case time for lookup and deletion (amortized for insertion)
Predecessor Queries

- Given a set S of objects from a sorted universe U of size u
- For $x \in U$: $\text{predecessor}(x) = \max\{y \leq x | y \in S\}$
- Can be solved in $O(\log \log |U|)$ for integers

- van Emde Boas tree, x-fast-trie, y-fast-trie
Fast Operations on Trees
Lowest Common Ancestor Queries

\[\text{LCA}(A, B) \]
Fast Operations on Trees

Level Ancestor Queries

level-ancestor(A, 1)
Succinct/Compressed Data Structures for ...

- bitvectors,
- sequences,
- trees,
- and other objects
Succinct/Compressed Data Structures

- space usage = „space for data“ + „space for index“

<table>
<thead>
<tr>
<th>Data Size</th>
<th>Redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Information-theoretic</td>
<td>lower-order</td>
</tr>
<tr>
<td>Entropy (H_0)</td>
<td>„lower-order“</td>
</tr>
<tr>
<td>Entropy (H_K)</td>
<td>„lower-order“</td>
</tr>
</tbody>
</table>

Redundancy:
- (implicit/in-place)
- (succinct)
- (density-sensitive)
- (compressed)
Succinct/Compressed Data Structures

- space usage = “space for data“ + „space for index”
 \[\text{redundancy} \]

<table>
<thead>
<tr>
<th>Data Size</th>
<th>Redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive</td>
<td>(O(1))</td>
</tr>
<tr>
<td>Information-theoretic</td>
<td>lower-order</td>
</tr>
<tr>
<td>Entropy ((H_0))</td>
<td>„lower-order”</td>
</tr>
<tr>
<td>Entropy ((H_k))</td>
<td>„lower-order”</td>
</tr>
</tbody>
</table>

- Example of a implicit data structure: array-based representation of binary heap
- „Information-theoretic” count total number of instances of a given size; take log base 2
- „Entropy” is usually an empirical version fo classical Shannon entropy
Range Minimum Queries

- Given an array \(A \) of objects from an ordered universe; \(n = |A| \)
- What is the index of the minimum in an arbitrary range \([i, j]\)
- \(2n + o(n)\) bit structure solves problem in \(O(1)\) time
Orthogonal Range Queries
Binary Relations

A B C D E
0 1 2 3
Some of the structures of the second part of course (structures for dictionaries, sequences, text-indexes, top-k retrieval) are available:

- https://github.com/simongog/sdsl-lite
- http://sux.di.unimi.it/
- https://github.com/ot/succinct