Mathematical preliminaries

- **Sample space** S is the set of outcomes of an experiment.
- For $x \in S$, the **probability** $\Pr(x)$ of x is a number between 0 and 1, such that $\sum_{x \in S} \Pr(x) = 1$.
- An **event** is a subset V of the sample space S.
- The probability of V is $\Pr(V) = \sum_{x \in V} \Pr(x)$.
- A **random variable** (r.v.) X is a function $S \rightarrow \mathbb{R}$.
- The probability of Y taking value y is $\Pr(Y = y) = \sum_{x \in S} \Pr(x)$ such that $Y(x) = y$.
- The **expected value** $\mathbb{E}(Y)$ of a r.v. Y is

$$\mathbb{E}(Y) = \sum_{x \in S} Y(x) \cdot \Pr(x)$$
Mathematical preliminaries

Union bound / Boole’s inequality
For any sequence of events \(V_0, V_1, \ldots, V_{k-1} \) it holds

\[
\Pr(V_0 \cup V_1 \cup \cdots \cup V_{k-1}) \leq \sum_{i=0}^{k-1} \Pr(V_i)
\]

Linearity of expectation
Let \(Y_0, Y_2, \ldots, Y_{k-1} \) be \(k \) random variables. Then

\[
\mathbb{E} \left(\sum_{i=0}^{k-1} Y_i \right) = \sum_{i=0}^{k-1} \mathbb{E}(Y_i)
\]
Mathematical preliminaries

Markov’s inequality
Let Y be a non-negative r.v. that only takes integer values, then

$$\Pr(Y \geq a) \leq \frac{\mathbb{E}(Y)}{a}$$

Expectation of geometric distribution
Given a sequence of Bernoulli trials with success probability p and failure probability $q = 1 - p$. Let Y be the total number of trials until the first success. Than $\mathbb{E}(Y) = \frac{1}{p}$.
Hashing revisited

- Given a set S of n keys from a universe U of size u. Usually $n \ll u$.

 Universe U

 Array T of size m

 A hash function $h : U \rightarrow [m]$ maps a key to a position in T

 T is also called hash table

 Goal: avoid collisions: $h(x) = h(y)$ for $x \neq y$

 Handle collisions by chaining
Hashing revisited

Three basic operations (and worst case complexities):

- \textit{add}(x, v_x): calculate \(h(x) \), add item to linked list; \(O(1) \) worst case
- \textit{lookup}(x): search linked list \(L_{h(x)} \) for \(x \); \(O(|L_{h(x)}|) \) worst case
- \textit{delete}(x): lookup + deletion of \((x, v_x)\) in \(L_{h(x)} \); \(O(1) \) on top of search time in the worst case

where \((x, v_x)\) is a (key,value)-pair
Hashing revisited

Theorem
Consider any \(n \) fixed inputs to the hash table, i.e. a sequence of add/lookup/delete operations. Pick \(h \) uniformly at random from the set of all functions \(U \rightarrow [m] \). The expected run-time per operation is \(O(1 + \frac{n}{m}) \), or simply \(O(1) \) if \(n = m \).

Proof
- Let \(x, y \) be two distinct keys from \(U \)
- Let indicator r.v. \(I_{x,y} \) be 1 iff \(h(x) = h(y) \)
- \(\Pr(h(x) = h(y)) = \frac{1}{m} \) since \(h(x) \) and \(h(y) \) are chosen uniformly and independently from \([m]\)
- Thus, \(\mathbb{E}(I_{x,y}) = \frac{1}{m} \)
- Let \(N_x \) be \(|L_{h(x)}| \) for all keys \(x \) that are stored in \(T \)
- \(N_x = \sum_{y \in T} I_{x,y} \)
- \(\mathbb{E}(N_x) = \mathbb{E}(\sum_{y \in T} I_{x,y}) = \sum_{y \in T} \mathbb{E}(I_{x,y}) = n \cdot \frac{1}{m} = \frac{n}{m} \)
Hashing revisited

Problems:

- How to pick \(h \) uniformly at random? There are \(m^u \) hash functions from \(U \) to \([m]\). I.e. we need \(u \log m \) bits to store \(h \). That is prohibitively large.

- Choosing a fixed hash function may result in bad worst-case behavior. For \(u \geq m \cdot n \) adversary can pick \(n \) keys which all map to the same position.

Solution: Universal hashing

Pick a function randomly from a set \(\mathcal{H} = \{ H_0, H_1, \ldots \} \) of hash functions with certain properties during the initialization of the hash table.
Hashing revisited

Universal hashing

A set \mathcal{H} of hash functions is *weakly universal* if for two keys $x, y \in U$ ($x \neq y$)

$$\Pr(h(x) = h(y)) \leq \frac{1}{m}$$

where h is chosen uniformly at random from \mathcal{H}.

Example of a set of universal hash functions

Let m be a prime and key $x = (x_0, \ldots, x_{k-1}) \in [m]^k$. For $a = (a_0, \ldots, a_{k-1}) \in [m]^k$ define

$$h_a(x) = \sum_{i=0}^{k-1} a_i \cdot x_i \mod m$$

Then $\mathcal{H}_0 = \{ h_a \mid a \in [m]^k \}$ is a universal set of hash functions.
Hashing revisited

Proof
Let \(x = (x_0, \ldots, x_{k-1}) \) and \(y = (y_0, \ldots, y_{k-1}) \) with \(x \neq y \).
Count as with \(h_a(x) = h_a(y) \). For each \(i \neq j \) we can choose exactly one \(a_j \) with \(h_a(x) = h_a(y) \):

\[
\sum_{0 \leq i < k} a_i x_i \equiv \sum_{0 \leq i < k} a_i y_i \pmod{m}
\]

\[
\Leftrightarrow a_j \overset{(1)}{=} (x_j - y_j)^{-1} \sum_{0 \leq i < k, i \neq j} a_i (y_i - x_i) \pmod{m}
\]

I.e. there are \(m^{k-1} \) ways to choose \(a \) such that \(h_a(x) = h_a(y) \), in total there are \(m^k \) ways. \(\Rightarrow \text{Pr}(h_a(x) = h_a(y)) = \frac{1}{m} \)

Question: How big is \(\mathcal{H}_0 \)?

(1) the multiplicative inverse exists since \(m \) is prime
Static perfect hashing

Problem
Given a static dictionary of n (key,value)-pairs. Devise a data structure which efficiently supports the lookup operation. Keys are from a large universe U of size u.

Solution of Fredman, Komlós and Szemerédi (J. ACM 1984)
FKS hashing scheme
- Hash table of size $O(n)$ entries
- $O(1)$ worst case lookup time
- $O(n)$ expected construction time
Static perfect hashing – first attempt

1. Insert every key into a table of size \(m = n \) using a universal hash function
2. Check for collisions
3. Repeat if there are collisions

How many collisions are there on average?

- For two keys \(x, y \) let \(I_{x,y} \) be indicator r.v. for a collision; i.e. \(I_{x,y} = 1 \) iff \(h(x) = h(y) \)
- Let \(C \) be r.v. of total number of collisions: \(\sum_{x,y \in S \atop x < y} I_{x,y} \)

\[
\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in S \atop x < y} I_{x,y} \right) = \sum_{x,y \in S \atop x < y} \mathbb{E}(I_{x,y}) = \sum_{x,y \in S \atop x < y} \frac{1}{m} = \binom{n}{2} \frac{1}{m} = \frac{n - 1}{2}
\]

- No \(O(n) \) expected construction time
Static perfect hashing – second attempt

1. Insert every key into a table of size $m = n^2$ using a universal hash function
2. Check for collisions
3. Repeat if there are collisions

How many collisions are there on average?

$$
\mathbb{E}(C) = \mathbb{E}\left(\sum_{x,y \in S \atop x < y} I_{x,y} \right) = \sum_{x,y \in S \atop x < y} \mathbb{E}(I_{x,y}) = \sum_{x,y \in S \atop x < y} \frac{1}{m} = \left(\frac{n}{2} \right) \frac{1}{n^2} \leq \frac{1}{2}
$$

- With Markov we get the probability of at least one collision:
 $$\Pr(C \geq 1) \leq \frac{1}{2}$$
- I.e. probability p of having no collision is $p \geq \frac{1}{2}$
Static perfect hashing – second attempt

- I.e. expected iterations for construction is 2 (with expectation of geometric distribution)
- But we do not get $O(n)$ construction time, since initialization of T takes $O(m) = O(n^2)$ time in each of the iterations.
- Question: Can you solve the issue above?
- Lookup time is $O(1)$
Static perfect hashing – third attempt

1. Insert every key into a table of size $m = n$ using a universal hash function
2. Check for collisions
3. Repeat if there are more than n collisions

What is the expected construction time?

- Expected collisions: $\mathbb{E}(C) = \frac{n-1}{2} \leq \frac{n}{2}$
- The probability of at least n collisions: $\Pr(C \geq n) \leq \frac{1}{2}$
- The probability p of at most n collisions is $p \geq \frac{1}{2}$; i.e. ≤ 2 iterations are expected
- expected construction time: $O(n)$

But: lookup time could be $O(n)$
Find hash function h to map n keys to array T of size n

Let $n_i = |T[i]|$ be the elements in bucket i

For each i select a hash function h_i to map the n_i keys to a table T_i of size n_i^2

Requirement: not more than n collisions in T; no collisions in the T_is
Static perfect hashing – FKS scheme

Lookup time is constant:

00 \textbf{lookup}(x)
01 \quad i \leftarrow h(x)
02 \quad \textbf{return } T_i[h_i(x)]

- What is the expected construction time?
- What is the space usage?
Static perfect hashing – FKS scheme

Space usage

- Size of T: $O(n)$ elements
- Size of T_i: $O(n_i^2)$ elements
- Size of each universal hash function: $O(\log(n))$ bits, i.e. $O(1)$ words
- Total:

 $$O(n) + \sum_{i=0}^{n-1} O(n_i^2) = O(n) + O\left(\sum_{i=0}^{n-1} n_i^2\right)$$

- We know the number of collisions in T: $\sum_{i=0}^{n-1} \binom{n_i}{2} \leq n$

$$\sum_{i=0}^{n-1} \binom{n_i}{2} = \frac{1}{2} \sum_{i=0}^{n-1} (n_i^2 - n_i) \leq n$$

$$\Leftrightarrow \sum_{i=0}^{n-1} n_i^2 \leq 3n$$
Static perfect hashing – FKS scheme

Space usage

Total:

\[O(n) + \sum_{i=0}^{n-1} O(n_i^2) = O(n) + O(\sum_{i=0}^{n-1} n_i^2) \leq O(n) + 3n = O(n) \]
Static perfect hashing – FKS scheme

Expected construction time

- Time to construct h is $O(n)$ expected (using universal hashing)
- Time to construct h_i is $O(n_i^2)$ expected (using universal hashing)
- In total expected construction time is:

\[
O(n) + \sum_{i=0}^{n-1} O(n_i^2) = O(n) + O(\sum_{i=0}^{n-1} n_i^2) = O(n)
\]