Advanced Data Structures
Simon Gog – gog@kit.edu
Predecessor data structures

We want to support the following operations on a set of integers from the domain $U = [u]$.

- **insert**(x): Add x to S. I.e. $S' = S \cup \{x\}$.
- **delete**(x): Delete x from S. I.e. $S' = S \setminus \{x\}$.
- **member**(x): $= |\{x \mid x \in S\}|$
- **predecessor**(x): $= \max\{y \mid y \leq x \land y \in S\}$
- **successor**(x): $= \min\{y \mid y \geq x \land y \in S\}$

where x is an integer in U and S the set of integers of size n stored in the data structure.

- $\min\{S\} = \text{successor}(0)$
- $\max\{S\} = \text{predecessor}(u - 1)$

Solution know from „Algo I“: Balanced search trees. E.g. red-black trees. In all comparison based approaches at least one operation takes $\Omega(\log n)$ time. Why?
Predecessor data structures

$\Omega(\log n)$ bound can be beaten in the *word RAM* model:

- Memory is organized in words of $b \in O(\log u)$ bits
- A word can be accessed in constant time
- We can address all data using one word
- Standard arithmetic operations take constant time on words (i.e. addition, subtraction, division, shifts . . .)

We first concentrate on the static case: The set S is fixed. I.e. no insert and delete operations.
x-fast trie (Willard, 1982)

- Conceptional: Complete binary tree of height \(w = \lceil \log u \rceil \)

- Operations member/successor/prodecessor can be answered in \(O(w) \) time by traversing the tree
x-fast trie (Willard, 1982)

- Conceptional: Complete binary tree of height \(w = \lceil \log u \rceil \)

- Operations member/successor/prodecessor can be answered in \(O(w) \) time by traversing the tree.
x-fast trie (Willard, 1982)

- Conceptional: Complete binary tree of height $w = \lceil \log u \rceil$

- Operations member/successor/predecessor can be answered in $O(w)$ time by traversing the tree
x-fast trie (Willard, 1982)

- Conceptional: Complete binary tree of height $w = \lceil \log u \rceil$

Operations member/successor/predecessor can be answered in $O(w)$ time by traversing the tree.
x-fast trie
From $O(\log u)$ to $O(\log \log u)$...
x-fast trie

From $O(\log u)$ to $O(\log \log u)$...

- Generate a perfect hash table h_i for each level i (keys are the present nodes)
- Note: Node numbers (represented in binary) are prefixes of keys in S
x-fast trie

From $O(\log u)$ to $O(\log \log u)$...

- Generate a perfect hash table h_i for each level i (keys are the present nodes)
- Note: Node numbers (represented in binary) are prefixes of keys in S
x-fast trie

Query time from $O(\log u)$ to $O(\log \log u)$...

- Member queries can be answered in constant time by lookup in the leaf level using prefixes of the searched key.
- There are w prefixes, i.e. binary search takes $O(\log w)$ or $O(\log \log u)$ time.
- Space: $w \cdot O(n)$ words, i.e. $O(n \log u)$ bits.

Predecessor/Successor queries

- For each node store a pointer to the maximal/minimal leaf in its subtree.
- Use a double linked list to represent leaf nodes.
- Solving predecessor: Search for a node v which represents the longest prefix of x with any key in S. Two cases:
 - Minimum in subtree of v is larger x: Return element to the left of the leaf.
 - Maximum in the subtree of v is smaller than x. Return maximum.
y-fast trie (Willard, 1982)
Space from $O(n \log u)$ to $O(n)$ words...

- Split S into $\frac{n}{w}$ blocks of $O(\log u)$ elements $B_0, B_1, \ldots, B_{\lceil \frac{n}{w} \rceil - 1}$.
- $\max\{B_i\} < \min\{B_{i+1}\}$ for $0 \leq i < \lceil \frac{n}{w} \rceil - 1$
- Let $r_i = \max\{B_i\}$ be a representative of block B_i.
- Build x-fast trie over representatives.

Total space: $\frac{n}{w} \cdot O(w) + O(n) = O(n)$ words
y-fast trie

Space from $O(n \log u)$ to $O(n)$ words...

- Use sorted array to represent B_i
- A member query is answered as follows
 - Search for successor of x in x-trie of r_i’s
 - Let B_k be the block of the successor of x
 - Search in $O(\log w) = O(\log \log u)$ time for x in B_k

- How does predecessor/successor work?
y-fast trie

Changes to make structure dynamic
- use cuckoo hashing for x-fast trie
- use balanced search trees of size between $\frac{1}{2}w$ and $2w$ for B_is
- representative is not the maximum, but any element separating two consecutive groups

Summary:

<table>
<thead>
<tr>
<th>Operation</th>
<th>static y-fast trie</th>
<th>dynamic y-fast trie</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{pred}(x)/\text{succ}(x)$</td>
<td>$O(\log \log u)$ w.c.</td>
<td>$O(\log \log u)$</td>
</tr>
<tr>
<td>$\text{insert}(x)/\text{delete}(x)$</td>
<td>$O(\log \log u)$ exp. & am.</td>
<td>$O(\log \log u)$ exp. & am.</td>
</tr>
<tr>
<td>construction</td>
<td>$O(n)$ exp.</td>
<td>$O(n)$ exp.</td>
</tr>
</tbody>
</table>
Van Emde Boas Trees

- Conceptual bitvector B of length u with $B[i] = 1$ for all $i \in S$
- Split B into u/\sqrt{u} blocks (blue blocks) B_0, B_1, \ldots
- Set bit in $R[i]$ if there is at least one bit set in B_i
- Also store the minimum/maximum of S

Here: $u = 16$
Van Emde Boas Trees

- Define van Emde Boas tree (vEB tree) recursively
- I.e. use vEB to represent B_i’s and R
- vEB(u) denotes the vEB tree on a universe of size u
- Base case: $u = 2$. Only one node and variables min, max.

Technicalities

- $\sqrt[\uparrow]{u} = 2^{\lceil (\log u) / 2 \rceil}$
- $\sqrt[\downarrow]{u} = 2^{\lfloor (\log u) / 2 \rfloor}$
- $high(x) = \left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$ (block that contains x)
- $low(x) = x \mod \sqrt{u}$ (relative position of x in $B_{high(x)}$)
Predecessor(x, B) (first attempt)

- Let $y = \text{height}(x)$ and $z = \text{Predecessor}(\text{low}(x), B_y)$
- If $z \neq \bot$ return $z + y \cdot \sqrt{u}$
- Let $b = \text{Predecessor}(\text{high}(x), R)$
- If $b \neq \bot$ return $\max(B_b) + b \cdot \sqrt{u}$
- Return \bot

Summary

```
B =

. . . . . . . . . . . . . . . . . .
0 1 0 0 0 1 0 1 1 0 0 1 1 1 0 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
```

```
R =

1 0 1 1
```
Van Emde Boas Trees

Predecessor\((x, B)\) (first attempt)

- Let \(y = \text{height}(x)\) and \(z = \text{Predecessor}(\text{low}(x), B_y)\)
- If \(z \neq \bot\) return \(z + y \cdot \sqrt[4]{u}\)
- Let \(b = \text{Predecessor}(\text{high}(x), R)\)
- If \(b \neq \bot\) return \(\max(B_b) + b \cdot \sqrt[4]{u}\)
- Return \(\bot\)

Problem

- Recurrence for time complexity: \(T(u) = 2T(\sqrt[4]{u}) + \Theta(1)\)
- Substitute \(u\) by \(2^k\) and define \(S(k) = T(2^k)\)
- \(S(k) = 2S(\frac{k}{2}) + \Theta(1)\) (solved by Master Theorem)
- We get \(T(u) = O(\log u \log \log u)\).
- Next: improve time to \(O(\log \log u)\)
Van Emde Boas Trees

Predecessor\((x, B)\) (first attempt)

- Let \(y = \text{height}(x)\) and \(z = \text{Predecessor}(\text{low}(x), B_y)\)
- If \(z \neq \perp\) return \(z + y \cdot \sqrt[2]{u}\)
- Let \(b = \text{Predecessor}(\text{high}(x), R)\)
- If \(b \neq \perp\) return \(\max(B_b) + b \cdot \sqrt[2]{u}\)
- Return \(\perp\)

Problem

- Recurrence for time complexity: \(T(u) = 2T(\sqrt[2]{u}) + \Theta(1)\)
- Substitute \(u\) by \(2^k\) and define \(S(k) = T(2^k)\)
- \(S(k) = 2S(\frac{k}{2}) + \Theta(1)\) (solved by Master Theorem)
- We get \(T(u) = O(\log u \log \log u)\).
- Next: improve time to \(O(\log \log u)\).
Van Emde Boas Trees

Predecessor(x, B) (first attempt)

- Let $y = \text{height}(x)$ and $z = \text{Predecessor}(\text{low}(x), B_y)$
- If $z \neq \bot$ return $z + y \cdot \sqrt{u}$
- Let $b = \text{Predecessor}(\text{high}(x), R)$
- If $b \neq \bot$ return $\max(B_b) + b \cdot \sqrt{u}$
- Return \bot

Problem

- Recurrence for time complexity: $T(u) = 2T(\sqrt{u}) + \Theta(1)$
- Substitute u by 2^k and define $S(k) = T(2^k)$
- $S(k) = 2S(\frac{k}{2}) + \Theta(1)$ (solved by Master Theorem)
- We get $T(u) = O(\log u \log \log u)$.
- Next: improve time to $O(\log \log u)$
Predecessor(x, B) (second attempt)

- If \(x > \text{max} \) return \(\text{max} \)
- Let \(y = \text{high}(x) \), if \(\min(B_y) < x \) return \(\text{Predecessor}(\text{low}(x), B_y) \)
- Let \(b = \text{Predecessor}(\text{high}(x), R) \)
- If \(b \neq \bot \) return \(\max(B_b) + b \cdot \sqrt[4]{u} \)
- Return \(\bot \)

Recurrence for time complexity: \(T(u) = T(\sqrt[4]{u}) + O(1) \)

Solution (Master Theorem or drawing recursion tree):
\(T(u) = \Theta(\log \log u) \)
Van Emde Boas Tree

Space complexity

- Recurrence: \(S(u) = (\sqrt{u} + 1)S(\sqrt{u}) + \Theta(1) \)
- Solution: \(S(u) \in O(u) \)

Note

- Space complexity of \(x \)-fast and \(y \)-fast tries are better for small sets
- Van Emde Boas Tree does not rely on hashing