Advanced Data Structures
Simon Gog – gog@kit.edu
Definition

A succinct data structure uses space „close” to the information-theoretical lower bound, but still supports operations time-efficiently.

Let L be the information-theoretical lower bound to represent a class of objects. Then a data structure which still supports time-efficient operations is called

- *implicit*, if it takes $L + O(1)$ bits of space
- *succinct*, if it takes $L + o(L)$ bits of space
- *compact*, if it takes $O(L)$ bits of space
Example: Succinct indexable dictionary

Example 1
Represent a subset $S \subset [n]$ and support operations:

- $\text{member}(i)$ returns if $i \in S$
- $\text{rank}(i) = |\{s \mid s \in S \land s < i\}|$
- $\text{select}(j) = \min\{k \mid \text{rank}(k + 1) = j \land k \in [n]\}$
- predecessor and successor can be answered by using rank and select

There are 2^n different subsets, i.e. we need $\log 2^n = n$ bits of space to distinguish between dictionaries.
Example: Succinct indexable dictionary

Solution
Use a bitvector b of length n with

$$b[i] = \begin{cases}
1 & \text{if } i \in S \\
0 & \text{otherwise}
\end{cases}$$

plus $o(n)$-space indexes to answer

- $rank(i, 1, b) = \sum_{j=0}^{i-1} b[i]$
- $select(j, 1, b) = \min\{i \mid rank(i + 1, 1, b) = j\}$
Example: Succinct indexable dictionary

\(o(n) \) rank index (Jacobson, FOCS 1989)

- Partition \(b \) into super blocks of size \(\alpha = \lceil \log^2 n \rceil \)
- Store absolute count \(A[i] = \sum_{k=0}^{\alpha \cdot i - 1} b[k] \) for each block \(i \) in \(\log n \) bits
- Partition each super block into blocks of size \(bs = \beta = \lceil \frac{1}{2} \log n \rceil \)
- Store relative count \(R[i, j] = (\sum_{k=0}^{\beta j - 1} b[k + \alpha i]) - A[i] \) for each block \(j \) in super block \(i \).
- Use „four Russian trick“ for blocks of size \(\beta \). Pre-compute lookup table \(\text{LTB} \) of size \(2^\beta \beta \log \beta = o(n) \)
- Total space: \(\frac{n \log n}{\alpha} + \frac{n \log \log n}{\beta} + O(1) = o(n) \) bits
Example: Succinct indexable dictionary

A simple solution to select: binary search over the $o(n)$-space rank structure.

$O(n)$ select structure

See blackboard.
First consider binary trees

- Number of n-node binary trees: $C_n = \frac{1}{n+1} \binom{2n}{n}$
- We need $\log C_n = 2n + o(n)$ bits (using Sterling’s Approximation)
- Operations: $\textit{parent}(v), \textit{leftchild}(v), \textit{rightchild}(v)$
Succinct representation of trees

- First consider binary trees
- Number of n-node binary trees: $C_n = \frac{1}{n+1} \binom{2n}{n}$
- We need $\log C_n = 2n + o(n)$ bits (using Sterling’s Approximation)
- Operations: $\text{parent}(v), \text{leftchild}(v), \text{rightchild}(v)$
Succinct representation of trees

- First consider binary trees
- Number of \(n \)-node binary trees: \(C_n = \frac{1}{n+1} \binom{2n}{n} \)
- We need \(\log C_n = 2n + o(n) \) bits (using Sterling’s Approximation)
- Operations: \(parent(v) \), \(leftchild(v) \), \(rightchild(v) \)
First consider binary trees

Number of n-node binary trees: $C_n = \frac{1}{n+1} \binom{2n}{n}$

We need $\log C_n = 2n + o(n)$ bits (using Sterling’s Approximation)

Operations: $parent(v), leftchild(v), rightchild(v)$
First consider binary trees

Number of n-node binary trees: $C_n = \frac{1}{n+1}{2n \choose n}$

We need $\log C_n = 2n + o(n)$ bits (using Sterling’s Approximation)

Operations: $\text{parent}(v)$, $\text{leftchild}(v)$, $\text{rightchild}(v)$
Succinct representation of trees

- First consider binary trees
- Number of \(n \)-node binary trees: \(C_n = \frac{1}{n+1} \binom{2n}{n} \)
- We need \(\log C_n = 2n + o(n) \) bits (using Sterling’s Approximation)
- Operations: \(\text{parent}(v) \), \(\text{leftchild}(v) \), \(\text{rightchild}(v) \)
In a very balanced binary tree (like in a heap) operations are easy

Let 0 be the root identifier

- $\text{parent}(v) = \left\lfloor \frac{v - 1}{2} \right\rfloor$ for $v > 0$
- $\text{leftchild}(v) = 2v + 1$
- $\text{rightchild}(v) = 2v + 2$
Child operation in detail

Let $\delta(v)$ be the distance of a node v to the root node

$P(v) := \{ w \mid \delta(w) \leq \delta(v) \land w < v \}$

Note: $|P(v)| = v$

$w = \text{leftchild}(v)$

- Mark $P(v)$
- $P(w) = \{ \text{children of } P(v) \} \cup w$
- w is at position $|P(w)| = 2P(v) + 1 = 2v + 1$
Child operation in detail

Let $\delta(v)$ be the distance of a node v to the root node

- $P(v) := \{w \mid \delta(w) \leq \delta(v) \land w < v\}$
- Note: $|P(v)| = v$

$w =$ leftchild(v)

- Mark $P(v)$
- $P(w) = \{\text{children of } P(v)\} \cup w$
- w is at position $|P(w)| = 2P(v) + 1 = 2v + 1$
Child operation in detail

Let $\delta(v)$ be the distance of a node v to the root node

$P(v) := \{w \mid \delta(w) \leq \delta(v) \land w < v\}$

Note: $|P(v)| = v$
Child operation in detail

\[w = \text{leftchild}(v) \]

- Mark \(P(v) \)
- \(P(w) = \{ \text{children of } P(v) \} \cup \{ \text{root} \} \)
- \(w \) is at position \(|P(w)| = 2P(v) + 1 = 2v + 1\)

- Let \(\delta(v) \) be the distance of a node \(v \) to the root node
- \(P(v) := \{ w \mid \delta(w) \leq \delta(v) \land w < v \} \)
- Note: \(|P(v)| = v\)
Child operation in detail

Let $\delta(v)$ be the distance of a node v to the root node.

- $P(v) := \{w \mid \delta(w) \leq \delta(v) \land w < v\}$
- Note: $|P(v)| = v$

Mark $P(v)$

- $P(w) = \{\text{children of } P(v)\} \cup \{\text{root}\}$

- w is at position $|P(w)| = 2P(v) + 1 = 2v + 1$

$w = \text{leftchild}(v)$
Problem with previous approach:
For unbalanced trees the space would be 2^d bits, where d is the maximum depth of a node.

Proposal of Jacobson (FOCS 1989):

1. Mark all the nodes of the tree with a 1.
2. Add external nodes to the tree, and mark them all with 0-bits.
3. Read off the bits marking the nodes of the tree in (left-to-right) level-order.
Succinct representation of trees

\[b = \begin{array}{cccccccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18
\end{array} \]

\[\text{rank}(0, 1, b) = 0 \]

\[\text{rank}(1, 1, b) = 1 \]

\[\text{rank}(2, 1, b) = 2 \]
Succinct representation of trees

- \(b \) contains \(n \) set bits and is of length \(2n + 1 \).
- A node is represented by the position of its corresponding 1-bit in \(b \).
 - \(\text{leftchild}(v) = 2 \cdot \text{rank}(v) + 1 \)
 - \(\text{rightchild}(v) = 2 \cdot \text{rank}(v) + 2 \)
 - \(\text{parent}(v) = \text{select}(\lfloor \frac{v-1}{2} \rfloor + 1, 1, b) \) for \(v > 0 \)
- Total space (including rank and select): \(2n + o(n) \) bits

Jaboson also considered rooted, ordered tree with degree higher than 2.
LOUDS – level order unary degree sequence
LOUDS – level order unary degree sequence

pseudo root
LOUDS – level order unary degree sequence

unary encoding of out degree → 01

pseudo root

0001

001

1

01

1

01

1

1
LOUDS – level order unary degree sequence

LOUDS sequence = 0100010011010101111
(concatenation of unary codes in level order)
Each node (except the pseudo root) is represented twice
- Once as „0” in the child list of its parent
- Once as the terminal („1”) in its child list

Represent node v by the index of its corresponding „0”
- i.e. $root$ corresponds to „0”
LOUDS – level order unary degree sequence

00 `is_leaf(v)`
01 \(id \leftarrow \text{rank}(v, 0, \text{LOUDS}) \)
02 \(p \leftarrow \text{select}(id + 1, 1, \text{LOUDS}) \)
03 \text{if } p = 0 \text{ or } \text{LOUDS}[p - 1] = 1 \text{ then} \)
04 \hspace{1em} \text{return } true
05 \hspace{1em} \text{return } false

00 `out_degree(v)`
01 \text{if } is_leaf(v) \text{ then} \)
02 \hspace{1em} \text{return } 0
03 \hspace{1em} id \leftarrow \text{rank}(v, 0, \text{LOUDS})
04 \hspace{1em} \text{return } \text{select}(id + 2, 1, \text{LOUDS}) - \text{select}(id + 1, 1, \text{LOUDS}) - 1
LOUDS – level order unary degree sequence

Get i-th child ($i \in [1, \text{out_degree}(v)]$) of v and parent:

00 \hspace{1em} \textbf{child}(v,i)
01 \hspace{1em} \textbf{if} \ i > \text{out_degree}(v) \ \textbf{then}
02 \hspace{1em} \textbf{return} \ \bot
03 \hspace{1em} id \leftarrow \text{rank}(v, 0, \text{LOUDS})
04 \hspace{1em} \textbf{return} \ \text{select}(id + 1, 1, \text{LOUDS}) + i

00 \hspace{1em} \textbf{parent}(v)
01 \hspace{1em} \textbf{if} \ \text{is_root}(v) \ \textbf{then}
02 \hspace{1em} \textbf{return} \ \bot
01 \hspace{1em} pid \leftarrow \text{rank}(v, 1, \text{LOUDS})
04 \hspace{1em} \textbf{return} \ \text{select}(pid, 0, \text{LOUDS})
Conclusion

- Total space for LOUDS representation is $2n + 1 + o(n)$ bits
- All operations take constant time