Advanced Data Structures
Simon Gog – gog@kit.edu
Problem
Given a sequence $S[0, n - 1]$ of length n over alphabet Σ of size σ. Devise a data structure which efficiently supports the following operations:
- $\text{access}(i, S)$: Return $S[i]$ the element at position i in S
- $\text{rank}(i, c, S)$: Return number of occurrences of element c in $S[0, i - 1]$
- $\text{select}(i, c, S)$: Return the position of the ith occurrence of c in S (remember: i is 1-indexed)
We present several results in this lecture. The following tables provides an overview. Note that we have omitted $O(\cdot)$ for time complexities.

<table>
<thead>
<tr>
<th></th>
<th>access(i, S)</th>
<th>rank(i, c, S)</th>
<th>select(i, c, S)</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-1</td>
<td>$\sigma \log \log \sigma$</td>
<td>log log σ</td>
<td>1</td>
<td>$n \log \sigma$</td>
</tr>
<tr>
<td>G-2</td>
<td>1</td>
<td>log log σ</td>
<td>1</td>
<td>$n \log \sigma + o(n \log \sigma)$</td>
</tr>
</tbody>
</table>

Results by Golynski, Munro, Rao (SODA 2006). A more careful analysis of G-1 results in entropy compressed space complexity.
Solution Overview

- (1) Divide sequence into blocks of length σ
- (2) Solve rank and select on block level
- (3) Solve in-block rank and select
- Step (1) and (2) are used in all structures
Conceptionally introduce a bitvector for each symbol
Concatenated in row major order to bitvector A
Size of A: $n\sigma$

$eyymmmmmm-$$eaarrrrrra$

0000000000100000000000
0000000001110000000000
000000000000011100000001
100000000000010000000000
000011110000000000000000
00000000000001111110
011100000000000000000000
Conceptionally introduce a bitvector for each symbol
Concatenated in row major order to bitvector A

Size of A: $n\sigma$
Conceptionally introduce a bitvector for each symbol
Concatenated in row major order to bitvector A
Size of A: $n\sigma$

```
  e y y y m m m m -- -- $ e a a r r r r r r a
$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
e 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
m 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0
y 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
```
Rank/Select on General Sequences

We have already see how to answer rank and select on bitvectors in constant time using and index of $o(n)$ bits of space. With these results we can answer rank/select on S:

\[
\begin{align*}
\text{rank}(i, c, S) & = \text{rank}(c \cdot n + i, 1, A) - \text{rank}(c \cdot n, 1, A) \quad (1) \\
\text{select}(i, c, S) & = \text{select}(\text{rank}(c \cdot n, 1, A) + i, 1, A) \quad (2)
\end{align*}
\]

We here assume that the symbols can be mapped to $[0, \sigma - 1]$. I.e. we map $\$ to 0, _ to 1, ...
We have already see how to answer rank and select on bitvectors in constant time using and index of $o(n)$ bits of space. With these results we can answer rank/select on S:

\[
\begin{align*}
\text{rank}(i, c, S) &= \text{rank}(c \cdot n + i, 1, A) - \text{rank}(c \cdot n, 1, A) \quad (1) \\
\text{select}(i, c, S) &= \text{select}(\text{rank}(c \cdot n, 1, A) + i, 1, A) \quad (2)
\end{align*}
\]

We here assume that the symbols can be mapped to $[0, \sigma - 1]$. I.e. we map $\$ \rightarrow 0, _ \rightarrow 1, \ldots$

Unfortunately, A uses a lot of space.
We have already see how to answer rank and select on bitvectors in constant time using and index of $o(n)$ bits of space. With these results we can answer rank/select on S:

\[
\begin{align*}
\text{rank}(i, c, S) &= \text{rank}(c \cdot n + i, 1, A) - \text{rank}(c \cdot n, 1, A) \\
\text{select}(i, c, S) &= \text{select}(\text{rank}(c \cdot n, 1, A) + i, 1, A)
\end{align*}
\]

We here assume that the symbols can be mapped to $[0, \sigma - 1]$. I.e. we map $\$ to 0, _ to 1,\ldots

Unfortunately, A uses a lot of space. But we can compress it:
Rank/Select on General Sequences

- Divide A into blocks of length σ
- Count the number of ones in each block of A
- Store the counts in array C of length n (takes $n \log \sigma$ bits)

e	y	y	y	y	m	m	m	m	m	m	m	m	m	–	–	–	$\$	e	a	r	r	r	r	r	r	r	a
$\$	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0		
–	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
a	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0		
e	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0		
m	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
r	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1		
y	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Simon Gog:
Advanced Data Structures

Institute of Theoretical Informatics
Algorithmics
Divide A into blocks of length σ

Count the number of ones in each block of A

Store the counts in array C of length n (takes $n \log \sigma$ bits)
Divide A into blocks of length σ

Count the number of ones in each block of A

Store the counts in array C of length n (takes $n \log \sigma$ bits)
Rank/Select on General Sequences

\[C = 0 \ 1 \ 0 \ 0 \ 3 \ 0 \ 0 \ 1 \ 2 \ 1 \ 1 \ 0 \ 3 \ 1 \ 0 \ 0 \ 0 \ 5 \ 3 \ 0 \ 0 \]

- The sum of all entries in \(C \) is \(n \)
- We can concatenate all values unary encoded into bitvector \(B \). In our example: \(B = 101110001110100101011000101111000001000111 \)
- Size of \(B \) is \(2n \) bits
- We can perform operations on blocks by adding one select structure
Rank/Select on General Sequences

\[C = 0 \ 1 \ 0 \ 0 \ 3 \ 0 \ 0 \ 1 \ 2 \ 1 \ 1 \ 0 \ 3 \ 1 \ 0 \ 0 \ 0 \ 5 \ 3 \ 0 \ 0 \]

- The sum of all entries in \(C \) is \(n \)
- We can concatenate all values unary encoded into bitvector \(B \). In our example: \(B = 101110001110100101011000101111000001000111 \)
- Size of \(B \) is \(2n \) bits
- We can perform operations on blocks by adding one select structure
Rank/Select on General Sequences

\[C = 0 1 0 0 3 0 0 1 2 1 1 0 3 1 0 0 0 5 3 0 0 \]

- The sum of all entries in \(C \) is \(n \)
- We can concatenate all values unary encoded into bitvector \(B \). In our example: \(B = 1 0 1 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 1 \)
- Size of \(B \) is \(2n \) bits
- We can perform operations on blocks by adding one select structure
The sum of all entries in C is n

We can concatenate all values unary encoded into bitvector B. In our example: $B = 101110001110100101100101111000101000111$

Size of B is $2n$ bits

We can perform operations on blocks by adding one select structure
The sum of all entries in C is n

We can concatenate all values unary encoded into bitvector B. In our example: $B = 101110001110100101101100010111100001000111$

Size of B is $2n$ bits

We can perform operations on blocks by adding one select structure
Rank/Select on General Sequences

\[
B = 101110001110100101011000101111000001000111
\]

- \(\text{rank}'(\sigma i, A) = \text{select}(i, 1, B) + 1 - i \)
- \(\text{select}'(i, A) = \text{rank}(\text{select}(i, 0, B), 1, B) = \text{select}(i, 0, B) + 1 - i \)
Rank/Select on General Sequences
In-block rank and select (G-1)

- For each block A_j, we store the positions in the range $[0, \sigma - 1]$ of the set bits in increasing order in an array E_j
- Total space: $n \log \sigma$

Solve select
Block $x = select'(i, 1, A)$ contains the i-th one. There are $y = rank'(\sigma x, 0, A)$ ones before block x \Rightarrow
select(i, 1, S) = x \cdot \sigma + E_x[i - y]$

Solve rank
i with $j = \left\lfloor \frac{i}{\sigma} \right\rfloor$ and $r = i - j \cdot \sigma$
rank($i, 1, S$) = rank'($i \cdot \sigma$, A) + $\max\{\{k | E_j[k] < r\} \cup \{-1\}\} + 1$
Use y-fast trie for second part to get $O(\log \log \sigma)$ time
Divide S in chunks of size of size σ.

In each chunk C: For each $c \in \Sigma$ (in lex. order) write its occurrences in C. We get a permutation π.

Also store a bitvector X which contains the number of occurrences decoded in unary.

\[S = e y y y m m m m m m - - - - - $ e a a a r r r r r r a \]

\[\pi = 0 4 5 6 1 2 3 4 1 2 3 6 5 0 0 6 1 2 3 4 5 \]

\[X = 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 \]

\[$-a e m r y $ - a e m r y$- a e m \]

\[\text{ry} \]
Rank/Select on General Sequences

In-block access, rank, and select (G-2)

- **select**\((i, c, S)\): First we determine by rank and select on \(A\) chunk \(x\) and the argument \(j\) for select on \(C_x\)

- \(select(j, c, C_x) = \pi_X[select(c, 1, X) + j - c]\)

\[
S = e y y y m m m m m m - - - - S e a a r r r r r a
\]

\[
\pi = \begin{array}{cccccccc}
0 & 4 & 5 & 6 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 6 & 5 & 0 & 0 & 6 & 1 & 2 & 3 & 4 & 5
\end{array}
\]

\[
X = 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1
\]

\[
S-a e m r y S - a e m r y S-a e m r y
\]
Rank/Select on General Sequences

In-block access, rank, and select (G-2)

- \(y = \pi^{-1}(i) \) tells us the corresponding 0 in \(X \)
- Ones before \(y \) in \(X \) the corresponding character
- I.e. \(\text{select}(y, 0, X) = y - 1 \)

\[
\[S = \text{e y y y m m m m m - - - - - e a a a r r r r r a} \\
\pi = \begin{array}{cccccccc}
0 & 4 & 5 & 6 & 1 & 2 & 3 & \\
4 & 1 & 2 & 3 & 6 & 5 & 0 & \\
0 & 6 & 1 & 2 & 3 & 4 & 5 & \\
\end{array}
\]

\[
X = 11101000110001010001010101111110011100000111 \\
\$-a e m r y $ - a e m r y $- a e m r y $
Use X to select the range $[sp, ep]$ of position of c in π

Solve predecessor query on $\pi[sp..ep]$