Other similarity measures

- Static weighting (e.g. Page-Rank)
- Language Model (Compute probability to generate the query using the text statistics of each document)
- Vector space model (compute the cosine of the angle in σ-dimensional space between a query vector and document vector)
- Zone ranking (e.g. words which appear in the title of a web page weight more than words in the body)

More details in survey of Zobel & Moffat [5].
The Inverted Index (IVI)

The classical index in Information Retrieval
For each term q (excluding sentinel symbols)
- a list of pairs of document id and document frequency is stored
- pairs are ordered according to document ids
- the document frequency (=list length) is stored

Sequential processing is used to calculate the ranking function, i.e. query complexity dependent on document frequency.

Example (for collection of last lecture)

$$\text{LA} : \{(1, 2), (2, 1), (3, 3)\} \quad F_{D,\text{LA}} = 3$$

$$\text{O} : \{(1, 1), (2, 2), (3, 1)\} \quad F_{D,\text{O}} = 3$$
The Inverted Index (IVI)

Another example

\(d_1\) : is big data really big
\(d_2\) : is it big in science
\(d_3\) : big data is big

Inverted Lists

- big : \{(1,2),(2,1),(3,2)\}
- data : \{(1,1),(3,1)\}
- in : \{(2,1)\}
- is : \{(1,1),(2,1),(3,1)\}
- really : \{(1,1)\}
- science : \{(2,1)\}

\[F_{D,\text{big}} = 3\]
\[F_{D,\text{data}} = 2\]
\[F_{D,\text{in}} = 1\]
\[F_{D,\text{is}} = 3\]
\[F_{D,\text{really}} = 1\]
\[F_{D,\text{science}} = 1\]
Inverted Index (IVI)

Possible IVI representation

- use Elias-Fano coding to store the increasing list of document ids ID_q
- unary code the list of frequencies decreased by one (i.e. each frequency x is represented by x bits)

Example (for collection of last lecture)

\[
\begin{align*}
\text{LA} & : L_{\text{LA}} = 1, 2, 3 & & 011001 \\
\text{O} & : L_{\text{O}} = 1, 2, 3 & & 1011
\end{align*}
\]

Note: It is not possible to answer phrase queries (e.g. “LA O”) with this variant of IVI. Direct support of arbitrary phrase queries would require $O(n^2)$ lists.
Let $n = \sum_{d \in \mathcal{D}} n_d$ and $f_{\mathcal{D},q} = \sum_{d \in \mathcal{D}} f_{d,q}$. Space consumption of this representation:

$$\sum_{q \in \Sigma} 2F_{\mathcal{D},q} + F_{\mathcal{D},q} \log \frac{N}{F_{\mathcal{D},q}} + o(F_{\mathcal{D},q}) + \underbrace{f_{\mathcal{D},q}}_{\text{frequencies}} + \underbrace{O(\log n)}_{\text{pointer}}$$

$$\leq 3n + o(n) + O(\sigma \cdot \log n) + \sum_{q \in \Sigma} F_{\mathcal{D},q} \log \frac{n}{F_{\mathcal{D},q}}$$

$$\leq^* 3n + o(n) + O(\sigma \cdot \log n) + n \sum_{q \in \Sigma} \frac{f_{\mathcal{D},q}}{n} \log \frac{n}{f_{\mathcal{D},q}}$$

$$= nH_0(\mathcal{D}) + 3n + o(n) + O(\sigma \cdot \log n)$$

* Assuming $f_{\mathcal{D},q} < n/2$ for all q.

Inverted Index (IVI)
Let $m \geq 0$ and $m + 1 \leq \frac{n}{2}$. Then it holds

$$m \cdot \log \frac{n}{m} \leq (m + 1) \cdot \log \frac{n}{m + 1}$$

since

$$(m + 1) \cdot \log \frac{n}{m + 1} - m \cdot \log \frac{n}{m}$$

$$= -m \cdot \log \frac{m + 1}{m} + \log \frac{n}{m + 1}$$

$$\log x \leq \ln 2(x - 1)$$

$$\geq -m \cdot \ln 2 \left(\frac{m + 1}{m} - 1 \right) + \log \frac{n}{m + 1}$$

$$= -\ln 2 + \log \frac{n}{m + 1} \quad m + 1 \leq \frac{n}{2} \quad \geq 0$$
Outline:

- Greedy top-k framework for single-term (single-phrase) queries in $O(n \log n)$ bits of space
- Optimal query time top-k framework for single-term (single-phrase) in $O(n \log n)$ bits of space [3, 2]
- Greedy top-k framework for multi-term queries in $O(n \log n)$ bits of space
The GREEDY framework

Self-Index Based System
The GREEDY framework for single term $f_{d,q}$-ranking of Culpepper et al. [1] consists of
- a Compressed Suffix Array (CSA) of concatenation D
- Wavelet Tree of the Document Array of D

Document Array D
Array of length n. For each suffix $SA[i]$ the document array entry $D[i]$ contains the identifier of the document, in which suffix $SA[i]$ starts.
We denote a suffix array/suffix tree as generalized suffix array/suffix tree when this information was added.
The GREEDY framework

Interval of $q = \omega_1$ in \mathcal{D} corresponds to the (multi)set of documents which contain q.
The GREEDY framework

- Represent document array \mathcal{D} as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1:
The GREEDY framework

- Represent document array \mathcal{D} as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1: push state
The GREEDY framework

- Represent document array D as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1:

```
012312110220001233
001101000110000111
0111100001
0111100001
00000
11111
22222
333
```
The GREEDY framework

- Represent document array \mathcal{D} as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1:

```
012312110220001233
001101000110000111
0111100001
```

expand ($O(1)$ time) and push
The GREEDY framework

- Represent document array \mathcal{D} as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1:
The GREEDY framework

- Represent document array \mathcal{D} as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1: expand and push
The GREEDY framework

- Represent document array D as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1: d_1 (3 times)
The GREEDY framework

- Represent document array D as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1: d_1 (3 times)
The GREEDY framework

- Represent document array \mathcal{D} as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing $\omega_1 : d_1$ (3 times)
The GREEDY framework

- Represent document array D as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1: d_1 (3 times), d_2 (2 times)
ranked_search(CSA, WTD, q, k)

$[l, r] \leftarrow \text{backward_search}(CSA, q)$

pq.push($⟨r - l + 1, [l, r], WTD.\text{root}()⟩$)

$h \leftarrow 0$

while $h < k$ and not pq.empty() do

$⟨s, [l, r], v⟩ \leftarrow pq$.pop()

if $WTD.\text{is_leaf}(v)$ then

output $⟨WTD.\text{symbol}(v), s⟩$

$h \leftarrow h + 1$

else

$⟨⟨[l_l, r_l], v_l⟩, [l_r, r_r], v_r⟩⟩ \leftarrow WTD.\text{expand}(v, [l, r])$

pq.push($⟨r_l - l_l + 1, [l_l, r_l], v_l⟩$)

pq.push($⟨r_r - l_r + 1, [l_r, r_r], v_r⟩$)

End while

Max-Priority-Queue pq sorted according to interval size.
The GREEDY framework

To show:
(a) GREEDY return the correct result
(b) WT method expand runs in constant time

See blackboard.

Improving the algorithm

Let \(v_\omega \) be a WT node which represents the sub-collection \(D_\omega \) (i.e. all documents whose id are prefixed by \(\omega \)). The interval size for query \(q \) at node \(v_\omega \) is an upper bound for \(\max_{d \in D_\omega} \{ f_d, q \} \).

Better upper bound by subtracting the document frequency \(F_{D_\omega, q} \) of \(q \) in sub-collection \(D_\omega \) and adding one.
Document Frequency $F_{D,q}$

- Build binary generalized suffix tree $BGST$.
- For each inner node v in $BGST$ keep a list L_v of repeated documents.
- A document d is added to L_v if d occurs in a leaf of the left and right subtree.
- For a pattern q let v_q be the *locus* (i.e. the lowest node which path is prefixed by q)
- $F_{D,q}$ equals the number of leaves in the subtree of v_q minus the number of repeated documents ($\sum_{v \in T_{v_q}} |L_v'|$) in v_q’s subtree T_{v_q}.
- Nodes are numbered in-order.
- Traverse node in-order and append $|L_v|$ in unary coding to bitvector H, which was initialized with a single 1.
- As all nodes in subtrees are contiguous the number of repeated documents can be calculated by two select queries.
Document Frequency $F_{D,q}$

$H = \begin{array}{cccccccccccccccc}
 v_1 & v_2 & v_3 & v_4 & v_5 & v_6 & v_7 & v_8 & v_9 & v_{10} & v_{11} & v_{12} & v_{13} \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
\end{array}$
Document Frequency F_D,q

Solution of [4]:
- H is at most $2n - N$ bits
- add $o(n)$-bit select structure
- Use CSA to get SA-interval

For $[l, r] \leftarrow \text{backward_search}(\text{CSA}, q)$:

00 \textbf{document_frequency}(H, [l, r])
01 \textit{s} \leftarrow r - l + 1
02 \textit{y} \leftarrow \textit{select}(H, r, 1)
03 \textbf{if} \; \textit{l} = 0 \; \textbf{then}
04 \textbf{return} \; \textit{s} - (\textit{y} - \textit{r} + 1)
05 \textbf{else}
06 \textit{x} \leftarrow \textit{select}(H, l, 1)
07 \textbf{return} \; \textit{s} - (\textit{y} - \textit{r} + 1 - (\textit{x} - \textit{l} + 1))
Calculating $F_{D_v,q}$

- Let D_v be the subset of documents which are represented by a node v of the wavelet tree over the document array.
- How can we calculate $F_{D_v,q}$ efficiently?
- Introduce repetition array R.
- The repetition array contains for each 0 in H the corresponding repeated element of the associated node.
- Map SA-interval of q to R using select operation on H.
- To get $F_{D_v,q}$ use the expand method (constant time per WT level).

More details and practical results on the GREEDY framework are available here: http://arxiv.org/abs/1406.3170
Document Frequency for Subsets: Repetition Array

\[H = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix} \]

\[R = \begin{bmatrix} 1 & 2 & 3 & 3 & 3 & 1 & 1 & 2 & 3 & 2 \end{bmatrix} \]
Bibliography

