Aufgabe 1 (Count leading zeros)

The $O(n \log^2 n)$ bits space and $O(1)$ query time solution for range minimum queries (RMQs) is dependent on the calculation of $k = \max\{\ell \mid 2^\ell \leq j - i + 1\}$, where $[i, j]$ is the query interval. Show how k can be determined in constant time for $0 \leq i \leq j < n$ by using a data structure which only takes $o(n)$ bits of extra space. We are working in the word RAM model.

Aufgabe 2 (GREEDY)

What is the worst case time complexity of the GREEDY algorithm for top-k document retrieval for single-term frequency ranking?

Aufgabe 3 (Range Median Queries)

Given an array of integers A size n. A range median query returns for a subarray $A[i, j]$ the $\left\lceil \frac{j-i+1}{2} \right\rceil$-th smallest integer in $A[i, j]$.

- Show how range median queries can be solved in $O(\log n)$ time using a $O(n \log n)$ bit data structure.
- Implement your solution.