Intermezzo: Top-\(k\) document retrieval

Given
- Collection \(\mathcal{D}' = \{d_1, \ldots, d_{N-1}\}\)
- Each \(d_i\) is a string over alphabet \(\Sigma' = [2, \sigma]\) sentinel symbol terminated by 1 (also #)
- \(\mathcal{D} = \mathcal{D}' \cup d_0\), with \(d_0 = 0\).
- „Bag of words” query \(Q = \{q_0, q_1, \ldots, q_{m-1}\}\) (unordered set of size \(m\))

Problem
Given a collection \(\mathcal{D}\), a query \(Q\) of length \(m\), and a similarity measure \(S : \mathcal{D} \times \mathcal{P}_{=m}(\Sigma') \rightarrow \mathbb{R}\). Calculate the top-\(k\) documents of \(\mathcal{D}\) with regard to \(Q\) and \(S\). That is a sorted list of document identifiers \(T = \{\tau_0, \ldots, \tau_{k-1}\}\), with \(S(d_{\tau_i}, Q) \geq S(d_{\tau_{i+1}}, Q)\) for \(0 \leq i < k\) and \(S(d_{\tau_{k-1}}, Q) \geq S(d_j, Q)\) for \(j \notin T\).
Example

Fix a concatenation C of D.

$$
\begin{array}{cccccccccccc}
 i = & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
 C^{\text{word}} = & \text{LA} & \text{O} & \text{LA} & \# & \text{O} & \text{LA} & \text{LA} & \text{LA} & \# & \text{O} & \text{O} & \text{LA} & \# & \$ \\
 C = & 2 & 3 & 2 & 1 & 3 & 2 & 2 & 2 & 1 & 3 & 3 & 2 & 1 & 0 \\
 \hline
 d_1 & d_3 & d_2 & d_0
\end{array}
$$

- $S^{\text{sfreq}}(d, q) := f_{d,q}$ (i.e. single term frequency ranking)
- $S^{\text{sfreq}}(d_0, \text{LA}) = 0,$
 $S^{\text{sfreq}}(d_1, \text{LA}) = 2,$
 $S^{\text{sfreq}}(d_2, \text{LA}) = 1,$
 $S^{\text{sfreq}}(d_3, \text{LA}) = 3.$
- Top-2: $T = \{3, 1\}$
Okapi BM25 similarity measure

Successful IR similarity measure:

\[S_{Q,d}^{BM25} = \sum_{q \in Q} \frac{(k_1 + 1)f_{d,q}}{k_1 \left(1 - b + b \frac{n_d}{n_{avg}} \right) + f_{d,q}} \cdot f_{Q,q} \cdot \ln \left(\frac{N - F_{D,q} + 0.5}{F_{D,q} + 0.5} \right) = w_{d,q} \]

depends on 3 document-dependent factors:

- \(f_{d,q} \) term frequency
- \(F_{D,q} \) document frequency (\# of distinct \(d \)s which contain \(q \))
- \(n_d \) length of document \(d \)
Other similarity measures

- Static weighting (e.g. Page-Rank)
- Language Model (Compute probability to generate the query using the text statistics of each document)
- Vector space model (compute the cosine of the angle in σ-dimensional space between a query vector and document vector)
- Zone ranking (e.g. words which appear in the title of a web page weight more than words in the body)

More details in survey of Zobel & Moffat [5].
The Inverted Index (IVI)

The classical index in Information Retrieval
For each term q (excluding sentinel symbols)
- a list of pairs of document id and document frequency is stored
- pairs are ordered according to document ids
- the document frequency (=list length) is stored

Sequential processing is used to calculate the ranking function, i.e. query complexity dependent on document frequency.

Example (for collection of last lecture)

$\text{LA} : \{(1, 2), (2, 1), (3, 3)\} \quad F_{D, \text{LA}} = 3$

$\text{O} : \{(1, 1), (2, 2), (3, 1)\} \quad F_{D, \text{O}} = 3$
The Inverted Index (IVI)

Another example

\(d_1:\) is big data really big
\(d_2:\) is it big in science
\(d_3:\) big data is big

Inverted Lists

\[\begin{align*}
\text{big} & : \{(1,2),(2,1),(3,2)\} \\
\text{data} & : \{(1,1),(3,1)\} \\
\text{in} & : \{(2,1)\} \\
\text{is} & : \{(1,1),(2,1),(3,1)\} \\
\text{really} & : \{(1,1)\} \\
\text{science} & : \{(2,1)\}
\end{align*}\]

\[\begin{align*}
F_{D,\text{big}} & = 3 \\
F_{D,\text{data}} & = 2 \\
F_{D,\text{in}} & = 1 \\
F_{D,\text{is}} & = 3 \\
F_{D,\text{really}} & = 1 \\
F_{D,\text{science}} & = 1
\end{align*}\]
Inverted Index (IVI)

Possible IVI representation

- use Elias-Fano coding to store the increasing list of document ids ID_q
- unary code the list of frequencies decreased by one (i.e. each frequency x is represented by x bits)

Example (for collection of last lecture)

$\text{LA : } L_{\text{LA}} = 1, 2, 3 \quad 011001$

$\text{O : } L_{\text{O}} = 1, 2, 3 \quad 1011$

Note: It is not possible to answer phrase queries (e.g. “LA O”) with this variant of IVI. Direct support of arbitrary phrase queries would require $O(n^2)$ lists.
Inverted Index (IVI)

Let \(n = \sum_{d \in D} n_d \) and \(f_{D,q} = \sum_{d \in D} f_{d,q} \). Space consumption of this representation:

\[
\begin{align*}
= & \sum_{q \in \Sigma} 2F_{D,q} + F_{D,q} \log \frac{N}{F_{D,q}} + o(F_{D,q}) + \underbrace{f_{D,q}}_{\text{frequencies}} + \underbrace{O(\log n)}_{\text{pointer}} \\
\leq & 3n + o(n) + O(\sigma \cdot \log n) + \sum_{q \in \Sigma} F_{D,q} \log \frac{n}{F_{D,q}} \\
\leq^* & 3n + o(n) + O(\sigma \cdot \log n) + n \sum_{q \in \Sigma} \frac{f_{D,q}}{n} \log \frac{n}{f_{D,q}} \\
= & n \mathcal{H}_0(D) + 3n + o(n) + O(\sigma \cdot \log n)
\end{align*}
\]

* Assuming \(f_{D,q} < n/2 \) for all \(q \).
Let $m \geq 0$ and $m + 1 \leq \frac{n}{2}$. Then it holds
\[m \cdot \log \frac{n}{m} \leq (m + 1) \cdot \log \frac{n}{m + 1}\]
since
\[
(m + 1) \cdot \log \frac{n}{m + 1} - m \cdot \log \frac{n}{m} = -m \cdot \log \frac{m + 1}{m} + \log \frac{n}{m + 1}
\]
\[
\log x \leq \ln 2(x - 1) \\
\geq -m \cdot \ln 2 \left(\frac{m + 1}{m} - 1 \right) + \log \frac{n}{m + 1}
\]
\[
= -\ln 2 + \log \frac{n}{m + 1} \quad m + 1 \leq \frac{n}{2} \\
\geq 0
\]
Outline:

- Greedy top-\(k\) framework for single-term (single-phrase) queries in \(O(n \log n)\) bits of space
- Optimal query time top-\(k\) framework for single-term (single-phrase) in \(O(n \log n)\) bits of space [3, 2]
- Greedy top-\(k\) framework for multi-term queries in \(O(n \log n)\) bits of space
Self-Index Based System

The GREEDY framework for single term $f_{d,q}$-ranking of Culpepper et al. [1] consists of

- a Compressed Suffix Array (CSA) of concatenation D
- Wavelet Tree of the Document Array of D

Document Array D

Array of length n. For each suffix $SA[i]$ the document array entry $D[i]$ contains the identifier of the document, in which suffix $SA[i]$ starts.

We denote a suffix array/suffix tree as generalized suffix array/suffix tree when this information was added.
The GREEDY framework

\[T = \omega_2 \omega_1 \omega_3 \omega_3 \; \# \; \omega_1 \omega_1 \omega_4 \omega_1 \; \# \; \omega_1 \omega_4 \omega_3 \omega_1 \; \# \; \omega_5 \omega_5 \; \# \]
\[b = 0 \; 0 \; 0 \; 0 \; 1 \; 0 \; 0 \; 0 \; 0 \; 1 \; 0 \; 0 \; 0 \; 0 \; 1 \; 0 \; 0 \; 1 \]

\[D = \begin{array}{cccccccccccccccc}
4 & 9 & 14 & 17 & 8 & 13 & 5 & 6 & 1 & 10 & 12 & 0 & 3 & 2 & 7 & 11 & 16 & 15 \\
\end{array} \]

Interval of \(q = \omega_1 \) in \(D \) corresponds to the (multi)set of documents which contain \(q \).
The GREEDY framework

- Represent document array D as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1:

```
012312110220001233
001101000110000111
0111100001
0111100001
00000
11111
22222
333
```
The GREEDY framework

- Represent document array \mathcal{D} as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1:
The GREEDY framework

- Represent document array D as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1:
The GREEDY framework

- Represent document array \mathcal{D} as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Expand ($O(1)$ time) and push

Top documents containing ω_1:
The GREEDY framework

- Represent document array \mathcal{D} as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1:
The GREEDY framework

- Represent document array D as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1:

```
012312110220001233
001101000110000111
```

```
0111100001
0111100001
```

```
00000
11111
22222
333
```

expand and push
The GREEDY framework

- Represent document array \mathcal{D} as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1: d_1 (3 times)
The GREEDY framework

- Represent document array \mathcal{D} as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing $\omega_1: d_1$ (3 times)
The GREEDY framework

- Represent document array \mathcal{D} as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing $\omega_1 : d_1$ (3 times)
The GREEDY framework

- Represent document array D as wavelet tree WTD
- Example: Search top-2 documents (frequency based ranking)

Top documents containing ω_1: d_1 (3 times), d_2 (2 times)
Pseudo Code

00 `ranked_search(CSA, WTD, q, k)`
01 `[l, r] ← backward_search(CSA, q)`
02 `pq.push(⟨r − l + 1, [l, r], WTD.root()⟩)`
03 `h ← 0`
04 `while h < k and not pq.empty() do`
05 `⟨s, [l, r], v⟩ ← pq.pop()`
06 `if WTD.is_leaf(v) then`
07 `output ⟨WTD.symbol(v), s⟩`
08 `h ← h + 1`
09 `else`
10 `⟨⟨[l, r], v_l⟩, ⟨[l_r, r_r], v_r⟩⟩ ← WTD.expand(v, [l, r])`
11 `pq.push(⟨r_l − l + 1, [l, r_l], v_l⟩)`
12 `pq.push(⟨r_r − l_r + 1, [l_r, r_r], v_r⟩)`

Max-Priority-Queue `pq` sorted according to interval size.
To show:
(a) GREEDY return the correct result
(b) WT method expand runs in constant time

See blackboard.

Improving the algorithm
Let \(v_\omega \) be a WT node which represents the sub-collection \(D_\omega \) (i.e. all documents whose id are prefixed by \(\omega \)). The interval size for query \(q \) at node \(v_\omega \) is an upper bound for \(\max_{d \in D_\omega} \{ f_d, q \} \).

Better upper bound by subtracting the document frequency \(F_{D_\omega,q} \) of \(q \) in sub-collection \(D_\omega \) and adding one.
Document Frequency $F_{D,q}$

- Build binary generalized suffix tree $BGST$.
- For each inner node v in $BGST$ keep a list L_v of repeated documents.
- A document d is added to L_v if d occurs in a leaf of the left and right subtree.
- For a pattern q let v_q be the locus (i.e. the lowest node which path is prefixed by q)
- $F_{D,q}$ equals the number of leaves in the subtree of v_q minus the number of repeated documents ($\sum_{v \in T_{v_q}} |L'_v|$) in v_q’s subtree T_{v_q}.
- Nodes are numbered in-order.
- Traverse node in-order and append $|L_v|$ in unary coding to bitvector H, which was initialized with a single 1.
- As all nodes in subtrees are contiguous the number of repeated documents can be calculated by two select queries.
Document Frequency $F_{D,q}$

\[
H = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1
\end{bmatrix}
\]
Document Frequency $F_{D, q}$

Solution of [4]:
- H is at most $2n - N$ bits
- add $o(n)$-bit select structure
- Use CSA to get SA-interval

For $[l, r] \leftarrow \text{backward_search}(\text{CSA, q})$:

00 \texttt{document_frequency}(H, [l, r])
01 \hspace{1em} s \leftarrow r - l + 1
02 \hspace{1em} y \leftarrow \text{select}(H, r, 1)
03 \hspace{1em} \textbf{if } l = 0 \textbf{ then}
04 \hspace{1em} \hspace{1em} \textbf{return } s - (y - r + 1)
05 \hspace{1em} \textbf{else}
06 \hspace{1em} \hspace{1em} x \leftarrow \text{select}(H, l, 1)
07 \hspace{1em} \hspace{1em} \textbf{return } s - (y - r + 1 - (x - l + 1))
Calculating $F_{D_v,q}$

- Let D_v be the subset of documents which are represented by a node v of the wavelet tree over the document array.
- How can we calculate $F_{D_v,q}$ efficiently?
- Introduce repetition array R
- The repetition array contains for each 0 in H the corresponding repeated element of the associated node.
- Map SA-interval of q to R using select operation on H.
- To get $F_{D_v,q}$ use the expand method (constant time per WT level).

More details and practical results on the GREEDY framework are available here: http://arxiv.org/abs/1406.3170
Document Frequency for Subsets: Repetition Array

$H = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$

$R = \begin{bmatrix} 1 & 2 & 3 & 3 & 3 & 1 & 1 & 2 & 3 & 2 \end{bmatrix}$
Bibliography

