Range Querying using Wavelet Trees

Problem 2
Given a $[0, n - 1] \times [0, n - 1]$ grid G and a set P of n points $(i, S[i])$ with weight $w[i]$ for $0 \leq i < n$. For a pair of points (x_0, y_0) and (x_1, y_1) with $x_0 \leq x_1$ and $y_0 \leq y_1$ we define the top-k range query:

- A top-k range report query asks for the k points $(x, y) \in P$ such that $x \in [x_0, x_1]$ and $y \in [y_0, y_1]$ with maximum weight sorted in decreasing order of weight.

Results [5]
Top-k range queries can be answered in $O(\log^2 n + k \cdot \log n)$ time using a index of size $3n \log n + o(n \log n) + |weights|$ bits, where $|weights|$ is the space required to store the weights associated with the n points.
Top-k Range Report Queries

Outline of solution

- Use the range count algorithm to get the $O(\log n)$ WT nodes C which cover the y range
- For each x range in C use the RMQ structure to navigate to the haviest point ($O(\log n)$ time per range, i.e $O(\log^2 n)$ total)
- Insert the haviest points into a max priority queue Q
- Remove maximum point from Q, report it and split its corresponding x range in C. Navigate to the haviest points in the two new ranges Q. Insert
- Repeat last step until Q is empty or k points were reported

Total time: $O(\log^2 n + k \cdot \log n)$
Top-k Range Report Queries

- x ranges
- RMQ on associated weights
- y range
Top-k Range Report Queries

x ranges

y range

RMQ on associated weights
Top-\(k\) Range Report Queries

- \(x\) ranges
- \(y\) range
- \(RMQ\) on associated weights
The suffix tree (ST) extends the functionality of suffix array construction in three phases (each takes linear time)
- suffix array construction (see Lecture 5)
- LCP array construction
- tree topology construction

As the pointer-based representation takes too much space in most application we will present a more space-efficient version: The compressed suffix tree (CST).
Versatile index structure: E.g. we can solve longest common substring queries for k strings efficiently.

Exercise: Find longest palindromic substring of a string.

Simon Gog: Text Indexing: Lecture 7
Most representations consist of three parts:
- Suffix Array (leaves of suffix tree)
- LCP Array (longest common prefix lengths/depth of inner nodes)
- Tree Topology
LCP Array

Definition

Let \(lcp(U, V) \) denote the longest common prefix between two strings \(U \) and \(V \). For a text \(T \) of size \(n \) the longest common prefix (LCP) array of size \(n + 1 \) is defined as follows.

\[
LCP[i] = |lcp(SA[i], SA[i - 1])| \quad \text{for} \quad i \geq 1
\]

and

\[
LCP[0] = 0 \quad \text{and} \quad LCP[n] = -1.
\]

([4] introduced this array as \(Hgt \) array)
LCP Array – Example

<table>
<thead>
<tr>
<th>i</th>
<th>SA</th>
<th>LCP</th>
<th>(T[SA[i], n - 1])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>0</td>
<td>$</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
<td>i$</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1</td>
<td>ippi$</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>issippi$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>ississippi$</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>mississippi$</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>0</td>
<td>pi$</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1</td>
<td>ppi$</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>sippi$</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>2</td>
<td>sissippi$</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>1</td>
<td>ssippi$</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>3</td>
<td>ssissippi$</td>
</tr>
</tbody>
</table>

- Time complexity of naive computation (for each \(i > 0 \), compare suffix \(SA[i] \) and \(SA[i - 1] \)): \(O(n^2) \).
- Comparison in SA-order.
Idea of [3]: Processing in text-order.

\[
SA[ISA[i] - 1] = 1
\]

\[
i = 0
\]
Idea of [3]: Processing in text-order.

\[
SA[ISA[i] - 1] = 4
\]

0 4
Idea of [3]: Processing in text-order.

\[i = 2 \]

\[\text{SA}[\text{ISA}[i] - 1] = 5 \]

\[0 \quad 4 \quad 3 \]
Idea of [3]: Processing in text-order.

\[
\begin{align*}
0 & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 & \quad 7 & \quad 8 & \quad 9 & \quad 10 & \quad 11 \\
\text{m} & \quad \text{i} & \quad \text{s} & \quad \text{s} & \quad \text{i} & \quad \text{s} & \quad \text{s} & \quad \text{i} & \quad \text{p} & \quad \text{p} & \quad \text{i} & \quad \$
\end{align*}
\]

\[
i = 3
\]

\[
\text{SA[ISA[i] − 1]} = 6
\]

\[
0 & \quad 4 & \quad 3 & \quad 2
\]
Linear Time Calculation of LCP Array

Idea of [3]: Processing in text-order.

\[i = 4 \]

\[\text{SA[ISA}[i] - 1] = 7 \]
Linear Time Calculation of LCP Array

Idea of [3]: Processing in text-order.

\[
SA[ISA[i] - 1] = 3
\]

\[
i = 5
\]
Linear Time Calculation of LCP Array

Idea of [3]: Processing in text-order.

0 1 2 3 4 5 6 7 8 9 10 11
mississippi

\(i = 6 \)

\(\text{SA}[\text{ISA}[i] - 1] = 8 \)

0 4 3 2 1 1 1 0
Linear Time Calculation of LCP Array

Idea of [3]: Processing in text-order.

\[i = 7 \]

\[\text{SA} \left[\text{ISA}[i] - 1 \right] = 10 \]
Linear Time Calculation of LCP Array

Idea of [3]: Processing in text-order.

\[
\text{mississippi} \quad \text{mississippi} \\
\]

\[
0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \\
\]

\[
\text{mississippi} \quad \text{mississippi} \\
\]

\[
i = 8 \\
\text{SA}[\text{ISA}[i] - 1] = 9 \\
\]

\[
0 \quad 4 \quad 3 \quad 2 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \\
\]
Idea of [3]: Processing in text-order.

SA[ISA[i] − 1] = 0
Linear Time Calculation of LCP Array

Idea of [3]: Processing in text-order.

$m_0, m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8, m_9, m_{10}$

$SA[ISA[i] - 1] = 11$
Linear Time Calculation of LCP Array

Idea of [3]: Processing in text-order.

\[i = 11 \]

\[\text{SA}[\text{ISA}[i] - 1] = 5 \]
Lemma ([3])
For $0 < i \leq n$, we have $LCP[ISA[i]] \geq LCP[ISA[i – 1]] – 1$.
Linear Time Calculation of LCP Array

LCP[0] ← 0
LCP[n] ← −1
for i ← 0 to n − 1 do
 ISA[SA[i]] ← i
ℓ ← 0
for i ← 0 to n − 1 do
 j ← SA[(ISA[i] − 1) mod n]
 while T [i + ℓ] = T [j + ℓ] do
 ℓ ← ℓ + 1
 LCP[ISA[i]] ← ℓ
ℓ ← max(0, ℓ − 1)

Exercise
How much memory is required during the algorithms execution?
Linear Time Calculation of LCP Array

Engineered version of [2]:

00 for $i \leftarrow 0$ to $n - 1$ do
01 $\Phi[SA[i]] \leftarrow SA[(i - 1) \mod n]$
02 $\ell \leftarrow 0$
03 for $i \leftarrow 0$ to $n - 1$ do
04 $j \leftarrow \Phi[i]$
05 while $T[i + \ell] = T[j + \ell]$ do
06 $\ell \leftarrow \ell + 1$
07 $PLCP[i] \leftarrow \ell$
08 $\ell \leftarrow \max(0, \ell - 1)$
09 for $i \leftarrow 0$ to $n - 1$ do
10 $LCP[i] \leftarrow PLCP[SA[i]]$
11 $LCP[n] \leftarrow -1$

(Explain why this algorithm is faster in practice)
[6] proposed to use a CSA and the permuted LCP array (LCP values in text-order) PLCP. We know

- $PLCP[i + 1] \geq PLCP[i] - 1$
- $PCLP[i] \leq n - 1 - i$ (for $0 \leq i < n$)

\[
\begin{align*}
i &= 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \\
PCLP[i] &= 0 \quad 4 \quad 3 \quad 2 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0
\end{align*}
\]
[6] proposed to use a CSA and the permuted LCP array (LCP values in text-order) PLCP. We know

- \(PLCP[i + 1] \geq PLCP[i] - 1 \)
- \(PCLP[i] \leq n - 1 - i \) (for \(0 \leq i < n \))

\[
\begin{align*}
 i &= 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \\
 PCLP[i] &= 0 \quad 4 \quad 3 \quad 2 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \\
 PCLP[i] + i &= 0 \quad 5 \quad 5 \quad 5 \quad 5 \quad 6 \quad 6 \quad 8 \quad 9 \quad 9 \quad 10 \quad 11
\end{align*}
\]
Space-Efficient LCP Representation

[6] proposed to use a CSA and the permuted LCP array (LCP values in text-order) PLCP. We know

- $PLCP[i + 1] \geq PLCP[i] - 1$
- $PCLP[i] \leq n - 1 - i$ (for $0 \leq i < n$)

$$i = \begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\end{array}$$

$$PCLP[i] = \begin{array}{cccccccccccc}
0 & 4 & 3 & 2 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
\end{array}$$

$$PCLP[i] + i = \begin{array}{cccccccccccc}
0 & 5 & 5 & 5 & 5 & 6 & 6 & 8 & 9 & 9 & 10 & 11 \\
\end{array}$$

- Encode gaps of $PLCP[i] + i$ with unary code (results in bitvector H of length $2n$)

- In this example: $H = 10000011110110010110101$

- What additional structure is required to calculate $LCP[i]$?
Space-Efficient LCP Representation

With a $o(n)$-space select structure (arguments starting from 1) and a CSA we get:

```
00  def access_lcp(i):
01      x ← SA[i]
02      return select(x + 1, 1, H) + 1 − 2x
```

Summary:
- Time complexity depends on CSA access
- Space: $2n + o(n)$ bits (for bitvector $H + \text{select}$) + $|\text{CSA}|$

Note: The LCP between arbitrary suffixes can be calculated in constant time using a RMQ structure.
Definition of an LCP-interval ([1])

An interval \([i, j]\), where \(0 \leq i \leq n - 1\) is called LCP-interval of LCP value \(\ell\) (denoted by \(\ell - [i, j]\)) if

- \(LCP[i] < \ell\) or \(i = 0\)
- \(LCP[k] \geq \ell\) for all \(k \in [i + 1, j]\)
- \(LCP[k] = \ell\) for at least one \(k \in [i + 1, j]\)
- \(LCP[j + 1] < \ell\)

Every index \(k\) with \(i < k \leq j\) and \(LCP[k] = \ell\) is called \(\ell\)-index. There are at most \(\sigma - 1\) \(\ell\)-indices in an LCP-interval.

Note: Each LCP-interval corresponds to a node in the suffix tree.
The LCP-Interval Tree – Example

<table>
<thead>
<tr>
<th>i</th>
<th>SA</th>
<th>LCP</th>
<th>$\ell[SA[i], n-1]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>0</td>
<td>$$</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
<td>i$</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1</td>
<td>ippi$</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>issippi$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>ississippi$</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>mississippi$</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>0</td>
<td>pi$</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1</td>
<td>ppi$</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>sippi$</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>2</td>
<td>sissippi$</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>1</td>
<td>ssippi$</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>3</td>
<td>ssissippi$</td>
</tr>
</tbody>
</table>

- Singleton intervals $\ell - [i, i]$ are omitted.

