Exercise 1 (Substring select)
Given a text T of length n over an alphabet of size σ and a query q of length m. A substring select query $\text{select}(i, q, T)$ returns the position of the i-th occurrence of q in T. Show how a substring select query can be answered in $O((m + 1) \log^2 n)$ time using at most $n \lceil \log n \rceil + \sigma \lceil \log n \rceil + o(n \log n)$ bits of space.
Hint: Use the result of 2.4.

Exercise 2 (Top-k range reporting)
Given a set of n points p_0, \ldots, p_{n-1} of the form $p_i = (i, Y[i])$ with $0 \leq Y[i] < \log n$. We associate a weight w_i with each point p_i.
Devise a data structure which takes
(a) $O(n \log \log n)$
(b) $n \log \log n + 2n + o(n \log \log n)$
bits of space (on top of the space for the weights) and can answer top-k range reporting queries in $O((\log \log n)^2 + k \log \log n)$ time for (a) and $O(\log n + k \log n)$ time for (b).

Exercise 3 (Longest palindromic substring)
A string s is called palindromic if it reads the same forward or backward. E.g. ada, gog, or $hannah$ are palindromic strings. Given a text T of size n over an alphabet of size σ. Design a linear time algorithm to calculate the longest palindromic substring of s. If there is more than one longest palindromic substring we are interested in the lexicographically smallest one.