Exercise 1 *(Precompute PSV)*

The previous smaller value (PSV) array for an array A of length n is defined as

$$PSV_A[i] = \max\{-1\} \cup \{j \mid 0 \leq j < i \land A[j] < A[i]\}$$

for all $0 \leq i < n$. Devise a linear time algorithm to compute PSV_A.

Exercise 2 *(Enclose)*

In Lecture 8 we have seen how the find_close operation can be solved in constant time with a data structure which just takes $o(n)$ extra space. Adapt the data structure to solve the enclose operation.

Exercise 3 *(Reconstruct LZ)*

Given the LZ factorization $(\text{PrevOcc}_0, \text{LPS}_0), \ldots, (\text{PrevOcc}_{z-1}, \text{LPS}_{z-1})$ of a text T. Devise a linear time algorithm to reconstruct T from its LZ factorization.