Text Indexing: Lecture 4
Simon Gog – gog@kit.edu
Problem
Given a query q, list all the distinct documents which contain q.

Solution by Muthukrishnan ([3])
- Precompute text index + document array D
- Precompute array E with $E[i] = \max j \mid j < i \land D[j] = D[i]$
- Use text index to get lex. range of q
- Use range minimum queries on E to get distinct documents in the lex. range of q
- Running time in number of distinct documents
Example

\[
\begin{align*}
 & i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \\
 & C = A\ T\ A\ \#\ T\ A\ A\ A\ \#\ T\ A\ T\ A\ \#\ $ \\
 & \begin{array}{c}
 d_1 \\
 d_2 \\
 d_3
 \end{array}
\end{align*}
\]

\[
\begin{align*}
 & i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \\
 & SA = 14 \ 13 \ 3 \ 8 \ 12 \ 2 \ 7 \ 6 \ 5 \ 10 \ 0 \ 11 \ 1 \ 4 \ 9 \\
 & D = 0 \ 3 \ 1 \ 2 \ 3 \ 1 \ 2 \ 2 \ 2 \ 3 \ 1 \ 3 \ 1 \ 2 \ 3 \\
 & E = -1 \ -1 \ -1 \ -1 \ 1 \ 2 \ 3 \ 6 \ 7 \ 4 \ 5 \ 9 \ 10 \ 8 \ 11
\end{align*}
\]
Example ($q = TA$)

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>#</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>#</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>#</td>
<td>$</td>
</tr>
</tbody>
</table>

d_1

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>14</td>
<td>13</td>
<td>3</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>

d_2

d_3
Example \((q = TA)\)

\[
\begin{align*}
i & = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \\
C & = \begin{array}{ccccccc}
\end{array} \\
D & = 0 \quad 3 \quad 1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 2 \quad 2 \quad 3 \quad 1 \quad 3 \quad 1 \quad 2 \quad 3 \\
E & = -1 \quad -1 \quad -1 \quad -1 \quad 1 \quad 2 \quad 3 \quad 6 \quad 7 \quad 4 \quad 5 \quad 9 \quad 10 \quad 8 \quad 11
\end{align*}
\]
Example \((q = TA)\)

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>#</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>#</td>
<td>T</td>
<td>A</td>
<td>A</td>
<td>#</td>
<td>$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[d_1 \quad d_2 \quad d_3 \]

<table>
<thead>
<tr>
<th>(i)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SA)</td>
<td>14</td>
<td>13</td>
<td>3</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>(D)</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(E)</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>
Example \((q = TA)\)

\[
i = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \\
C = \begin{array}{cccccc}
A & T & A & \# & T & A \\
\hline
d_1 & d_2 & d_3
\end{array}
\]

\[
E = -1 \ -1 \ -1 \ -1 \ 1 \ 2 \ 3 \ 6 \ 7 \ 4 \ 5 \ 9 \ 10 \ 8 \ 11 \\
\]

\[
SA = \begin{array}{cccccccccccc}
14 & 13 & 3 & 8 & 12 & 2 & 7 & 6 & 5 & 10 & 0 & 11 & 1 & 4 & 9 \\
\hline
\end{array}
\]

\[
D = \begin{array}{cccccccccccc}
0 & 3 & 1 & 2 & 3 & 1 & 2 & 2 & 2 & 3 & 1 & 3 & 1 & 2 & 3 \\
\hline
\end{array}
\]
Document Listing

Algorithm

\textbf{document_listing}(q)
\begin{align*}
&[i,j] \leftarrow \text{backward_search} (\text{CSA}, q) \\
&\text{document_listing_rec}([i,j], i)
\end{align*}

\textbf{document_listing_rec}([i,j], sp)
\begin{align*}
&\textbf{if } (j \geq i) \textbf{ then} \\
&\quad p \leftarrow \text{RMQ}(i, j) \\
&\quad \textbf{if } E[p] < sp \textbf{ then} \\
&\quad \quad \textbf{output } D[p] \\
&\quad \text{document_listing}(i, p - 1, sp) \\
&\quad \text{document_listing}(p + 1, j, sp)
\end{align*}
Range Minimum Query

Given an array $A[0, n – 1]$ of elements from a totally ordered set. A range minimum query $rmq(i, j)$ calculates the index k of the smallest element $A[k]$ in a range $[i, j]$.

Range Minimum Query Index

Precalculate $M[0, n – 1][\log n]$ with $M[i][j] = rmq(i, i + 2^j – 1)$. Then

$$rmq(i, j) = \begin{cases} M[i][r] & \text{if } A[M[i][r]] \leq A[M[j – 2^r + 1][r]] \\ M[j – 2^r + 1][r] & \text{otherwise} \end{cases}$$

where $r = \max\{r \mid 2^r \leq j – i + 1\}$. This solution takes $O(n \log^2 n)$ bits of space and achieves $O(1)$ query time. This is much better than the naive variant of precalculate all $O(n^2)$ answers. There is a solution which takes just $2n + o(n)$ bits and achieves $O(1)$ query time.
Top-\(k\) for Single-Term Frequency

Problem
Given one query term (or phrase) \(q\) of length \(m\) and parameter \(k\). Report the top-\(k\) documents with respect to term frequency.

First solution
- Retrieve \(x\) distinct documents \(\{d_{r_1}, \ldots, d_{r_x}\}\) in which \(q\) occurs
- Determine frequency \(f_{d_{r_i},q}\) of \(q\) in each \(d_{r_i}\) (question: How can this be done in \(\log N\) time per document?)
- Maintain min-heap of (frequency,document)-pairs of size \(k\)
- Total time complexity: \(O(m + x(\log k + \log N))\)

Already a solution which is not dependent on \(n\). Drawback: \(x\) can be as large as \(N\), the number of documents.
Optimal solution provides \(O(m + k)\) query time in \(O(n \log n)\) bits.

We will discuss a simplified but very practical version presented recently (see [1]). Query time \(O(m \cdot t_{LF} + \log n \cdot k)\).

The optimal version was discovered by Navarro & Nekrich [4] and is based on the framework of Hon et al. [2]
Top-k for Single-Term Frequency

Build generalized suffix tree (GST)

Direction of the edge labels different to last lecture ;)

Simon Gog:
Text Indexing: Lecture 4
A document id i is added to node v, if v is the lowest common ancestor of two leaf nodes marked by i.
Top-\(k\) for Single-Term Frequency

Number nodes
Top-k for Single-Term Frequency

Node numbering
Assign each inner node v an identifier $id(v)$ which is the index of the rightmost leaf in the subtree of v’s leftmost child plus one. We get three properties:

- $id(v) \neq id(w)$ for all inner nodes v, w of T
- $id(v) \in [1, n]$
- $id(v) - 1 \in [lb(v), rb(v)]$, where $lb(v)$ and $rb(v)$ are the index of the index of the leftmost leaf and rightmost leaf in v’s subtree ($[lb(v), rb(v)] = v$’s SA-interval)

In the following we denote a node w by $v_{id(w)}$.

Proof of first property
Assume there are two nodes $v \neq w$ and $id(v) = id(w)$.

- Case 1: $LCA(v, w) \in \{v, w\}$ ($LCA(v, w) = w$ analogously).
- Case 2: $LCA(v, w) \notin \{v, w\}$
Connect nodes with closest ancestor nodes

Connect node id i at node v_x to the closest ancestor v_y which also contains id i
Observations:
- The subset of nodes which are marked with document id i correspond to the suffix tree of document i.
- Document id i occurs at most n_i times in the leaves of the GST and $n_i - 1$ times in inner nodes.
- Summing up all document labels results in at most $2n - N$ entries.

Next: Answering a query on the index.
Top-k for Single-Term Frequency

Query for $q = TA$

Select the locus of $q = TA$, which is the first node v such that the path labels from the root to v is prefixed by q.
Top-\(k\) for Single-Term Frequency

Observations:

- Per document \(i\) there is at most one pointer leaving the subtree of the locus \(v\).
- We associate a weight with each pointer for a document \(i\). The weight is the frequency of document \(i\) in the subtree rooted by the pointer’s source node.
- The pointer of document \(i\) leaving the subtree of the locus \(v\) has the maximum weight of all pointers for document \(i\) in \(v\)’s subtree.
- Document listing corresponds to determine all pointers leaving the subtree of the locus.
- Top-\(k\) term frequency corresponds to retrieving the \(k\) pointers (respectively their associated documents) with the highest weights leaving the subtree of the locus.

Next: Orthogonal range queries can be used to solve the problem.
GST including all pointers

In the following we will only consider documents which occur more than two times. I.e. we remove all pointers of weight 1...
Top-k for Single-Term Frequency

GST including all pointers of weight ≥ 2

...we will handle weight-1 documents later.
Top-k for Single-Term Frequency

GST including all pointers of weight ≥ 2

...we will handle weight-1 documents later.
Top-k for Single-Term Frequency

- We assign each pointer to a (x, y)-coordinate.
 - The x-component is dependent on the numbering of the pointers source node
 - The y-coordinate to the string depth of the pointers target node
- Let $\text{depth}(v)$ be the string depth of locus node v. Than all pointers which leave the subtree have a y-coordinate $< \text{depth}(v)$
Top-k for Single-Term Frequency

GST, x-mapping H, and grid G
Top-k for Single-Term Frequency

Example: $q = A$

$$H = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$DOC = \begin{bmatrix} 1 & 2 & 3 & 2 & 3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 0 \\ 2 & 3 & 2 & 2 & 2 \end{bmatrix}$$

$$x = \begin{bmatrix} 1 & 2 & 3 & 2 & 3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 0 \\ 2 & 3 & 2 & 2 & 2 \end{bmatrix}$$

$$y = \begin{bmatrix} 1 & 2 & 3 & 2 & 3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 0 \\ 2 & 3 & 2 & 2 & 2 \end{bmatrix}$$

$$w = \begin{bmatrix} 1 & 2 & 3 & 2 & 3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 0 \\ 2 & 3 & 2 & 2 & 2 \end{bmatrix}$$
Top-\(k\) for Single-Term Frequency

- Note: Mapping from pointer to \(x\)-coordinate similar to mapping in document frequency data structure (see Lecture 4)
- DOC stores the documents associated with a pointer
- Possible data structure for grid \(G\):
 - A wavelet tree augmented over \(y\)-coordinates augmented by an RMQ structure over \(w\) on each level
 - A \(K^2\)-treap
- If there are less than \(k\) documents reported from the grid, we can use the document listing structure to report single-occurrence documents
- Space for document listing: \(2n + o(n)\) bits + space to retrieve the document numbers. \(2N + N \log \frac{n}{N} + o(N)\) bits for bitvector \(B\) which indicates a separator symbol in \(C\) and rank structure on \(B\)
Top-k for Single-Term Frequency

M0

M1

M2

M3

(0,3)-8 NO

(2,1)-7

(0,0)-5 (1,2)-2 (3,0)-7 (2,2)-4

(0,6)-7

(0,4)-5 (0,7)-6

(4,4)-7 N1

(6,6)-3 N2

(2,1)-7 N3
Top-k for Single-Term Frequency

![Binary tree diagram]

coord[0] \((0,3)\)

coord[1] \((2,1) (0,2) (0,0)\)

coord[2] \((0,0) (1,0) (1,0) (0,0) (0,0) (0,1) (0,0)\)

values \([8 -- 1 1 1 -- 2 5 0 3 2 1 4 -- 4 4 2 3 3 2 2 5 1 2 3]\)

first \([0 1 4 11]\)
Experiments from [1] – Collections

| Collection | n | N | n/N | σ | $|C|$ in MB |
|------------|-----|-----|-------|----------|------------|
| **character alphabet** | | | | | |
| ENWIKI-SMLc | 68,210,334 | 4,390 | 15,538 | 206 | 65 |
| ENWIKI-BIGc | 8,945,231,276 | 3,903,703 | 2,291 | 211 | 8,535 |
| **word alphabet** | | | | | |
| ENWIKI-SMLw | 12,741,343 | 4,390 | 2,902 | 281,577 | 29 |
| ENWIKI-BIGw | 1,690,724,944 | 3,903,703 | 433 | 8,289,354 | 4,646 |
| GOV2w | 23,468,782,575 | 25,205,179 | 931 | 39,177,922 | 72,740 |
Experiments [1] – Detailed space breakdown

Space [fraction of input]

ENWIKI-SML\(^c\) ENWIKI-BIG\(^c\) ENWIKI-SML\(^w\) ENWIKI-BIG\(^w\) GOV2\(^w\)

- RMQC
- DOC
- \(K^2\)-treap
- H
- CSA
Query times for IDX_GN on ENWIKI-BIGC, with $m = 5$. Left: Query time depending on k with a detailed breakdown of the three query phases. Right: Average time per document (mixed), per K^2-treap retrieved document and RMQC+CSA retrieved document. CSA matching time is included in all cases.
Experiments [1] – Query time dependence on K^2-treap bitvector

Avg. time per query [μs]

ENWIKI-SMLc
ENWIKI-BIGc
ENWIKI-SMLw
ENWIKI-BIGw
GOV2w

rrr_vector<63>
bit_vector
Experiments [1] – Query time dependent on pattern length

- **ENWIKI-SML**
 - Pattern length: 10, 100, 1,000, 10,000
 - Avg. time per query [µs]

- **ENWIKI-BIG**
 - Pattern length: 5, 10, 15, 20
 - Avg. time per query [µs]

- **ENWIKI-SML**
 - Pattern length: 5, 10, 15, 20
 - Avg. time per query [µs]

- **ENWIKI-BIG**
 - Pattern length: 5, 10, 15, 20
 - Avg. time per query [µs]

